6.836 Embodied Intelligence, 2001
Research Assignment 3
Issued March 9, due March 23.

This assignment is about a Tom Ray-style evolution system inside a simulated computer. We
are giving you a number of ANSI C source files that together implement a Tierra-like system, but
this one is called Sierra. It is set up so that you can try different virtual machine architectures; and
watch the evolution of competing programs.

The biggest of the files is an implementation of a subset of Common Lisp. You absolutely do
not need to look inside this file at all. For this assignment it simply provides a convenient front end
so that you can poke around inside the emulated machine, and look at the history of the genomes
that have evolved.

The system is set up so that it runs in the background and you can type to it in the foreground
looking at various things as the system evolves.

The system requires a seed for a pseudo random number generator. Once this is set any given
run 1s completely deterministic and repeatable. If you use the same parameters and the same seed
you will get exactly the same results. The random number generator is used to determine when
cosmic rays hit, when there are copying errors, and where in simulated memory a new program is
placed.

There are really two things of importance given to you in the code. One is the Sierra system
itself, and the second is a particular virtual machine architecure called M1. In the fourth and fifth
tasks you are asked to copy and change M1 to be a new sort of virtual machine. This will require
you to program in C.

The M1 machine

The M1 machine uses four-bit words. Each M1 instruction is one or two words long. We will write
their numerical values in hexadecimal using the standard C notation (e.g., 0Oxb for 11).

The first (and perhaps only) word of an instruction is an opcode, representing one of 16 possible
instructions. When an opcode requires a second word, that specifies either one or two registers.
Sometimes there are unused bits in instructions—these are always ignored—they provide a good place
for harmless mutations to accumlate so that evolution can make new constructs. When a single
register 1s specified it is in the low order two bits of the word.

With each program instance in memory there are associated four registers, an accumulator, a
one deep stack for procedure calls, and a program counter. The registers and the accumulator are
each 32 bits wide, and are initialized to the following values when a program instance is spawned:

acc —1
rg 0
rl 1
T2 2
ry 3

These can be used by a program to construct interesting constants, although the ancestor program
does not do so.

Each spawned program starts with a certain amount of energy units. It 1s the length of the
program in words, times a constant energy_init. Currently energy_init has value 20. The
program that successfully spawns a new program is also rewarded with energy. It is given units
numbering the length of the new program times a constant energy_success, which is also currently
20 in the distributed code.

Executing instructions costs energy. If a program runs down to zero units of energy it is dead,
and 1ts memory space is returned to the free pool. There is no other form of reaper or queue as
existed in Tom Ray’s Tierra system.

The sixteen instructions, with the opcodes in the files handed out, are:

0x0 | nopO no operation

0x1 | nopl no operation

0x2 | find | find a label and place the address in acc
0x3 | sto store acc into register

0x4 | 1d load acc from register

0x5 | sub subtract register from acc

0x6 | add add register to acc

0x7 | go go to a label

0x8 | alloc | allocate a chunk of memory whose size is specified by a register

0x9 | copy copy word pointed to by one register to word pointed to by another register
the copy is subject to one bit mutation errors

Oxa | inc increment a register by 1 and copy to acc
0xb | dec decrement a register by 1 and copy to ace
Oxc | bne branch to a label if acc is non-zero

0xd | call call a procedure at a label

Oxe | ret return from the last called procedure

O0xf | spawn | set an allocated memory space to go off as its own program,

starting from an address in memory specified by a register.

Each instruction executed takes one unit of energy. If an instruction encounters an error, then it
is not executed, and an additional unit of energy is consumed. The specific conditions under which
errors can occur are as follows:

copy The from register is specified by the high order two bits of the second instruction word. The
to register is specified by the low order two bits of the second word. This instruction is in error
unless the from register is an integer in addressable memory ([0, 1048575] in the initial version of
the code), and the fo register is an address within the bounds of an allocated but unspawned child.

alloc If there is already a child chunk of memory allocated to this program then it is deallocated
first. The absolute value of the contents of the register is taken to be the size of memory chunk to be
allocated. Sierra demands that it fall inside some range, specified by the constants mingensize and
maxgensize. Currently this range is [16,128]. If the requested amount falls outside of this range
then 1t is an error. Sierra picks a random location in memory to try to allocate. If that chunk
of memory overlaps some existing program or allocated child then it is an error. In any case the
allocating program is charged energy units, the size of the chunk of memory it tried to allocate. If
there is an error then the instruction is re-executed at the next tick of the clock. This means that a
program requesting an illegal size chunk of memory will spin on the alloc instruction until it dies.
It also means that when memory is very full the program may die trying to allocate a child, causing
a die off of many programs, and a freeing up of memory.

spawn It is an error if there is no allocated child, or if the address in the register is outside the
range of that allocated child.

ret If there has not been a call instruction then this instruction causes an error and falls through.

call If there is a pending call that has not returned then this instruction is an error and falls
through.

finding a label A label to be found must be three successive nops, from the set of nop0 and nopi.
They must form a complementary pattern to the three words following the instruction that needs a
label. The pattern can be specified by any word patterns, and just their low order bits are used.
Thus a sequence of instructions words like go, nop1, 1d r2, will match a pattern nop0, nop1, nopi.
If the branch is not taken these three following words are skipped over. The pattern is searched
for in an extending radius from the instruction, looking in a range both forward and backward of
[3,512] words from the current instruction. The upper bound is set by the constant find_limit. It
is an error if the complementary label set can not be found within the limit, and then branch is not
taken. If the label is found forward, then the address of the first instruction following it is returned
in the accumulator. If the label is found backward then the address of the first word of the label
is returned. So a backward branch will end up executing the label. In turn this makes it easier to
compute the length of a program without having to do an add of three.

