
Artificial Intelligence 101 (1998) 99–134

Planning and acting in partially observable
stochastic domains

Leslie Pack Kaelblinga,∗,1,2, Michael L. Littmanb,3,
Anthony R. Cassandrac,1

a Computer Science Department, Brown University, Box 1910, Providence, RI 02912-1910, USA
b Department of Computer Science, Duke University, Durham, NC 27708-0129, USA

c Microelectronics and Computer Technology Corporation (MCC), 3500 West Balcones Center Drive, Austin,
TX 78759-5398, USA

Received 11 October 1995; received in revised form 17 January 1998

Abstract

In this paper, we bring techniques from operations research to bear on the problem of choosing
optimal actions in partially observable stochastic domains. We begin by introducing the theory
of Markov decision processes (MDPs) and partially observableMDPs (POMDPs). We then outline
a novel algorithm for solvingPOMDPs off line and show how, in some cases, a finite-memory
controller can be extracted from the solution to aPOMDP. We conclude with a discussion of how our
approach relates to previous work, the complexity of finding exact solutions toPOMDPs, and of some
possibilities for finding approximate solutions. 1998 Elsevier Science B.V. All rights reserved.

Keywords:Planning; Uncertainty; Partially observable Markov decision processes

Consider the problem of a robot navigating in a large office building. The robot can move
from hallway intersection to intersection and can make local observations of its world.
Its actions are not completely reliable, however. Sometimes, when it intends to move, it
stays where it is or goes too far; sometimes, when it intends to turn, it overshoots. It has
similar problems with observation. Sometimes a corridor looks like a corner; sometimes a
T-junction looks like an L-junction. How can such an error-plagued robot navigate, even
given a map of the corridors?

∗ Corresponding author. Email: lpk@cs.brown.edu.
1 Supported in part by NSF grants IRI-9453383 and IRI-9312395.
2 Supported in part by DARPA/Rome Labs Planning Initiative grant F30602-95-1-0020.
3 Supported in part by Bellcore and NSF CAREER grant IRI-9702576.

0004-3702/98/$19.00 1998 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(98)00023-X

100 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

In general, the robot will have to remember something about its history of actions
and observations and use this information, together with its knowledge of the underlying
dynamics of the world (the map and other information), to maintain an estimate of its
location. Many engineering applications follow this approach, using methods like the
Kalman filter [26] to maintain a running estimate of the robot’s spatial uncertainty,
expressed as an ellipsoid or normal distribution in Cartesian space. This approach will
not do for our robot, though. Its uncertainty may be discrete: it might be almost certain that
it is in the north-east corner of either the fourth or the seventh floors, though it admits a
chance that it is on the fifth floor, as well.

Then, given an uncertain estimate of its location, the robot has to decide what actions
to take. In some cases, it might be sufficient to ignore its uncertainty and take actions that
would be appropriate for the most likely location. In other cases, it might be better for
the robot to take actions for the purpose of gathering information, such as searching for
a landmark or reading signs on the wall. In general, it will take actions that fulfill both
purposes simultaneously.

1. Introduction

In this paper, we bring techniques from operations research to bear on the problem of
choosing optimal actions in partially observable stochastic domains. Problems like the
one described above can be modeled aspartially observable Markov decision processes
(POMDPs). Of course, we are not interested only in problems of robot navigation. Similar
problems come up in factory process control, oil exploration, transportation logistics, and
a variety of other complex real-world situations.

This is essentially aplanning problem: given a complete and correct model of the
world dynamics and a reward structure, find an optimal way to behave. In the artificial
intelligence (AI) literature, a deterministic version of this problem has been addressed
by adding knowledge preconditions to traditional planning systems [43]. Because we
are interested in stochastic domains, however, we must depart from the traditional AI
planning model. Rather than taking plans to be sequences of actions, which may only
rarely execute as expected, we take them to be mappings from situations to actions that
specify the agent’s behavior no matter what may happen. In many cases, we may not want
a full policy; methods for developing partial policies and conditional plans for completely
observable domains are the subject of much current interest [13,15,61]. A weakness of the
methods described in this paper is that they require the states of the world to be represented
enumeratively, rather than through compositional representations such as Bayes nets or
probabilistic operator descriptions. However, this work has served as a substrate for
development of algorithms for more complex and efficient representations [6]. Section 6
describes the relation between the present approach and prior research in more detail.

One important facet of thePOMDPapproach is that there is no distinction drawn between
actions taken to change the state of the world and actions taken to gain information. This
is important because, in general, every action has both types of effect. Stopping to ask
questions may delay the robot’s arrival at the goal or spend extra energy; moving forward
may give the robot information that it is in a dead-end because of the resulting crash.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 101

Thus, from thePOMDP perspective, optimal performance involves something akin to a
“value of information” calculation, only more complex; the agent chooses between actions
based on the amount of information they provide, the amount of reward they produce, and
how they change the state of the world.

This paper is intended to make two contributions. The first is to recapitulate work from
the operations-research literature [36,42,56,59,64]and to describe its connection to closely
related work in AI. The second is to describe a novel algorithmic approach for solving
POMDPs exactly. We begin by introducing the theory of Markov decision processes (MDPs)
andPOMDPs. We then outline a novel algorithm for solvingPOMDPs off line and show how,
in some cases, a finite-memory controller can be extracted from the solution to aPOMDP.
We conclude with a brief discussion of related work and of approximation methods.

2. Markov decision processes

Markov decision processes serve as a basis for solving the more complex partially
observable problems that we are ultimately interested in. AnMDP is a model of an agent
interacting synchronously with a world. As shown in Fig. 1, the agent takes as input the
state of the world and generates as output actions, which themselves affect the state of the
world. In theMDP framework, it is assumed that, although there may be a great deal of
uncertainty about the effects of an agent’s actions, there is never any uncertainty about the
agent’s current state—it has complete and perfect perceptual abilities.

Markov decision processes are described in depth in a variety of texts [3,49]; we will
just briefly cover the necessary background.

2.1. Basic framework

A Markov decision process can be described as a tuple〈S,A, T ,R〉, where
• S is a finite set of states of the world;
• A is a finite set of actions;
• T :S ×A→Π(S) is thestate-transition function, giving for each world state and

agent action, a probability distribution over world states (we writeT (s, a, s′) for
the probability of ending in states′, given that the agent starts in states and takes
actiona); and

Fig. 1. AnMDP models the synchronous interaction between agent and world.

102 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

• R :S ×A→R is the reward function, giving the expected immediate reward gained
by the agent for taking each action in each state (we writeR(s, a) for the expected
reward for taking actiona in states).

In this model, the next state and the expected reward depend only on the previous state
and the action taken; even if we were to condition on additional previous states, the
transition probabilities and the expected rewards would remain the same. This is known
as theMarkovproperty—the state and reward at timet + 1 is dependent only on the state
at timet and the action at timet .

In fact, MDPs can have infinite state and action spaces. The algorithms that we describe
in this section apply only to the finite case; however, in the context ofPOMDPs, we will
consider a class ofMDPs with uncountably infinite state spaces.

2.2. Acting optimally

We would like our agents to act in such a way as to maximize some measure of the
long-run reward received. One such framework isfinite-horizonoptimality, in which the
agent should act in order to maximize the expected sum of reward that it gets on the nextk

steps; it should maximize

E

[
k−1∑
t=0

rt

]
wherert is the reward received on stept . This model is somewhat inconvenient, because it
is rare that an appropriatek will be known exactly. We might prefer to consider an infinite
lifetime for the agent. The most straightforward is theinfinite-horizon discountedmodel,
in which we sum the rewards over the infinite lifetime of the agent, but discount them
geometrically usingdiscount factor0< γ < 1; the agent should act so as to optimize

E

[∞∑
t=0

γ t rt

]
.

In this model, rewards received earlier in its lifetime have more value to the agent; the
infinite lifetime is considered, but the discount factor ensures that the sum is finite. This
sum is also the expected amount of reward received if a decision to terminate the run
is made on each step with probability 1− γ . The larger the discount factor (closer to
1), the more effect future rewards have on current decision making. In our forthcoming
discussions of finite-horizon optimality, we will also use a discount factor; when it has
value one, it is equivalent to the simple finite-horizon case described above.

A policy is a description of the behavior of an agent. We consider two kinds of policies:
stationary and nonstationary. Astationary policy, π :S→A, is a situation-action mapping
that specifies, for each state, an action to be taken. The choice of action depends only on the
state and is independent of the time step. Anonstationary policyis a sequence of situation-
action mappings, indexed by time. The policyπt is to be used to choose the action on the
t th-to-last step as a function of the current state,st . In the finite-horizon model, the optimal
policy is not typically stationary: the way an agent chooses its actions on the last step of its
life is generally going to be very different from the way it chooses them when it has a long

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 103

life ahead of it. In the infinite-horizon discounted model, the agent always has a constant
expected amount of time remaining, so there is no reason to change action strategies: there
is a stationary optimal policy.

Given a policy, we can evaluate it based on the long-run value that the agent expects to
gain from executing it. In the finite-horizon case, letVπ,t (s) be the expected sum of reward
gained from starting in states and executing nonstationary policyπ for t steps. Clearly,
Vπ,1(s) = R(s,π1(s)); that is, on the last step, the value is just the expected reward for
taking the action specified by the final element of the policy. Now, we can defineVπ,t (s)

inductively as

Vπ,t (s)=R
(
s,πt (s)

)+ γ ∑
s ′∈S

T
(
s,πt (s), s

′)Vπ,t−1
(
s′
)
.

Thet-step value of being in states and executing nonstationary policyπ is the immediate
reward,R(s,πt (s)), plus the discounted expected value of the remainingt − 1 steps. To
evaluate the future, we must consider all possible resulting statess′, the likelihood of their
occurrenceT (s,πt (s), s′), and their(t − 1)-step value under policyπ , Vπ,t−1(s

′). In the
infinite-horizon discounted case, we writeVπ(s) for the expected discounted sum of future
reward for starting in states and executing policyπ . It is recursively defined by

Vπ(s)=R
(
s,π(s)

)+ γ ∑
s ′∈S

T
(
s,π(s), s′

)
Vπ
(
s′
)
.

The value function,Vπ , for policyπ is the unique simultaneous solution of this set of linear
equations, one equation for each states.

Now we know how to compute a value function, given a policy. Sometimes, we will
need to go the opposite way, and compute agreedy policygiven a value function. It really
only makes sense to do this for the infinite-horizon discounted case; to derive a policy for
the finite horizon, we would need a whole sequence of value functions. Given any value
functionV , a greedy policy with respect to that value function,πV , is defined as

πV (s)= argmax
a

[
R(s, a)+ γ

∑
s ′∈S

T
(
s, a, s′

)
V
(
s′
)]
.

