6.825 Techniques in Artificial Intelligence

Markov Decision Processes

- Framework
- Markov chains
- MDPs
- Value iteration
- Extensions

MDP Framework

- \(S \): states
- \(A \): actions
- \(\Pr(s_{t+1} \mid s_t, a_t) \): transition probabilities
 \[= \Pr(s_{t+1} \mid s_0, \ldots, s_t, a_0 \ldots a_t) \] Markov property
- \(R(s) \): real-valued reward

Find a policy \(\pi \): \(S \rightarrow A \)
Maximize

- Myopic: \(E[r_t \mid \pi, s_t] \) for all \(s \)
- Finite horizon: \(E[\sum_{t=0}^{T-1} r_t \mid \pi, s_0] \)
 - Non-stationary policy: depends on time
- Infinite horizon: \(E[\sum_{t=0}^{\infty} r_t \mid \pi, s_0] \)
 - \(0 < \gamma < 1 \) is discount factor
 - Optimal policy is stationary

Markov Chain

- States
- Transitions
- Rewards
- No actions

Value of a state, using infinite discounted horizon
\[V(s) = R(s) + \gamma \sum_{s'} P(s' \mid s) V(s') \]

Markov Chain

- States
- Transitions
- Rewards
- No actions

Value of a state, using infinite discounted horizon
\[V(s) = R(s) + \gamma \sum_{s'} P(s' \mid s) V(s') \]

Finding the Best Policy

- MDP + Policy = Markov Chain
- MDP = the way the world works
- Policy = the way the agent works

Value
\[V'(s) = R(s) + \max_a \left[\sum_s P(s' \mid s, a) V'(s') \right] \]

Theorem: There is a unique \(V' \) satisfying these equations

\[\pi^*(s) = \arg\max_a \sum_s P(s' \mid s, a) V'(s') \]
Computing V^*

- Approaches
 - Value iteration
 - Policy iteration
 - Linear programming

Value Iteration

Initialize $V^0(s) = 0$, for all s
Loop for a while [until $|V^k - V^{k+1}| < \epsilon(1-\gamma)/\gamma$]
 - Loop for all s
 - $V^{k+1}(s) = R(s) + \max_a \sum P(s' | s, a) V^k(s')$
- Converges to V^*
- No need to keep $V^k \neq V^{k+1}$
- Asynchronous (can do random state updates)
- Assume we want $|V^k - V^*| = \max_s |V^k(s) - V^*(s)| < \epsilon$
- Gets to optimal policy in time polynomial in $|A|$, $|S|$, $1/(1-\gamma)$

Big state spaces

- Function approximation for V
 - neural nets
 - regression trees
 - factored representations (represent $Pr(s'|s,a)$ using Bayes net)

Partial Observability

- MDPs assume complete observability (can always tell what state you’re in)
 - POMDP (Partially Observable MDP)
 - Observation: $Pr(O|s,a)$ [O is observation]
- o, a, o, a, o, a

Partial Observability

- MDPs assume complete observability (can always tell what state you’re in)
 - POMDP (Partially Observable MDP)
 - Observation: $Pr(O|s,a)$ [O is observation]
- o, a, o, a, o, a

Worrying too much

- Assumption that every possible eventuality should be taken into account
- Sample-based planning: with short horizon in large state space, planning should be independent of state-space size
Leading to Learning
MDPs and value iteration are an important foundation of reinforcement learning, or learning to behave.