The ancestral creature is specified by filling a character array with symbolic constants corre-
sponding to the opcodes and register names. It looks like this:

char ancestcode[] = {
nop0,
nop0,
nopil,
find,

spawn, r3,
ret,
nopO0,
nopil,
nopil,
-1};

It is more easy to read is the assembled version. This is what gets printed out by the Sierra
system when you ask to print the code of a genome (e.g., with (print-code 0)-see below). The
comments were added manually later:

0: 0x0 mnopO /* start label */

1: 0x0O nopO

2: 0x1 nopl

3: 0x2 find /* find start label */

4: 0x1 nopl

5: 0x1 nopl

6: 0x0 nopO

7: 0x30 sto r0 /* store it in r0 */

9: 0x2 find /* find end label */

10: 0x1 nmnopl

11: 0x0 mnopO

12: 0x0 mnopO

13: 0x50 sub r0 /* determine length of program */
15: 0x31 sto ri /* and save that in r1 */
17: 0xd call /* call the copy routine */
18: 0x0 mnopO

19: 0x1 nopl
20: 0x0 nopO
21: 0x7 go /* go back to the start */
22: 0x1 nopl
23: 0x1 nopl
24: 0x0 nopO
25: 0x1 nopil /* copy routine label */

26: 0x0 nopO
27: 0x1 nopil

28: 0x81 alloc ril /* allocate a chunk of memory */

30: 0x32 sto r2 /* and save its address in two places */
32: 0x33 sto r3

34: 0x1 nmnopil /* label for loop */

35: 0x1 nopl
36: 0x1 nopl
37: 0x92 copy r0 to r2 /% copy a word */

39: 0xal inc r0 /* and update the from */
41: 0xa2 inc r2 /* and to pointers */
43: 0xbl dec ril /* and reduce the count */
45: 0xc bne /* see if count = 0 */
46: 0x0 mnop0 /* and loop if mnot */

47: 0x0 mnopO
48: 0x0 mnopO

49: 0xf3 spawn r3 /* spawn off the child */
51: Oxe ret /* and return to main program */
52: 0x0 mnopO /* end label */

B3: 0x1 nmnopl
54: 0x1 nopl

The supplied ancestor i1s thus 55 words of 4 bits each, giving a total of 210 bits, 75 of which
(those in the pattern providing nops, and those spare in single register specification words) can be
flipped without changing the semantics of the program.

The Sierra system

The Sierra system itself is independent of the details of the M1 machine. You can put a different
machine architecture in and the Sierra system will not need to be changed.
The memory space in Sierra is represented as 8 bit bytes, so wider bytes in the machine model
could be used (only 7 bits without a change to how the ancestor is parsed—see the -1 at the end).
When you fire it up it drops you into a lisp listener. You can type Common Lisp expressions at
that listener. The ancestor is set up as a program instance of genome 0, whose code was reproduced
above.
There are a couple of commands you might like to issue at this stage.
(setparams <copyerror> <cosmicerror>) to set mutation parameters
(setseed <seed>) to set the random number seed

The first mutation parameter <copyerror> gives the odds that an error will occur during copying
a word. It is set by default to 10,000 which means that one in ten thousand copy instructions will flip
a bit. The <cosmicerror> gives the odds that at each instruction executed a bit will be randomly
flipped somewhere in the whole soup memory. It is initially set to 1,000, so that roughly every
thousand instructions a bit somewhere in memory will be flipped.

You can then run the simulated machine with the (run) command. It sets the machine running,
using a round robin strategy of giving 100 instructions to each program in turn, unless one dies in
less instructions than that. The relevant commands you can type are:

(run) to run for 100,000,000 more instructions
(run <n>) to run for <n> more instructions
(status) to get the current status of the run
(stop) to stop it running immediately

Sierra keeps track of instances, i.e., copies of code somewhere in memory with an associated
register set and energy level. It also keeps track of genomes, and when ever a new program is

spawned it records exactly what genome it had at the time (the genome may later get altered by a
cosmic ray). At times the system may print the name of a program (like m347, the 347th machine
spawned beyond the ancestral program), or a genome (like g6853, the 6,853rd genome produced
beyond the genome of the ancestral program.