This is the policy obtained by, at every step, taking the action that maximizes expected
immediate reward plus the expected discounted value of the next state, as measured byV .

What is the optimal finite-horizon policy,π∗? The agent’s last step is easy: it should
maximize its final reward. So

π∗1 (s)= argmax
a

R(s, a).

The optimal situation-action mapping for thet th step,π∗t , can be defined in terms of the
optimal(t − 1)-step value functionVπ∗t−1,t−1 (written for simplicity asV ∗t−1):

π∗t (s)= argmax
a

[
R(s, a)+ γ

∑
s ′∈S

T
(
s, a, s′

)
V ∗t−1

(
s′
)];

V ∗t−1 is derived fromπ∗t−1 andV ∗t−2.

104 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

In the infinite-horizon discounted case, for any initial states, we want to execute the
policy π that maximizesVπ(s). Howard [24] showed that there exists a stationary policy,
π∗, that is optimal for every starting state. The value function for this policy,Vπ∗ , also
writtenV ∗, is defined by the set of equations

V ∗(s)=max
a

[
R(s, a)+ γ

∑
s ′∈S

T
(
s, a, s′

)
V ∗
(
s′
)]
,

which has a unique solution. An optimal policy,π∗, is just a greedy policy with respect
to V ∗.

Another way to understand the infinite-horizon value function,V ∗, is to approach it by
using an ever-increasing discounted finite horizon. As the horizon,t , approaches infinity,
V ∗t approachesV ∗. This is only guaranteed to occur when the discount factor,γ , is less
than 1, which tends to wash out the details of exactly what happens at the end of the agent’s
life.

2.3. Computing an optimal policy

There are many methods for finding optimal policies forMDPs. In this section, we
explorevalue iterationbecause it will also serve as the basis for finding policies in the
partially observable case.

Algorithm 1. The value-iteration algorithm for finite state spaceMDPs.

V1(s) := 0 for all s
t := 1
loop

t := t + 1
loop for all s ∈ S

loop for all a ∈A
Qat (s) :=R(s, a)+ γ

∑
s ′∈S T (s, a, s′)Vt−1(s

′)
end loop

Vt(s) :=maxa Qat (s)
end loop

until |Vt(s)−Vt−1(s)|< ε for all s ∈ S

Value iteration proceeds by computing the sequenceVt of discounted finite-horizon
optimal value functions, as shown in Algorithm 1 (the superscript∗ is omitted, because we
shall henceforth only be considering optimal value functions). It makes use of an auxiliary
function,Qat (s), which is thet-step value of starting in states, taking actiona, then
continuing with the optimal(t − 1)-step nonstationary policy. The algorithm terminates
when the maximum difference between two successive value functions (known as the
Bellman error magnitude) is less than someε. It can be shown [62] that there exists at∗,
polynomial in|S|, |A|, the magnitude of the largest value ofR(s, a), and 1/(1− γ), such
that the greedy policy with respect toVt∗ is equal to the optimal infinite-horizon policy,π∗.
Rather than calculating a bound ont∗ in advance and running value iteration for that long,

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 105

we instead use the following result regarding the Bellman error magnitude [66] in order to
terminate with a near-optimal policy.

If |Vt(s)− Vt−1(s)|< ε for all s, then the value of the greedy policy with respect toVt
does not differ fromV ∗ by more than 2εγ /(1− γ) at any state. That is,

max
s∈S

∣∣VπVt (s)− V ∗(s)∣∣< 2ε
γ

1− γ .
It is often the case thatπVt = π∗ long beforeVt is nearV ∗; tighter bounds may be obtained
using thespan semi-normon the value function [49].

3. Partial observability

For MDPs we can compute the optimal policyπ and use it to act by simply executing
π(s) for current states. What happens if the agent is no longer able to determine the state
it is currently in with complete reliability? A naive approach would be for the agent to map
the most recent observation directly into an action without remembering anything from the
past. In our hallway navigation example, this amounts to performing the same action in
every location that looks the same—hardly a promising approach. Somewhat better results
can be obtained by adding randomness to the agent’s behavior: a policy can be a mapping
from observations to probability distributions over actions [55]. Randomness effectively
allows the agent to sometimes choose different actions in different locations with the
same appearance, increasing the probability that it might choose a good action; in practice
deterministic observation-action mappings are prone to getting trapped in deterministic
loops [32].

In order to behave truly effectively in a partially observable world, it is necessary to use
memory of previous actions and observations to aid in the disambiguation of the states of
the world. ThePOMDPframework provides a systematic method of doing just that.

3.1. POMDP framework

A partially observable Markov decision process can be described as a tuple〈S,A, T ,R,
Ω,O〉, where
• S,A, T , andR describe a Markov decision process;
• Ω is a finite set of observations the agent can experience of its world; and
• O :S × A → Π(Ω) is the observation function, which gives, for each action

and resulting state, a probability distribution over possible observations (we write
O(s′, a, o) for the probability of making observationo given that the agent took action
a and landed in states′).

A POMDPis anMDP in which the agent is unable to observe the current state. Instead, it
makes an observation based on the action and resulting state.4 The agent’s goal remains
to maximize expected discounted future reward.

4 It is possible to formulate an equivalent model in which the observation depends on the previous state instead
of, or in addition to, the resulting state, but it complicates the exposition and adds no more expressive power; such
a model could be converted into aPOMDPmodel as described above, at the cost of expanding the state space.

106 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Fig. 2. A POMDPagent can be decomposed into a state estimator (SE) and a policy (π).

3.2. Problem structure

We decompose the problem of controlling aPOMDP into two parts, as shown in Fig. 2.
The agent makes observations and generates actions. It keeps an internalbelief state, b, that
summarizes its previous experience. The component labeled SE is thestate estimator: it is
responsible for updating the belief state based on the last action, the current observation,
and the previous belief state. The component labeledπ is the policy: as before, it is
responsible for generating actions, but this time as a function of the agent’s belief state
rather than the state of the world.

What, exactly, is a belief state? One choice might be the most probable state of the
world, given the past experience. Although this might be a plausible basis for action in
some cases, it is not sufficient in general. In order to act effectively, an agent must take
into account its own degree of uncertainty. If it is lost or confused, it might be appropriate
for it to take sensing actions such as asking for directions, reading a map, or searching for
a landmark. In thePOMDP framework, such actions are not explicitly distinguished: their
informational properties are described via the observation function.

Our choice for belief states will be probability distributions over states of the world.
These distributions encode the agent’s subjective probability about the state of the world
and provide a basis for acting under uncertainty. Furthermore, they comprise asufficient
statistic for the past history and initial belief state of the agent: given the agent’s current
belief state (properly computed), no additional data about its past actions or observations
would supply any further information about the current state of the world [1,56]. This
means that the process over belief states is Markov, and that no additional data about the
past would help to increase the agent’s expected reward.

To illustrate the evolution of a belief state, we will use the simple example depicted in
Fig. 3; the algorithm for computing belief states is provided in the next section. There are
four states in this example, one of which is a goal state, indicated by the star. There are
two possible observations: one is always made when the agent is in state 1, 2, or 4; the
other, when it is in the goal state. There are two possible actions:EAST andWEST. These
actions succeed with probability 0.9, and when they fail, the movement is in the opposite

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 107

Fig. 3. In this simplePOMDP environment, the empty squares are all indistinguishable on the basis of their
immediate appearance, but the evolution of the belief state can be used to model the agent’s location.

direction. If no movement is possible in a particular direction, then the agent remains in
the same location.

Assume that the agent is initially equally likely to be in any of the three nongoal states.
Thus, its initial belief state is[0.333 0.333 0.000 0.333], where the position in the
belief vector corresponds to the state number.

If the agent takes actionEAST and does not observe the goal, then the new belief state
becomes[0.100 0.450 0.000 0.450]. If it takes actionEAST again, and still does not
observe the goal, then the probability mass becomes concentrated in the right-most state:
[0.100 0.164 0.000 0.736]. Notice that as long as the agent does not observe the goal
state, it will always have some nonzero belief that it is in any of the nongoal states, since
the actions have nonzero probability of failing.

3.3. Computing belief states

A belief stateb is a probability distribution overS. We letb(s) denote the probability
assigned to world states by belief stateb. The axioms of probability require that 06
b(s)6 1 for all s ∈ S and that

∑
s∈S b(s) = 1. The state estimator must compute a new

belief state,b′, given an old belief stateb, an actiona, and an observationo. The new
degree of belief in some states′, b′(s′), can be obtained from basic probability theory as
follows:

b′
(
s′
)= Pr

(
s′ | o,a, b)

= Pr
(
o | s′, a, b)Pr

(
s′ | a,b)

Pr
(
o | a,b)

= Pr
(
o | s′, a)∑s∈S Pr

(
s′ | a,b, s)Pr

(
s | a,b)

Pr
(
o | a,b)

= O
(
s′, a, o

)∑
s∈S T

(
s, a, s′

)
b(s)

Pr(o | a,b) .

The denominator, Pr(o | a,b), can be treated as a normalizing factor, independent ofs′,
that causesb′ to sum to 1. The state-estimation function SE(b, a, o) has as its output the
new belief stateb′.

Thus, the state-estimation component of aPOMDP controller can be constructed quite
simply from a given model.

108 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

3.4. Finding an optimal policy

The policy component of aPOMDP agent must map the current belief state into action.
Because the belief state is a sufficient statistic, the optimal policy is the solution of a
continuous space “beliefMDP”. It is defined as follows:
• B, the set of belief states, comprise the state space;
• A, the set of actions, remains the same;
• τ(b, a, b′) is the state-transition function, which is defined as

τ
(
b,a, b′

)= Pr
(
b′ | a,b)=∑

o∈Ω
Pr
(
b′ | a,b, o)Pr(o | a,b),

where

Pr
(
b′ | b,a, o)= {1 if SE(b, a, o)= b′

0 otherwise;

• ρ(b, a) is the reward function on belief states, constructed from the original reward
function on world states:

ρ(b, a)=
∑
s∈S

b(s)R(s, a).

The reward function may seem strange; the agent appears to be rewarded for merely
believing that it is in good states. However, because the state estimator is constructed from
a correct observation and transition model of the world, the belief state represents the true
occupation probabilities for all statess ∈ S, and therefore the reward functionρ represents
the true expected reward to the agent.

