Recitation 14

Solutions

November 27, 2001

14 I

1. $P(A \vee \neg A)=p(A)+P(\neg A)-P(A \wedge \neg A)$
$P(A \wedge \neg A)=0$ and $P(A \vee \neg A)=1$
so $P(A)=1-P(A)$
2. $P(A \vee B \vee C)=P(A)+P(B \vee C)-P(A \wedge(B \vee C))=P(A)+P(B \vee C)+P((A \wedge B) \vee(A \wedge C))$
$=P(A)+P(B)+P(C)-P(B \wedge C)-P(A \wedge C)-P(A \wedge B)+P(A \wedge B \wedge C)$
14 II
3. $P(A)-P(A B)=p(A \vee B)-P(B)$
$P(A)-P(A B) \geq 0$ since $P(A \vee B) \geq P(B)$
4. $P(A \mid B C)=P(A \mid C)$ is equivalent to eq 1: $\frac{P(A B C)}{P(B C)}=\frac{P(A C)}{P(C)}$ multiply both sides of eq 1 by $\frac{P(B C)}{P(A C)}$ to arrive at $P(B \mid A C)=P(B \mid C)$ multiply both sides of eq 1 by $\frac{P(B C)}{P(C)}$ to arrive at $P(A B \mid C)=P(B \mid C) P(A \mid C)$
5. $P(A \mid B C)=\frac{P(B \mid A C) P(A \mid C)}{P(B \mid C)}$ (from AIMA pg 426)
