16.412 Tutorial Outline

· Nature of the problem:

· harsh/boring jobs (robots instead of humans

· need for heterogeneous robot teams, benefits over monolithic robots (cheaper, more flexible, etc)

· real world (dynamic environments, changing robot abilities

· Design goals

· Robots should be able to respond to changing environment, changing abilities of self & others

· Problems must be solved within time constraints (no “swarm strategies”

· Strategy

· Utilize global rather than local rules

· All robots communicate with all others

· Behavioral sets are given motivation levels based on environment, perceived abilities of self and others

· Most able robot is given responsibility for task

· Ability may change, this change is determined based on perceived success in affecting environment

· Assumptions

· Robots can detect the effect of their own actions

· Robots can detect actions of other team members

· Robots don’t lie to each other

· Communications may not be available

· Sensors aren’t perfect

· Any robot can fail

· Failure cannot necessarily be communicated

· There is no centralized store of knowledge

· ALLIANCE Architecture

· Fully distributed within team of fault-tolerant, heterogeneous robots

· Robot action selection based on:

· Mission requirements

· Actions of other robots

· Current environment

· Own internal state

· Behavior-based approach to achieve robustness at individual robot level

· Several task-achieving behaviors active simultaneously

· Each receives sensory input, controls some part of actuator output

· Lower level behaviors (obstacle avoidance, etc) always active

· Lower level behaviors may be suppressed by task-achieving behaviors

· Extensions – how does robot select among competing actions?

· Several behavior sets exist, always either active or hibernating

· Select appropriate behavior set through motivational behaviors

· Motivational Behaviors

· Each motivational behavior receives several inputs

· Sensory feedback

· Inter-robot communication

· Inhibitory feedback from other robots

· Internal motivations – robot impatience and acquiescence

· Output is activation level of corresponding behavior set (active or not active)

· Works by increasing motivation level for a certain task, rate proportional to current accomplishment level of that task by team

· Impatience: sensory feedback overrides feedback from other robots – corrects faults in other robots

· Acquiescence: if sensory feedback indicates robot is not successful at task, motivation level decreases until another robot takes over task

· Motivations fluidly adapt to changes in environment

· Formal Model of ALLIANCE

· Set R of robots, set T of tasks in mission, set A of behavior sets for robot in R

· Set of n functions which return task in T that robot in R is working on when behavior in set A is activated

· Sensory_feedback(t) returns 1 or 0, provides motivational behavior with data needed to decided whether to activate corresponding behavior set

· Comm_received(I,k,j,t1,t2) returns 1 or 0 depending on presence of communication messages within time span

· Activity_suppression(t) returns 1 or 0, depending on whether or not other behavior sets are already active

· Impatience(t) returns a fast or slow rate based on feedback regarding the accomplishment of a task

· Impatience_reset(t) returns a 1 or 0, resetting the impatience level when either the current robot or another robot has just begun to perform a certain task

· Acquiescence(t) returns a 1 or 0, indicating whether or not a robot has decided to give up its current task

· The initial motivation level m(0) of any task is equal to 0

· The motivation level m(t) = [m(t-1)+impatience(t)]*(product of sensory feedback, activity suppression, impatience reset, and acquiescence)

· Key parameters affecting action selection:

· Rate of impatience (fast)

· Rate of impatience (slow)

· Time that robot maintains activity before acquiescence

· Example – hazardous waste cleanup

· Two-robot team

· One robot has been partially disabled, cannot follow walls efficiently (allows other robot to do mapping

· Other robot turns out to be more disabled (partially disabled robot takes over mapping responsibilities

· Both robots do cleanup after mapping is complete

· When one robot reports results, other robot is no longer motivated to do so