This belief MDP is such that an optimal policy for it, coupled with the correct state
estimator, will give rise to optimal behavior (in the discounted infinite-horizon sense) for
the originalPOMDP [1,59]. The remaining problem, then, is to solve thisMDP. It is very
difficult to solve continuous spaceMDPs in the general case, but, as we shall see in the next
section, the optimal value function for the beliefMDP has special properties that can be
exploited to simplify the problem.

4. Value functions for POMDPs

As in the case of discreteMDPs, if we can compute the optimal value function, then we
can use it to directly determine the optimal policy. This section concentrates on finding
an approximation to the optimal value function. We approach the problem using value
iteration to construct, at each iteration, the optimalt-step discounted value function over
belief space.

4.1. Policy trees

When an agent has one step remaining, all it can do is take a single action. With two
steps to go, it can take an action, make an observation, then take another action, perhaps
depending on the previous observation. In general, an agent’s nonstationaryt-step policy

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 109

Fig. 4. A t-step policy tree captures a sequence oft steps, each of which can be conditioned on the outcome of
previous actions. Each node is labeled with the action that should be taken if it is reached.

can be represented by apolicy treeas shown in Fig. 4. It is a tree of deptht that specifies a
completet-step nonstationary policy. The top node determines the first action to be taken.
Then, depending on the resulting observation, an arc is followed to a node on the next
level, which determines the next action. This is a complete recipe fort steps of conditional
behavior.5

Now, what is the expected discounted value to be gained from executing a policy tree
p? It depends on the true state of the world when the agent starts. In the simplest case,p

is a 1-step policy tree (a single action). The value of executing that action in states is

Vp(s)=R
(
s, a(p)

)
wherea(p) is the action specified in the top node of policy treep. More generally, ifp is
a t-step policy tree, then

Vp(s)=R
(
s, a(p)

)+ γ · (Expected value of the future
)

=R(s, a(p))+ γ ∑
s ′∈S

Pr
(
s′ | s, a(p)) ∑

oi∈Ω
Pr
(
oi | s′, a(p)

)
Voi(p)

(
s′
)

=R(s, a(p))+ γ ∑
s ′∈S

T
(
s, a(p), s′

) ∑
oi∈Ω

O
(
s′, a(p), oi

)
Voi(p)

(
s′
)

whereoi(p) is the (t − 1)-step policy subtree associated with observationoi at the top
level of at-step policy treep. The expected value of the future is computed by first taking
an expectation over possible next states,s′, then considering the value of each of those
states. The value depends on which policy subtree will be executed which, itself, depends
on which observation is made. So, we take another expectation, with respect to the possible
observations, of the value of executing the associated subtree,oi(p), starting in states′.

5 Policy trees are essentially equivalent to “decision trees” as used in decision theory to represent a sequential
decision policy; but not to “decision trees” as used in machine learning to compactly represent a single-stage
decision rule.

110 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Because the agent will never know the exact state of the world, it must be able to
determine the value of executing a policy treep from some belief stateb. This is just
an expectation over world states of executingp in each state:

Vp(b)=
∑
s∈S

b(s)Vp(s).

It will be useful, in the following exposition, to express this more compactly. If we let
αp = 〈Vp(s1), . . . ,Vp(sn)〉, thenVp(b)= b · αp .

Now we have the value of executing the policy treep in every possible belief state. To
construct an optimalt-step nonstationary policy, however, it will generally be necessary to
execute different policy trees from different initial belief states. LetP be the finite set of
all t-step policy trees. Then

Vt(b)=max
p∈P

b · αp.

That is, the optimalt-step value of starting in belief stateb is the value of executing the
best policy tree in that belief state.

This definition of the value function leads us to some important geometric insights
into its form. Each policy treep induces a value functionVp that is linear inb, and
Vt is the upper surface of this collection of functions. So,Vt is piecewise-linear and
convex. Fig. 5 illustrates this property. Consider a world with only two states. In such
a world, a belief state consists of a vector of two nonnegative numbers,〈b(s1), b(s2)〉,
that sum to 1. Because of this constraint, a single number is sufficient to describe the
belief state. The value function associated with a policy treep1, Vp1, is a linear function
of b(s1) and is shown in the figure as a line. The value functions of other policy trees
are similarly represented. Finally,Vt is the maximum of all theVpi at each point in
the belief space, giving us the upper surface, which is drawn in the figure with a bold
line.

When there are three world states, a belief state is determined by two values (again
because of thesimplex constraint, which requires the individual values to be nonnegative
and sum to 1). The belief space can be seen as the triangle in two-space with vertices(0,0),
(1,0), and(0,1). The value function associated with a single policy tree is a plane in three

Fig. 5. The optimalt-step value function is the upper surface of the value functions associated with allt-step
policy trees.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 111

space, and the optimal value function is a bowl shape that is composed of planar facets; a
typical example is shown in Fig. 6, but it is possible for the “bowl” to be tipped on its side
or to degenerate to a single plane. This general pattern repeats itself in higher dimensions,
but becomes difficult to contemplate and even harder to draw!

The convexity of the optimal value function makes intuitive sense when we think
about the value of belief states. States that are in the “middle” of the belief space
have high entropy—the agent is very uncertain about the real underlying state of the
world. In such belief states, the agent cannot select actions very appropriately and so
tends to gain less long-term reward. In low-entropy belief states, which are near the
corners of the simplex, the agent can take actions more likely to be appropriate for the
current state of the world and, so, gain more reward. This has some connection to the
notion of “value of information,” [25] where an agent can incur a cost to move it from
a high-entropy to a low-entropy state; this is only worthwhile when the value of the
information (the difference in value between the two states) exceeds the cost of gaining
the information.

Given a piecewise-linear convex value function and thet-step policy trees from which
it was derived, it is straightforward to determine the optimal situation-action mapping for
execution on thet th step from the end. The optimal value function can be projected back
down onto the belief space, yielding a partition into polyhedral regions. Within each region,
there is some single policy treep such thatb · αp is maximal over the entire region. The
optimal action for each belief state in this region isa(p), the action in the root node of
policy treep; furthermore, the entire policy treep can be executed from this point by
conditioning the choice of further actions directly on observations, without updating the

Fig. 6. A value function in three dimensions is made up of the upper surface of a set of planes.

112 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Fig. 7. The optimalt-step situation-action mapping is determined by projecting the optimal value function back
down onto the belief space.

belief state (though this is not necessarily an efficient way to represent a complex policy).
Fig. 7 shows the projection of the optimal value function down into a policy partition in
the two-dimensional example introduced in Fig. 5; over each of the intervals illustrated, a
single policy tree can be executed to maximize expected reward.

4.2. Value functions as sets of vectors

It is possible, in principle, that every possible policy tree might represent the optimal
strategy at some point in the belief space and, hence, that each would contribute to the
computation of the optimal value function. Luckily, however, this seems rarely to be the
case. There are generally many policy trees whose value functions are totally dominated
by or tied with value functions associated with other policy trees. Fig. 8 shows a situation
in which the value function associated with policy treepd is completely dominated by
(everywhere less than or equal to) the value function for policy treepb. The situation with
the value function for policy treepc is somewhat more complicated; although it is not
completely dominated by any single value function, itis completely dominated bypa and
pb taken together.

Given a set of policy trees,̃V, it is possible to define a unique6 minimal subsetV that
represents the same value function. We will call this aparsimoniousrepresentation of the
value function, and say that a policy tree isusefulif it is a component of the parsimonious
representation of the value function.

Given a vector,α, and a set of vectorsV , we defineR(α,V) to be the region of belief
space over whichα dominates; that is,

R(α,V)= {b | b · α > b · α̃, for all α̃ ∈ V − α andb ∈ B}.
It is relatively easy, using a linear program, to find a point inR(α,V) if one exists, or to
determine that the region is empty [9].

The simplest pruning strategy, proposed by Sondik [42,58], is to testR(α, Ṽ) for every
α in Ṽ and remove thoseα that are nowhere dominant. A much more efficient pruning

6 We assume here that two policy trees with the same value function are identical.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 113

Fig. 8. Some policy trees may be totally dominated by others and can be ignored.

method was proposed by Lark and White [64] and is described in detail by Littman [35]
and by Cassandra [9]. Because it has many subtle technical details, it is not described here.

4.3. One step of value iteration

The value function for aPOMDP can be computed using value iteration, with the same
basic structure as for the discreteMDP case. The new problem, then, is how to compute a
parsimonious representation ofVt from a parsimonious representation ofVt−1.

One of the simplest algorithms for solving this problem [42,58], which we call
exhaustive enumeration, works by constructing a large representation ofVt , then pruning
it. We let V stand for a set of policy trees, though for each tree we need only actually
store the top-level action and the vector of values,α. The idea behind this algorithm is
the following:Vt−1, the set of useful(t − 1)-step policy trees, can be used to construct a
supersetV+t of the usefult-step policy trees. At-step policy tree is composed of a root
node with an associated actiona and |Ω| subtrees, each a(t − 1)-step policy tree. We
propose to restrict our choice of subtrees to those(t −1)-step policy trees that were useful.
For any belief state and any choice of policy subtree, there is always a useful subtree that is
at least as good at that state; there is never any reason to include a nonuseful policy subtree.

The time complexity of a single iteration of this algorithm can be divided into two parts:
generation and pruning. There are|A||Vt−1||Ω| elements inV+t : there are|A| different
ways to choose the action and all possible lists of length|Ω| may be chosen from the set
Vt−1 to form the subtrees. The value functions for the policy trees inV+t can be computed
efficiently from those of the subtrees. Pruning requires one linear program for each element
of the starting set of policy trees and does not add to the asymptotic complexity of the
algorithm.

Although it keeps parsimonious representations of the value functions at each step, this
algorithm still does more much work than may be necessary. Even ifVt is very small, it
goes through the step of generatingV+t , which always has size exponential in|Ω|. In the
next sections, we present the witness algorithm and some complexity analysis, and then
briefly outline some other algorithms for this problem that attempt to be more efficient
than the approach of exhaustively generatingV+t .

114 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

4.4. The witness algorithm

To improve the complexity of the value-iteration algorithm, we must avoid generating
V+t ; instead, we would like to generate the elements ofVt directly. If we could do this, we
might be able to reach a computation time per iteration that is polynomial in|S|, |A|, |Ω|,
|Vt−1|, and|Vt |. Cheng [10] and Smallwood and Sondik [56] also try to avoid generating all
of V+t by constructingVt directly. However, their algorithms still have worst-case running
times exponential in at least one of the problem parameters [34]. In fact, the existence of
an algorithm that runs in time polynomial in|S|, |A|, |Ω|, |Vt−1|, and|Vt | would settle
the long-standing complexity-theoretic question “Does NP = RP?” in the affirmative [34],
so we will pursue a slightly different approach.

Instead of computingVt directly, we will compute, for each actiona, a setQat of t-step
policy trees that have actiona at their root. We can computeVt by taking the union of
theQat sets for all actions and pruning as described in the previous section. Thewitness
algorithm is a method for computingQat in time polynomial in|S|, |A|, |Ω|, |Vt−1|, and
|Qat | (specifically, run time is polynomial in the size of the inputs, the outputs, and an
important intermediate result). It is possible that theQat are exponentially larger thanVt ,
but this seems to be rarely the case in practice.

In what sense is the witness algorithm superior to previous algorithms for solving
POMDPs, then? Experiments indicate that the witness algorithm is faster in practice over a
wide range of problem sizes [34]. The primary complexity-theoretic difference is that the
witness algorithm runs in polynomial time in the number of policy trees inQat . There are
example problems that cause the other algorithms, although they never construct theQat ’s
directly, to run in time exponential in the number of policy trees inQat . That means, if we
restrict ourselves to problems in which|Qat | is polynomial, that the running time of the
witness algorithm is polynomial. It is worth noting, however, that it is possible to create
families of POMDPs that Cheng’s linear support algorithm (sketched in Section 4.5) can
solve in polynomial time that take the witness exponential time to solve; they are problems
in whichS andVt are very small andQat is exponentially larger for some actiona.

From the definition of the state estimator SE and thet-step value functionVt(b), we can
expressQat (b) (recall that this is the value of taking actiona in belief stateb and continuing
optimally for t − 1 steps) formally as

Qat (b)=
∑
s∈S

b(s)R(s, a)+ γ
∑
o∈Ω

Pr(o | a,b)Vt−1
(
b′o
)

whereb′o is the belief state resulting from taking actiona and observingo from belief
state b; that is, b′ = SE(b, a, o). Since V is the value of the best action, we have
Vt(b)=maxa Qat (b).

Using arguments similar to those in Section 4.1, we can show that theseQ-functions
are piecewise-linear and convex and can be represented by collections of policy trees. Let
Qat be the collection of policy trees that specifyQat . Once again, we can define a unique
minimal useful set of policy trees for eachQ function. Note that the policy trees needed to
represent the functionVt are a subset of the policy trees needed to represent all of theQat
functions:Vt ⊆⋃aQat . This is because maximizing over actions and then policy trees is
the same as maximizing over the pooled sets of policy trees.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 115

Algorithm 2. Outer loop of the witness algorithm.

V1 := {〈0,0, . . . ,0〉}
t := 1
loop

t := t + 1
foreacha in A

Qat :=witness(Vt−1, a)

prune
⋃
aQat to getVt

until supb |Vt(b)− Vt−1(b)|< ε
The code in Algorithm 2 outlines our approach to solvingPOMDPs. The basic structure

remains that of value iteration. At iterationt , the algorithm has a representation of the
optimal t-step value function. Within the value-iteration loop, separateQ-functions for
each action, represented by parsimonious sets of policy trees, are returned by calls to
witness using the value function from the previous iteration. The union of these sets
forms a representation of the optimal value function. Since there may be extraneous policy
trees in the combined set, it is pruned to yield the useful set oft-step policy trees,Vt .

4.4.1. Witness inner loop
The basic structure of the witness algorithm is as follows. We would like to find a

minimal set of policy trees for representingQat for eacha. We consider theQ-functions
one at a time. The setUa of policy trees is initialized with a single policy tree, with
actiona at the root, that is the best for some arbitrary belief state (this is easy to do, as
described in the following paragraph). At each iteration we ask: Is there some belief state
b for which the true valueQat (b), computed by one-step lookahead usingVt−1, is different
from the estimated valuêQat (b), computed using the setUa? We call such a belief state
a witnessbecause it can, in a sense, testify to the fact that the setUa is not yet a perfect
representation ofQat (b). Note that for allb, Q̂at (b)6Qat (b); the approximation is always
an underestimate of the true value function.

Once a witness is identified, we find the policy tree with actiona at the root that will
yield the best value at that belief state. To construct this tree, we must find, for each
observationo, the(t − 1)-step policy tree that should be executed if observationo is made
after executing actiona. If this happens, the agent will be in belief stateb′ = SE(b, a, o),
from which it should execute the(t−1)-step policy treepo ∈ Vt−1 that maximizesVpo(b

′).
The treep is built with subtreespo for each observationo. We add the new policy tree to
Ua to improve the approximation. This process continues until we can prove that no more
witness points exist and therefore that the currentQ-function is perfect.

4.4.2. Identifying a witness
To find witness points, we must be able to construct and evaluate alternative policy trees.

If p is a t-step policy tree,oi an observation, andp′ a (t − 1)-step policy tree, then we
definepnew as at-step policy tree that agrees withp in its action and all its subtrees except
for observationoi , for which oi(pnew) = p′. Fig. 9 illustrates the relationship betweenp
andpnew.

116 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Fig. 9. A new policy tree can be constructed by replacing one of its subtrees.

Now we can state thewitness theorem[34]: The trueQ-function,Qat , differs from the
approximateQ-function,Q̂at , if and only if there is somep ∈ Ua , o ∈Ω , andp′ ∈ Vt−1

for which there is someb such that

Vpnew(b) > Vp̃(b), (1)

for all p̃ ∈Ua . That is, if there is a belief state,b, for whichpnew is an improvement over
all the policy trees we have found so far, thenb is a witness. Conversely, if none of the
trees can be improved by replacing a single subtree, there are no witness points. A proof
of this theorem is included in Appendix A.

4.4.3. Checking the witness condition
The witness theorem requires us to search for ap ∈ Ua , ano ∈Ω , a p′ ∈ Vt−1 and a

b ∈ B such that condition (1) holds, or to guarantee that no such quadruple exists. Since
Ua ,Ω , andVt−1 are finite and (we hope) small, checking all combinations will not be too
time consuming. However, for each combination, we need to search all the belief states to
test condition (1). This we can do using linear programming.

For each combination ofp, o andp′ we compute the policy treepnew, as described
above. For any belief stateb and policy treep̃ ∈Ua , Vpnew(b)−Vp̃(b) gives the advantage
of following policy treepnew instead ofp̃ starting fromb. We would like to find ab that
maximizes the advantage over all policy treesp̃ the algorithm has found so far.

The linear program in Algorithm 3 solves exactly this problem. The variableδ is the
minimum amount of improvement ofpnew over any policy tree inUa at b. It has a set of
constraints that restrictδ to be a bound on the difference and a set of simplex constraints
that forceb to be a well-formed belief state. It then seeks to maximize the advantage of
pnew over allp̃ ∈Ua . Since the constraints are all linear, this can be accomplished by linear
programming. The total size of the linear program is one variable for each component of
the belief state and one representing the advantage, plus one constraint for each policy tree
in U , one constraint for each state, and one constraint to ensure that the belief state sums
to one.7

7 In many linear-programming packages, all variables have implicit nonnegativity constraints, so theb(s)> 0
constraints are not needed.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 117

If the linear program finds that the biggest advantage is not positive, that is, thatδ 6 0,
thenpnew is not an improvement over all̃p trees. Otherwise, it is andb is a witness
point.

Algorithm 3. The linear program used to find witness points.

Inputs:
Ua,pnew

Variables:
δ, b(s) for eachs ∈ S

Maximize:δ
Improvement constraints:

For eachp̃ in Ua: Vpnew(b)− Vp̃(b)> δ
Simplex constraints:

For eachs ∈ S: b(s)> 0∑
s∈S b(s)= 1

4.4.4. A single step of value iteration
The complete value-iteration step starts with an agenda containing any single useful

policy tree and withUa empty. It takes a policy tree off the top of the agenda and uses it
aspnew in the linear program of Algorithm 3 to determine whether it is an improvement
over the policy trees inUa . If a witness point is discovered, the best policy tree for that
point is calculated and added toUa and all policy trees that differ from the current policy
tree in a single subtree are added to the agenda. If no witness points are discovered, then
that policy tree is removed from the agenda. When the agenda is empty, the algorithm
terminates.

Since we know that no more thanQat witness points are discovered (each adds a tree to
the set of useful policy trees), only|Vt−1||Ω|||Qat | trees can ever be added to the agenda (in
addition to the one tree in the initial agenda). Each linear program solved has|S| variables
and no more than 1+|S|+ |Qat | constraints. Each of these linear programs either removes
a policy tree from the agenda (this happens at most 1+ (|Vt−1| − 1)|Ω||Qat | times) or a
witness point is discovered (this happens at most|Qat | times).

These facts imply that the running time of a single pass of value iteration using the
witness algorithm is bounded by a polynomial in the size of the state space (|S|), the size
of the action space (|A|), the number of policy trees in the representation of the previous
iteration’s value function (|Vt−1|), the number of observations (|Ω|), and the number of
policy trees in the representation of the current iteration’sQ-functions (

∑
a |Qat |). Note

that we must assume that the number of bits of precision used in specifying the model is
polynomial in these quantities since the polynomial running time of linear programming is
expressed as a function of the input precision [54].

4.5. Alternative approaches

The witness algorithm is by no means the only exact algorithm for solving finite-
horizonPOMDPs. The first such algorithm was described by Sondik [56,58]. The one-pass

118 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

algorithm works by identifying linear regions of the value function one at a time. For each
one, it creates a set of constraints that form the border of the true region, then searches
those borders to determine whether another region exists beyond the border. Although the
algorithm is sophisticated and, in principle, avoids exhaustively enumerating the set of
possibly useful policy trees at each iteration, it appears to run more slowly than the simpler
enumeration methods in practice, at least for problems with small state spaces [10].

In the process of motivating the one-pass algorithm, Sondik [58] applies the same ideas
to findingQ-functions instead of the complete value function. The resulting algorithm
might be called the two-pass algorithm [9], and its form is much like the witness algorithm
because it first constructs each separateQ-function, then combines theQ-functions
together to create the optimal value function. Although it appears that the algorithm
attracted no attention and was never implemented in over 25 years after the completion
of Sondik’s dissertation, it was recently implemented and found to be faster than any of the
algorithms that predated the witness algorithm [9].

As pointed out in Section 4, value functions in belief space have a natural geometric
interpretation. For small state spaces, algorithms that exploit this geometry are quite
efficient [16]. An excellent example of this is Cheng’s linear support algorithm [10]. This
algorithm can be viewed as a variation of the witness algorithm in which witness points
are sought at the corners of regions of the approximate value function defined by the
algorithm’s equivalent of the setU . In two dimensions, these corners can be found easily
and efficiently; the linear support algorithm can be made to run in low-order polynomial
time for problems with two states. In higher dimensions, more complex algorithms are
needed and the number of corners is often exponential in the dimensionality. Thus, the
geometric approaches are useful only inPOMDPs with extremely small state spaces.

Zhang and Liu [67] describe the incremental-pruning algorithm, later generalized by
Cassandra, Littman, and Zhang [7]. This algorithm is simple to implement and empirically
faster than the witness algorithm, while sharing its good worst-case complexity in terms of∑
a |Qat |. The basic algorithm works like the exhaustive enumeration algorithm described

in Section 4.3, but differs in that it repeatedly prunes out nonuseful policy trees during the
generation procedure. As a result, compared to exhaustive enumeration, very few nonuseful
policy trees are considered and the algorithm runs extremely quickly.

White and Scherer [65] propose an alternative approach in which the reward function
is changed so that all of the algorithms discussed in this chapter will tend to run more
efficiently. This technique has not yet been combined with the witness algorithm, and may
provide some improvement.

4.6. The infinite horizon

In the previous section, we showed that the optimalt-step value function is always
piecewise-linear and convex. This is not necessarily true for the infinite-horizon discounted
value function; it remains convex [63], but may have infinitely many facets. Still, the
optimal infinite-horizon discounted value function can be approximated arbitrarily closely
by a finite-horizon value function for a sufficiently long horizon [51,59].

The optimal infinite-horizon discounted value function can be approximated via value
iteration, in which the series oft-step discounted value functions is computed; the

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 119

iteration is stopped when the difference between two successive results is small, yielding
an arbitrarily good piecewise-linear and convex approximation to the desired value
function. From the approximate value function we can extract a stationary policy that is
approximately optimal.

Sondik [59] and Hansen [23] have shown how to use algorithms like the witness
algorithm that perform exact dynamic-programming backups inPOMDPs in a policy-
iteration algorithm to find exact solutions to many infinite-horizon problems.

5. Understanding policies

In this section we introduce a very simple example and use it to illustrate some properties
of POMDPpolicies. Other examples are explored in an earlier paper [8].

5.1. The tiger problem

Imagine an agent standing in front of two closed doors. Behind one of the doors is a tiger
and behind the other is a large reward. If the agent opens the door with the tiger, then a
large penalty is received (presumably in the form of some amount of bodily injury). Instead
of opening one of the two doors, the agent can listen, in order to gain some information
about the location of the tiger. Unfortunately, listening is not free; in addition, it is also
not entirely accurate. There is a chance that the agent will hear a tiger behind the left-hand
door when the tiger is really behind the right-hand door, and vice versa.

We refer to the state of the world when the tiger is on the left assl and when it is on the
right assr . The actions areLEFT, RIGHT, andLISTEN. The reward for opening the correct
door is+10 and the penalty for choosing the door with the tiger behind it is−100. The
cost of listening is−1. There are only two possible observations: to hear the tiger on the
left (TL) or to hear the tiger on the right (TR). Immediately after the agent opens a door and
receives a reward or penalty, the problem resets, randomly relocating the tiger behind one
of the two doors.

The transition and observation models can be described in detail as follows. TheLISTEN

action does not change the state of the world. TheLEFT and RIGHT actions cause a
transition to world statesl with probability 0.5 and to statesr with probability 0.5
(essentially resetting the problem). When the world is in statesl , theLISTEN action results
in observationTL with probability 0.85 and the observationTR with probability 0.15;
conversely for world statesr . No matter what state the world is in, theLEFT andRIGHT

actions result in either observation with probability 0.5.

5.2. Finite-horizon policies

The optimal undiscounted finite-horizon policies for the tiger problem are rather striking
in the richness of their structure. Let us begin with the situation-action mapping for the
time stept = 1, when the agent only gets to make a single decision. If the agent believes
with high probability that the tiger is on the left, then the best action is to open the right
door; if it believes that the tiger is on the right, the best action is to open the left door.

120 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Fig. 10. The optimal situation-action mapping fort = 1 for the tiger problem shows that each of the three actions
is optimal forsomebelief state.

But what if the agent is highly uncertain about the tiger’s location? The best thing to do
is listen. Guessing incorrectly will incur a penalty of−100, whereas guessing correctly
will yield a reward of+10. When the agent’s belief has no bias either way, it will guess
wrong as often as it guesses right, so its expected reward for opening a door will be
(−100+ 10)/2= −45. Listening always has value−1, which is greater than the value
of opening a door at random. Fig. 10 shows the optimal 1-step nonstationary policy. Each
of the policy trees is shown as a node; below each node is the belief interval8 over
which the policy tree dominates; inside each node is the action at the root of the policy
tree.

We now move to the case in which the agent can act for two time steps. The optimal
2-step nonstationary policy begins with the situation-action mapping fort = 2 shown
in Fig. 11. This situation-action mapping has a surprising property: it never chooses to
act, only to listen. Why? Because if the agent were to open one of the doors att = 2,
then, on the next step, the tiger would be randomly placed behind one of the doors and
the agent’s belief state would be reset to(0.5,0.5). So after opening a door, the agent
would be left with no information about the tiger’s location and with one action remaining.
We just saw that with one step to go andb = (0.5,0.5) the best thing to do is listen.
Therefore, if the agent opens a door whent = 2, it will listen on the last step. It is a
better strategy to listen whent = 2 in order to make a more informed decision on the last
step.

Another interesting property of the 2-step nonstationary policy is that there are multiple
policy trees with the same action at the root. This implies that the value function is not
linear, but is made up of five linear regions. The belief states within a single region are
similar in that when they are transformed, via SE(b, a, o), the resulting belief states will
all lie in the same belief region defined by the situation-action mapping fort = 1. In other
words, every single belief state in a particular regionr of the situation-action mapping for
t = 2, will, for the same action and observation, be transformed to a belief state that lies
in some regionr ′ of the situation-action mapping fort = 1. This relationship is shown in
Fig. 12.

The optimal nonstationary policy fort = 3 also consists solely of policy trees with the
listen action at their roots. If the agent starts from the uniform belief state,b = (0.5,0.5),
listening once does not change the belief state enough to make the expected value of
opening a door greater than that of listening. The argument for this parallels that for the
t = 2 case.

8 The belief interval is specified in terms ofb(sl) only sinceb(sr)= 1− b(sl).

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 121

Fig. 11. The optimal situation-action mapping fort = 2 in the tiger problem consists only of theLISTEN action.

Fig. 12. The optimal nonstationary policy fort = 2 illustrates belief state transformations fromt = 2 to t = 1. It
consists of five separate policy trees.

This argument for listening in the first steps no longer applies aftert = 3; the optimal
situation-action mappings fort > 3 all choose to open a door for some belief states. Fig. 13
shows the structure that emerges in the optimal nonstationary policy fort = 4. Notice that
for t = 3 there are two nodes that do not have any incoming arcs fromt = 4. This happens
because there is no belief state att = 4 for which the optimal action and any resulting
observation generates a new belief state that lies in either of the regions defined by the
unused nodes att = 3.

This graph can also be interpreted as a compact representation of all of the useful policy
trees at every level. The forest of policy trees is transformed into a directed acyclic graph
by collapsing all of the nodes that stand for the same policy tree into one.

5.3. Infinite-horizon policies

When we include a discount factor to decrease the value of future rewards, the structure
of the finite-horizonPOMDP value function changes slightly. As the horizont increases,
the rewards received for the final few steps have decreasing influence on the situation-
action mappings for earlier time steps and the value function begins to converge. In many
discountedPOMDPproblems, the optimal situation-action mapping for larget looks much
the same as the optimal situation-action mapping fort − 1. Fig. 14 shows a portion of the
optimal nonstationary policy for thediscountedfinite-horizon version of the tiger problem
for large values oft . Notice that the structure of the graph is exactly the same from one time
to the next. The vectors for each of the nodes, which together define the value function,
differ only after the fifteenth decimal place. This structure first appears at time stept = 56
and remains constant throught = 105. Whent = 105, the precision of the algorithm used
to calculate the situation-action mappings can no longer discern any difference between the

122 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Fig. 13. The optimal nonstationary policy fort = 4 has a rich structure.

Fig. 14. The optimal nonstationary policy for larget converges.

vectors’ values for succeeding intervals. At this point, we have an approximately optimal
value function for the infinite-horizon discounted problem.

This POMDP has the property that the optimal infinite-horizon value function has a
finite number of linear segments. An associated optimal policy has a finite description and
is called finitely transient [9,51,58]. POMDPs with finitely transient optimal policies can
sometimes be solved in finite time using value iteration. InPOMDPs with optimal policies
that are not finitely transient, the infinite-horizon value function has an infinite number of
segments; on these problems the setsVt grow with each iteration. The best we can hope

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 123

for is to solve thesePOMDPs approximately. It is not known whether there is a way of
using the value-iteration approach described in this paper for solvingall POMDPs with
finitely transient optimal policies in finite time; we conjecture that there is. The only finite-
time algorithm that has been described for solvingPOMDPs with finitely transient optimal
policies over the infinite horizon is a version of policy iteration described by Sondik [58].
The simpler policy-iteration algorithm due to Hansen [23] has not been proven to converge
for all suchPOMDPs.9

5.4. Plan graphs

One drawback of thePOMDP approach is that the agent must maintain a belief state
and use it to select an optimal action on every step; if the underlying state space orV
is large, then this computation can be expensive. In many cases, it is possible to encode
the policy in a graph that can be used to select actions without any explicit representation
of the belief state [59]; we refer to such graphs asplan graphs. Recall Fig. 14, in which
the algorithm has nearly converged upon an infinite-horizon policy for the tiger problem.
Because the situation-action mappings at every level have the same structure, we can make
the nonstationary policy into a stationary one by redrawing the edges from one level to
itself as if it were the succeeding level. This rearrangement of edges is shown in Fig. 15,
and the result is redrawn in Fig. 16 as a plan graph.

Some of the nodes of the graph will never be visited once either door is opened and the
belief state is reset to(0.5,0.5). If the agent always starts in a state of complete uncertainty,
then it will never be in a belief state that lies in the region of these nonreachable nodes.
This results in a simpler version of the plan graph, shown in Fig. 17. The plan graph has a
simple interpretation: keep listening until you have heard the tiger twice more on one side
than the other.

Because the nodes represent a partition of the belief space and because all belief states
within a particular region will map to a single node on the next level, the plan graph
representation does not require the agent to maintain an on-line representation of the belief
state; the current node is a sufficient representation of the current belief. In order to execute
a plan graph, the initial belief state is used to choose a starting node. After that, the agent
need only maintain a pointer to a current node in the graph. On every step, it takes the action
specified by the current node, receives an observation, then follows the arc associated with
that observation to a new node. This process continues indefinitely.

A plan graph is essentially a finite-state controller. It uses the minimal possible amount
of memory to act optimally in a partially observable environment. It is a surprising
and pleasing result that it is possible to start with a discrete problem, reformulate it in
terms of a continuous belief space, then map the continuous solution back into a discrete

9 As a technical aside, if there arePOMDPs that have finitely transient optimal policies for which neither value
iteration nor Hansen’s policy-iteration algorithm converges, the tiger problem is a good candidate. This is because
the behavior of these algorithms on this problem appears to be extremely sensitive to the numerical precision used
in comparisons—the better the precision, the longer the algorithms take to converge. In fact, it may be the case that
imprecision isnecessaryfor the algorithms to converge on this problem, although it is difficult to test this without
detailed formal analysis. Sondik’s proof that his policy-iteration algorithm converges depends on controlled use
of imprecision and we have not studied how that could best be used in the context of value iteration.

124 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

Fig. 15. Edges can be rearranged to form a stationary policy.

Fig. 16. The optimal infinite-horizon policy for the tiger problem can be drawn as a plan graph. This structure
counts the relative number of times the tiger was heard on the left as compared to the right.

Fig. 17. Given the initial belief state of(0.5,0.5) for the tiger problem, some nodes of the plan graph can be
trimmed.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 125

Fig. 18. More memory is needed in the tiger problem when listening reliability is reduced to 0.65.

controller. Furthermore, the extraction of the controller can be done automatically from
two successive equal value functions.

It is also important to note that there is no knowna priori bound on the size of the
optimal plan graph in terms of the size of the problem. In the tiger problem, for instance, if
the probability of getting correct information from theLISTEN action is reduced from 0.85
to 0.65, then the optimal plan graph, shown in Fig. 18, is much larger, because the agent
must hear the tiger on one side 5 times more than in the other before being sufficiently
confident to act. As the observation reliability decreases, an increasing amount of memory
is required.

6. Related work

In this section, we examine how the assumptions of thePOMDP model relate to earlier
work on planning in AI. We consider only models with finite-state and action spaces and
static underlying dynamics, as these assumptions are consistent with the majority of work
in this area. Our comparison focuses on issues of imperfect knowledge, uncertainty in
initial state, the transition model, the observation model, the objective of planning, the
representation of domains, and plan structures. The most closely related work to our own
is that of Kushmerick, Hanks, and Weld [30] on the BURIDAN system, and Draper, Hanks
and Weld [14] on the C-BURIDAN system.

6.1. Imperfect knowledge

Plans generated using standardMDP algorithms and classical planning algorithms10

assume that the underlying state of the process will be known with certainty during plan
execution. In theMDP framework, the agent is informed of the current state each time it
takes an action. In many classical planners (e.g.,SNLP [39], UCPOP[45]), the current state

10 By “classical planning” we mean linear or partial-order planners using STRIPS-like operators.

126 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

can be calculated trivially from the known initial state and knowledge of the deterministic
operators.

The assumption of perfect knowledge is not valid in many domains. Research on
epistemic logic [43,44,52] relaxes this assumption by making it possible to reason about
what is and is not known at a given time. Unfortunately, epistemic logics have not been
used as a representation in automatic planning systems, perhaps because the richness of
representation they provide makes efficient reasoning very difficult.

A step towards building a working planning system that reasons about knowledge is to
relax the generality of the logic-based schemes. The approach ofCNLP [46] uses three-
valued propositions where, in addition to true and false, there is a valueunknown, which
represents the state when the truth of the proposition is not known. Operators can then
refer to whether propositions have anunknownvalue in their preconditions and can have
the value in their effects. This representation for imperfect knowledge is only appropriate
when the designer of the system knows, in advance, what aspects of the state will be known
and unknown. It is insufficient for multiple agents reasoning about each others’ knowledge
and for representing certain types of correlated uncertainty [20].

Formulating knowledge as predicate values that are either known or unknown makes
it impossible to reason about gradations of knowledge. For example, an agent that is
fairly certain that it knows the combination to a lock might be willing to try to unlock it
before seeking out more precise knowledge. Reasoning about levels of knowledge is quite
common and natural in thePOMDP framework. As long as an agent’s state of knowledge
can be expressed as a probability distribution over possible states of the world, thePOMDP

perspective applies.

6.2. Initial state

Many classical planning systems (SNLP, UCPOP, CNLP) require the starting state to be
known during the planning phase. An exception is the U-PLAN [38] system, which creates
a separate plan for each possible initial state with the aim of making these plans easy to
merge to form a single plan. Conditional planners typically have some aspects of the initial
state unknown. If these aspects are important to the planning process, they are tested during
execution.

In the POMDP framework, the starting state is not required to be known precisely and
can instead be represented as a probability distribution over possible states. BURIDAN and
C-BURIDAN also use probability distributions over states as an internal representation of
uncertainty, so they can deal with initial-state uncertainty in much the same way.

6.3. Transition model

In classical planning systems, operators have deterministic effects. The plans constructed
are brittle, since they apply to a specific starting state and require the trajectory through the
states to go exactly as expected. Many domains are not easily modeled with deterministic
actions, since an action can have different results, even when applied in exactly the same
state.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 127

Extensions to classical planning, such asCNLP [46] and CASSANDRA [48] have consid-
ered operators with nondeterministic effects. For each operator, there is a set of possible
next states that could occur. A drawback of this approach is that it gives no information
about the relative likelihood of the possible outcomes. These systems plan for every possi-
ble contingency to ensure that the resulting plan is guaranteed to lead to a goal state.

Another approach used in modeling nondeterministic actions is to define a probability
distribution over the possible next states. This makes it possible to reason about which of
the resulting states are more likely and makes it possible to assess whether a plan islikely to
reach the goal even if it is not guaranteed to do so. This type of action model is used inMDPs
and POMDPs as well as in BURIDAN and C-BURIDAN. Other work [5,15,19] has used
representations that can be used to compute probability distributions over future states.

6.4. Observation model

When the starting state is known and actions are deterministic, there is no need to get
feedback from the environment when executing a plan. However, if the starting state is
unknown or the actions have nondeterministic effects, more effective plans can be built by
exploiting feedback, or observations, from the environment concerning the identity of the
current state.

If observations reveal the precise identity of the current state, the planning model is
called “completely observable.” TheMDP model, as well as some planning systems such
as CNLP and PLINTH [18,19] assume complete observability. Other systems, such as
BURIDAN and MAXPLAN [37], have no observation model and can attack “completely
unobservable” problems. Classical planning systems typically have no observation model,
but the fact that the initial state is known and operators are deterministic means that they
can also be thought of as solving completely observable problems.

Completely observable and completely unobservable models are particularly clean but
are unrealistic. ThePOMDP and C-BURIDAN frameworks modelpartially observable
environments, in that observations provide some information about the underlying state,
but not enough to guarantee that it will be known with certainty. This model provides for
a great deal of expressiveness (both completely observable and completely unobservable
models can be viewed as special cases), but is quite difficult to solve. It is an interesting
and powerful model because it allows systems to reason about taking actions to gather
knowledge that will be important for later decision making.

6.5. Objective

The job of a planner is to find a plan that satisfies a particular objective; most often, the
objective is a goal of achievement, that is, to arrive at some state that is in a set of problem-
specific goal states. When probabilistic information is available concerning the initial state
and transitions, a more general objective can be used—reaching a goal state with sufficient
probability (see, for example, work on BURIDAN and C-BURIDAN).

A popular alternative to goal attainment is maximizing total expected discounted reward
(total-reward criterion). Under this objective, each action results in an immediate reward
that is a function of the current state. The exponentially discounted sum of these rewards

128 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

over the execution of a plan (finite or infinite horizon) constitutes the value of the plan.
This objective is used extensively in most work withMDPs andPOMDPs, including ours.

Several authors (for example, Koenig [27]) have pointed out that, given a completely
observable problem stated as one of goal achievement, reward functions can be constructed
so that a policy that maximizes reward can be used to maximize the probability of goal
attainment in the original problem. This shows that the total-reward criterion is no less
general than goal achievement in completely observable domains. The same holds for
finite-horizon partially observable domains.

Interestingly, a more complicated transformation holds in the opposite direction: any
total expected discounted reward problem (completely observable or finite horizon) can
be transformed into a goal-achievement problem of similar size [12,69]. Roughly, the
transformation simulates the discount factor by introducing an absorbing state with a small
probability of being entered on each step. Rewards are then simulated by normalizing all
reward values to be between zero and one and then “siphoning off” some of the probability
of absorption equal to the amount of normalized reward. The (perhaps counterintuitive)
conclusion is that goal-attainment problems and reward-type problems are computationally
equivalent.

There is a qualitative difference in the kinds of problems typically addressed with
POMDPmodels and those addressed with planning models. Quite frequently,POMDPs are
used to model situations in which the agent is expected to go on behaving indefinitely,
rather than simply until a goal is achieved. Given the inter-representability results between
goal-probability problems and discounted-optimality problems, it is hard to make technical
sense of this difference. In fact, manyPOMDPmodels should probably be addressed in an
average-reward context [17]. Using a discounted-optimal policy in a truly infinite-duration
setting is a convenient approximation, similar to the use of a situation-action mapping from
a finite-horizon policy in receding horizon control.

Littman [35] catalogs some alternatives to the total-reward criterion, all of which are
based on the idea that the objective value for a plan is based on a summary of immediate
rewards over the duration of a run. Koenig and Simmons [28] examine risk-sensitive
planning and showed how planners for the total-reward criterion could be used to optimize
risk-sensitive behavior. Haddawy et al. [21] looked at a broad family of decision-theoretic
objectives that make it possible to specify trade-offs between partially satisfying goals
quickly and satisfying them completely. Bacchus, Boutilier and Grove [2] show how some
richer objectives based on evaluations of sequences of actions can actually be converted to
total-reward problems. Other objectives considered in planning systems, aside from simple
goals of achievement, include goals of maintenance and goals of prevention [15]; these
types of goals can typically be represented using immediate rewards as well.

6.6. Representation of problems

The propositional representations most often used in planning have a number of
advantages over the flat state-space representations associated withMDPs andPOMDPs. The
main advantage comes from their compactness—just as with operator schemata, which can
represent many individual actions in a single operator, propositional representations can be
exponentially more concise than a fully expanded state-based transition matrix for anMDP.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 129

Algorithms for manipulating compact (or factored)POMDPs have begun to ap-
pear [6,14]—this is a promising area for future research. At present, however, there is
no evidence that these algorithms result in improved planning time significantly over the
use of a “flat” representation of the state space.

6.7. Plan structures

Planning systems differ in the structure of the plans they produce. It is important that
a planner be able to express the optimal plan if one exists for a given domain. We briefly
review some popular plan structures along with domains in which they are sufficient for
expressing optimal behavior.

Traditional plans are simple sequences of actions. They are sufficient when the initial
state is known and all actions are deterministic. A slightly more elaborate structure is
the partially ordered plan (generated, for example, bySNLP and UCPOP), or the parallel
plan [4]. In this type of plan, actions can be left unordered if all orderings are equivalent
under the performance metric.

When actions are stochastic, partially ordered plans can still be used (as in BURIDAN),
but contingent plans can be more effective. The simplest kind of contingent or branching
plan is one that has a tree structure (as generated byCNLP or PLINTH). In such a plan,
some of the actions have different possible outcomes that can be observed, and the flow
of execution of the plan is conditioned on the outcome. Branching plans are sufficient
for representing optimal plans for finite-horizon domains. Directed acyclic graphs (DAGs)
can represent the same class of plans, but potentially do so much more succinctly, because
separate branches can share structure. C-BURIDAN uses a representation of contingent
plans that also allows for structure sharing (although of a different type than our DAG-
structured plans). Our work onPOMDPs finds DAG-structured plans for finite-horizon
problems.

For infinite-horizon problems, it is necessary to introduce loops into the plan represen-
tation [31,57]. (Loops might also be useful in long finite-horizonPOMDPs for representa-
tional succinctness.) A simple loop-based plan representation depicts a plan as a labeled
directed graph. Each node of the graph is labeled with an action and there is one labeled
outgoing edge for each possible outcome of the action. It is possible to generate this type
of plan graphfor somePOMDPs [8,22,23,47,59].

For completely observable problems with a high branching factor, a more convenient
representation is apolicy, which maps the current state (situation) to a choice of action.
Because there is an action choice specified for all possible initial states, policies are
also called universal plans [53]. This representation is not appropriate forPOMDPs, since
the underlying state is not fully observable. However,POMDP policies can be viewed as
universal plans over belief space.

It is interesting to note that there are infinite-horizonPOMDPs for which no finite-state
plan is sufficient. Simple 2-state examples can be constructed for which optimal behavior
requires counting (i.e., a simple stack machine); there is reason to believe that general
pushdown automata and perhaps even Turing machines are necessary to represent optimal
plans in general. This argues that, in the limit, a plan is actually a program. Several
techniques have been proposed recently for searching for good program-like controllers

130 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

in POMDPs [29,68]. We restrict our attention to the simpler finite-horizon case and a small
set of infinite-horizon problems that have optimal finite-state plans.

7. Extensions and conclusions

ThePOMDPmodel provides a firm foundation for work on planning under uncertainty in
action and observation. It gives a uniform treatment of action to gain information and action
to change the world. Although they are derived through the domain of continuous belief
spaces, elegant finite-state controllers may sometimes be constructed using algorithms such
as the witness algorithm.

However, experimental results [34] suggest that even the witness algorithm becomes
impractical for problems of modest size (|S| > 15 and |Ω| > 15). Our current work
explores the use of function-approximation methods for representing value functions and
the use of simulation in order to concentrate the approximations on the frequently visited
parts of the belief space [33]. The results of this work are encouraging and have allowed us
to get a very good solution to an 89-state, 16-observation instance of a hallway navigation
problem similar to the one described in the introduction. We are optimistic and hope to
extend these techniques (and others) to get good solutions to large problems.

Another area that is not addressed in this paper is the acquisition of a world model.
One approach is to extend techniques for learning hidden Markov models [50,60] to learn
POMDP models. Then, we could apply algorithms of the type described in this paper
to the learned models. Another approach is to combine the learning of the model with
the computation of the policy. This approach has the potential significant advantage of
being able to learn a model that is complex enough to support optimal (or good) behavior
without making irrelevant distinctions; this idea has been pursued by Chrisman [11] and
McCallum [40,41].

Appendix A

Theorem A.1. LetUa be a nonempty set of useful policy trees, andQat be the complete set
of useful policy trees. ThenUa 6=Qat if and only if there is some treep ∈ Ua , observation
o∗ ∈Ω , and subtreep′ ∈ Vt−1 for which there is some belief stateb such that

Vpnew(b) > Vp̃(b) (A.1)

for all p̃ ∈Ua , wherepnew is a t-step policy tree that agrees withp in its action and all its
subtrees except for observationo∗, for whicho∗(pnew)= p′.

Note that we are defining two trees to be equal if they have the same value function; this
makes it unnecessary to deal with the effect of ties in the setUa .

Proof. The “if” direction is easy since theb can be used to identify a policy tree missing
fromUa .

The “only if” direction can be rephrased as: IfUa 6=Qat then there is a belief stateb, a
p ∈Ua , and apnew such thatpnew has a larger value than any otherp̃ ∈Ua at b.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 131

Start by picking somep∗ ∈Qat −Ua and choose anyb such thatp∗ has the highest value
atb (there must be such ab sincep∗ is useful). Let

p = argmax
p′∈Ua

Vp′(b).

Now, p∗ is the policy tree inQat −Ua that has the highest value atb, andp is the policy
tree inUa that has the highest value atb. By construction,Vp∗(b) > Vp(b).

Now, if p andp∗ differ in only one subtree, then we are done,p∗ can serve as apnew in
the theorem.

If p andp∗ differ in more than one subtree, we will identify another policy tree that can
act aspnew. Choose an observationo∗ ∈Ω such that∑

s

b(s)

(∑
s ′∈S

T
(
s, a

(
p∗
)
, s′
)
Vo∗(p∗)

(
s′
))

>
∑
s

b(s)

(∑
s ′∈S

T
(
s, a

(
p∗
)
, s′
)
Vo∗(p)

(
s′
))
.

There must be ao∗ satisfying this inequality since otherwise we get the contradiction

Vp∗(b)

=
∑
s

b(s)

(
R
(
s, a

(
p∗
))+ γ ∑

s ′∈S
T
(
s, a

(
p∗
)
, s′
) ∑
oi∈Ω

O
(
s′, a

(
p∗
)
, oi
)
Voi(p∗)

(
s′
))

6
∑
s

b(s)

(
R
(
s, a(p)

)+ γ ∑
s ′∈S

T
(
s, a(p), s′

) ∑
oi∈Ω

O
(
s′, a(p), oi

)
Voi(p)

(
s′
))

= Vp(b).
Definepnew to be identical top except that in the place of subtreeo∗(p), we puto∗(p∗).
From this, it follows that

Vpnew(b)=
∑
s

b(s)

(
R
(
s, a(pnew)

)
+ γ

∑
s ′∈S

T
(
s, a(pnew), s

′) ∑
oi∈Ω

O
(
s′, a(pnew), oi

)
Voi(pnew)

(
s′
))

>
∑
s

b(s)

(
R
(
s, a(p)

)
+ γ

∑
s ′∈S

T
(
s, a(p), s′

) ∑
oi∈Ω

O
(
s′, a(p), oi

)
Voi(p)

(
s′
))

= Vp(b)> Vp̃(b)
for all p̃ ∈Ua . Therefore, the policy treesp andpnew, the observationo∗, p′ = o∗(p∗) and
the belief stateb satisfy the conditions of the theorem.2

132 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

References

[1] K.J. Aström, Optimal control of Markov decision processes with incomplete state estimation, J. Math. Anal.
Appl. 10 (1995) 174–205.

[2] F. Bacchus, C. Boutilier and A. Grove, Rewarding behaviors, in: Proceedings Thirteenth National
Conference on Artificial Intelligence (AAAI-96), Portland, OR, AAAI Press/MIT Press, Menlo Park, CA,
1996, pp. 1160–1167.

[3] D.P. Bertsekas, Dynamic Programming and Optimal Control, Vols. 1 and 2, Athena Scientific, Belmont,
MA, 1995.

[4] A.L. Blum and M.L. Furst, Fast planning through planning graph analysis, Artificial Intelligence 90 (1–2)
(1997) 279–298.

[5] J. Blythe, Planning with external events, in: Proceedings Tenth Conference on Uncertainty in Artificial
Intelligence (UAI-94), Seattle, WA, 1994, pp. 94–101.

[6] C. Boutilier and D. Poole, Computing optimal policies for partially observable decision processes using
compact representations, in: Proceedings Thirteenth National Conference on Artificial Intelligence (AAAI-
96), Portland, OR, AAAI Press/MIT Press, Menlo Park, CA, 1996, pp. 1168–1175.

[7] A. Cassandra, M.L. Littman and N.L. Zhang, Incremental Pruning: a simple, fast, exact method for partially
observable Markov decision processes, in: Proceedings Thirteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI–97), Morgan Kaufmann, San Francisco, CA, 1997, pp. 54–61.

[8] A.R. Cassandra, L.P. Kaelbling and M.L. Littman, Acting optimally in partially observable stochastic
domains, in: Proceedings Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle, WA,
1994, pp. 1023–1028.

[9] A.R. Cassandra, Exact and approximate algorithms for partially observable Markov decision problems,
Ph.D. Thesis, Department of Computer Science, Brown University, Providence, RI, 1998.

[10] H.-T. Cheng, Algorithms for partially observable Markov decision processes, Ph.D. Thesis, University of
British Columbia, Vancouver, BC, 1988.

[11] L. Chrisman, Reinforcement learning with perceptual aliasing: The perceptual distinctions approach, in:
Proceedings Tenth National Conference on Artificial Intelligence (AAAI-92), San Jose, CA, AAAI Press,
San Jose, CA, 1992, pp. 183–188.

[12] A. Condon, The complexity of stochastic games, Inform. and Comput. 96 (2) (1992) 203–224.
[13] T. Dean, L.P. Kaelbling, J. Kirman and A. Nicholson, Planning under time constraints in stochastic domains,

Artificial Intelligence 76 (1–2) (1995) 35–74.
[14] D. Draper, S. Hanks and D. Weld, Probabilistic planning with information gathering and contingent

execution, Technical Report 93-12-04, University of Washington, Seattle, WA, 1993.
[15] M. Drummond and J. Bresina, Anytime synthetic projection: maximizing the probability of goal satisfaction,

in: Proceedings Eighth National Conference on Artificial Intelligence (AAAI-90), Boston, MA, Morgan
Kaufmann, San Francisco, CA, 1990, pp. 138–144.

[16] J.N. Eagle, The optimal search for a moving target when the search path is constrained, Oper. Res. 32 (5)
(1984) 1107–1115.

[17] E. Fernández-Gaucherand, A. Arapostathis and S.I. Marcus, On the average cost optimality equation and the
structure of optimal policies for partially observable Markov processes, Ann. Oper. Res. 29 (1991) 471–512.

[18] R.P. Goldman and M.S. Boddy, Conditional linear planning, in: K. Hammond (Ed.), The Second
International Conference on Artificial Intelligence Planning Systems, AAAI Press/MIT Press, Menlo Park,
CA, 1994, pp. 80–85.

[19] R.P. Goldman and M.S. Boddy, Epsilon-safe planning, in: Proceedings 10th Conference on Uncertainty in
Artificial Intelligence (UAI-94), Seattle, WA, 1994, pp. 253–261.

[20] R.P. Goldman and M.S. Boddy, Representing uncertainty in simple planners, in: Proceedings 4th
International Conference on Principles of Knowledge Representation and Reasoning (KR-94), Bonn,
Germany, 1994, pp. 238–245.

[21] P. Haddawy and S. Hanks, Utility models for goal-directed decision-theoretic planners, Technical Report
93-06-04, Department of Computer Science and Engineering, University of Washington, 1993.

[22] E.A. Hansen, Cost-effective sensing during plan execution, in: Proceedings Twelfth National Conference on
Artificial Intelligence (AAAI-94), Seattle, WA, AAAI Press/MIT Press, Menlo Park, CA, 1994, pp. 1029–
1035.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 133

[23] E.A. Hansen, An improved policy iteration algorithm for partially observable MDPs, in: Advances in Neural
Information Processing Systems 10 (1998).

[24] R.A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA, 1960.
[25] R.A. Howard, Information value theory, IEEE Trans. Systems Science and Cybernetics SSC-2 (1) (1966)

22–26.
[26] R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. American Society of

Mechanical Engineers, Journal of Basic Engineering 82 (1960) 35–45.
[27] S. Koenig, Optimal probabilistic and decision-theoretic planning using Markovian decision theory, Technical

Report UCB/CSD 92/685, Berkeley, CA, 1992.
[28] S. Koenig and R.G. Simmons, Risk-sensitive planning with probabilistic decision graphs, in: Proceedings

4th International Conference on Principles of Knowledge Representation and Reasoning (KR-94), Bonn,
Germany, 1994, pp. 363–373.

[29] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT
Press, Cambridge, MA, 1992.

[30] N. Kushmerick, S. Hanks and D.S. Weld, An algorithm for probabilistic planning, Artificial Intelligence 76
(1–2) (1995) 239–286.

[31] S.-H. Lin and T. Dean, Generating optimal policies for high-level plans with conditional branches and loops,
in: Proceedings Third European Workshop on Planning (1995) 205–218.

[32] M.L. Littman, Memoryless policies: theoretical limitations and practical results, in: D. Cliff, P. Husbands,
J.-A. Meyer and S.W. Wilson (Eds.), From Animals to Animats 3: Proceedings Third International
Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge, MA, 1994.

[33] M.L. Littman, A.R. Cassandra and L.P. Kaelbling, Learning policies for partially observable environments:
scaling up, in: A. Prieditis and S. Russell (Eds.), Proceedings Twelfth International Conference on Machine
Learning, Morgan Kaufmann, San Francisco, CA, 1995, pp. 362–370. Reprinted in: M.H. Huhns and
M.P. Singh (Eds.), Readings in Agents, Morgan Kaufmann, San Francisco, CA, 1998.

[34] M.L. Littman, A.R. Cassandra and L.P. Kaelbling, Efficient dynamic-programming updates in partially
observable Markov decision processes, Technical Report CS-95-19, Brown University, Providence, RI,
1996.

[35] M.L. Littman, Algorithms for sequential decision making, Ph.D. Thesis, Department of Computer Science,
Brown University, 1996; also Technical Report CS-96-09.

[36] W.S. Lovejoy, A survey of algorithmic methods for partially observable Markov decision processes, Ann.
Oper. Res. 28 (1) (1991) 47–65.

[37] S.M. Majercik and M.L. Littman, MAXPLAN: a new approach to probabilistic planning, Technical Report
CS-1998-01, Department of Computer Science, Duke University, Durham, NC, 1998; submitted for review.

[38] T.M. Mansell, A method for planning given uncertain and incomplete information, in: Proceedings 9th
Conference on Uncertainty in Artificial Intelligence (UAI-93), Morgan Kaufmann, San Mateo, CA, 1993,
pp. 350–358.

[39] D. McAllester and D. Rosenblitt, Systematic nonlinear planning, in: Proceedings 9th National Conference
on Artificial Intelligence (AAAI-91), Anaheim, CA, 1991, pp. 634–639.

[40] R.A. McCallum, Overcoming incomplete perception with utile distinction memory, in: Proceedings Tenth
International Conference on Machine Learning, Morgan Kaufmann, Amherst, MA, 1993, pp. 190–196.

[41] R.A. McCallum, Instance-based utile distinctions for reinforcement learning with hidden state, in:
Proceedings Twelfth International Conference on Machine Learning, Morgan Kaufmann, San Francisco,
CA, 1995, pp. 387–395.

[42] G.E. Monahan, A survey of partially observable Markov decision processes: theory, models, and algorithms,
Management Science 28 (1) (1982) 1–16.

[43] R.C. Moore, A formal theory of knowledge and action, in: J.R. Hobbs and R.C. Moore (Eds.), Formal
Theories of the Commonsense World, Ablex Publishing, Norwood, NJ, 1985, pp. 319–358.

[44] L. Morgenstern, Knowledge preconditions for actions and plans, in: Proceedings 10th International Joint
Conference on Artificial Intelligence (IJCAI-87), Milan, Italy, 1987, pp. 867–874.

[45] J.S. Penberthy and D. Weld, UCPOP: a sound, complete, partial order planner for ADL, in: Proceedings
Third International Conference on Principles of Knowledge Representation and Reasoning (KR-92),
Cambridge, MA, 1992, pp. 103–114.

134 L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134

[46] M.A. Peot and D.E. Smith, Conditional nonlinear planning, in: Proceedings First International Conference
on Artificial Intelligence Planning Systems, 1992, pp. 189–197.

[47] L.K. Platzman, A feasible computational approach to infinite-horizon partially-observed Markov decision
problems, Technical Report, Georgia Institute of Technology, Atlanta, GA, 1981.

[48] L. Pryor and G. Collins, Planning for contingencies: a decision-based approach, J. Artif. Intell. Res. 4 (1996)
287–339.

[49] M.L. Puterman, Markov Decision Processes—Discrete Stochastic Dynamic Programming, Wiley, New
York, NY, 1994.

[50] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc.
IEEE 77 (2) (1989) 257–286.

[51] K. Sawaki and A. Ichikawa, Optimal control for partially observable Markov decision processes over an
infinite horizon, J. Oper. Res. Soc. Japan 21 (1) (1978) 1–14.

[52] R.B. Scherl and H.J. Levesque, The frame problem and knowledge-producing actions, in: Proceedings 11th
National Conference on Artificial Intelligence (AAAI-93), Washington, DC, 1993, pp. 689–697.

[53] M.J. Schoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings Tenth
International Joint Conference on Artificial Intelligence (IJCAI-87), Milan, Italy, 1987, pp. 1039–1046.

[54] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, New York, NY, 1986.
[55] S.P. Singh, T. Jaakkola and M.I. Jordan, Model-free reinforcement learning for non-Markovian decision

problems, in: Proceedings Eleventh International Conference on Machine Learning, Morgan Kaufmann,
San Francisco, CA, 1994, pp. 284–292.

[56] R.D. Smallwood and E.J. Sondik, The optimal control of partially observable Markov processes over a finite
horizon, Oper. Res. 21 (1973) 1071–1088.

[57] D.E. Smith and M. Williamson, Representation and evaluation of plans with loops, Working Notes for the
1995 Stanford Spring Symposium on Extended Theories of Action, 1995.

[58] E. Sondik, The optimal control of partially observable Markov processes, Ph.D. Thesis, Stanford University,
1971.

[59] E.J. Sondik, The optimal control of partially observable Markov processes over the infinite horizon:
discounted costs, Oper. Res. 26 (2) (1978) 282–304.

[60] A. Stolcke and S. Omohundro, Hidden Markov model induction by Bayesian model merging, in:
S.J. Hanson, J.D. Cowan and C.L. Giles (Eds.), Advances in Neural Information Processing Systems 5,
Morgan Kaufmann, San Mateo, CA, 1993, pp. 11–18.

[61] J. Tash and S. Russell, Control strategies for a stochastic planner, in: Proceedings 12th National Conference
on Artificial Intelligence (AAAI-94), Seattle, WA, 1994, pp. 1079–1085.

[62] P. Tseng, SolvingH -horizon, stationary Markov decision problems in time proportional to log(H), Oper.
Res. Lett. 9 (5) (1990) 287–297.

[63] C.C. White and D. Harrington, Application of Jensen’s inequality for adaptive suboptimal design, J. Optim.
Theory Appl. 32 (1) (1980) 89–99.

[64] C.C. White III, Partially observed Markov decision processes: a survey, Ann. Oper. Res. 32 (1991).
[65] C.C. White III and W.T. Scherer, Solution procedures for partially observed Markov decision processes,

Oper. Res. 37 (5) (1989) 791–797.
[66] R.J. Williams and L.C. Baird III, Tight performance bounds on greedy policies based on imperfect value

functions, Technical Report NU-CCS-93-14, Northeastern University, College of Computer Science, Boston,
MA, 1993.

[67] N.L. Zhang and W. Liu, Planning in stochastic domains: problem characteristics and approximation,
Technical Report HKUST-CS96-31, Department of Computer Science, Hong Kong University of Science
and Technology, 1996.

[68] J. Zhao and J.H. Schmidhuber, Incremental self-improvement for life-time multi-agent reinforcement
learning, in: P. Maes, M.J. Mataric, J.-A. Meyer, J. Pollack and S.W. Wilson (Eds.), From Animals to
Animats: Proceedings Fourth International Conference on Simulation of Adaptive Behavior, MIT Press,
Cambridge, MA, 1996, pp. 516–525.

[69] U. Zwick and M. Paterson, The complexity of mean payoff games on graphs, Theoret. Comput. Sci. 158
(1–2) (1996) 343–359.