Sierra also keeps track of how memory is used. We will refer to an allocated block of memory,
whether yet containing a running program or not, as a body. If the block is running as a separate
program, i.e., it has been spawned by its parent, we will say it is alive.

As the machine is running in the background you can use various commands to see what is
happening. These include:

(rep) to report on the current status of the population
(best) to print the ids of the best genomes so far
(genomes <size>) to list well performing genomes of that size
(print-genome <id>) tells about that genome’s success

(print-code <id>) lists its code

Below is an excerpt from from a report that was generated by (rep). It has a listing for every
size block of memory that is currently active. The bodies column says how many blocks there are
of that size, while the alive column says how many of them are running alive. The difference is
those that have been allocated but not yet spawned. The spawned column says how many programs
currently in the alive column have ever successfully spawned a program. It must be the case that
spawned < alive.

The final column, selfgene, looks up the genome of each currently alive program, and says
whether an instance of that genome has ever successfully reproduced an exact copy of itself. Notice
that if there are multiple instances of a particular genome alive it will get counted multiple times.
It must be the case that selfgene < alive.

#7 (rep)

size bodies/ alive spawned/selfgene
17 11/ 1 1/ 0
19 5/ 1 1/ 0
20 18/ 3 3/ 0
48 567/ 373 219/ 353
49 2/ 2 2/ 0
50 12/ 4 3/ 1
51 5/ 1 0/ 0
52 4/ 1 1/ 0
54 3/ 1 0/ 0
55 10/ 5 4/ 1
57 7/ 2 1/ 2
58 14/ 7 2/ 0
59 688/ 449 248/ 384
60 4/ 3 2/ 2

2169 bodies, 112534/1048576 = 10.732Y%
genomes: 100456, individuals: 152807/1336, ticks: 100000011

The last two lines above give some summary information. In this case there are 2,169 blocks
of memory allocated, which occupy 112,534 words of the 1,048,576 word soup, meaning that it
is 10.732% full. There have been 100,000,011 instructions executed (this is not a multiple of one
hundred because sometimes programs died in the middle of their one hundred instruction quotas),
and there have been programs with 100, 456 different genomes produced. A total of 152, 807 programs
have been produced, of which 1,336 are still alive.

In searching for interesting genomes, the command (best) tells you something about the best
genomes at each program size:

#7 (best)

size selfrep genome ratio genome

I

21 1 g82174 | 0.0182 g82174
23 4 g13662 | 0.1379 g13662
25 1 g85340 | 0.0323 g85340
30 73 g21973 | 0.2819 g21973
48 1860 g85827 | 0.9429 g96040
49 3 g8640 | 0.5000 g95342
50 8 g96637 | 0.7500 g199

51 1 g98855 | 0.5000 g98855
52 17 89997 | 0.9444 g89997
53 2 g99615 | 0.6667 g99615
54 1 gb52267 | 0.2500 g52267
55 2040 g2 | 0.8571 g313

56 1 gb2 | 0.5000 g52

57 2 g1895 | 0.6667 g86737
58 3 g33684 | 0.7500 g33684
59 3308 g6200 | 0.9231 g75120

The selfrep column tells how many times the specified genome has managed to reproduce an
exact copy of itself so far in this run. The ratio column indicates for a possible different genome
the proportion of instances of a genome which managed to self reproduce.

Thus, for instance, for genomes of size 55, above, genome g2 was able to self reproduce 2,040
times, but a more efficient reproducer was ¢313 which reproduced itself in 86% of its instances.
These genomes, and ones of smaller size, are interesting to investigate further. You might use
print-genome and print-code to do that. In fact, let’s do it!

#7? (print-genome 2)

Genome: 2(0)[1]

b5 bytes. 2559 instances. 3024 children. 2040 selfrep.
appeared: [75428, 35672311]

O

#7? (print-genome 313)

Genome: 313(2)[2]

b5 bytes. 7 instances. 18 children. 6 selfrep.
appeared: [8266279, 10093795]

O

From this we can see that the 2,559 instances of genome g2 produced 3,024 children of which
2,040 were exact copies of the parent’s genome. On the other hand the 7 instances of genome g313,
only produced 6 copies, but that is a very high number of identical copies over a small sample.

Further we see from the parentheses that the first instance of g2 was produced by a program that
had the ancestral genome. So g2 is only a first (the [1]) genomic generation from the ancestor. It
may have been produced via a chain of many more program instances, but there was only one inexact
reproduction event. We also see that the first instance of g2 appeared after 75,428 instructions,
whereas the last one appeared after 35,672, 311 instructions—no doubt it has now died off.

The command (genomes <size>) prints a list of well performing genomes of the given size.
Those that managed to self reproduce have asterisks next to them. Others may just be ones that
produced lots of offspring. Here is an example:

#7 (genomes 48)

Genomes: g85827+ g99672+ g99130% g99310% gI6040% g94632% g76151 g86165%
g9BT66* g98546+ g99986+ g99864 gI9TO5* gIBTI0* g88510 g99132% g98530
g94170* g100116% g100006 g98378 g96092% g96491% ()

When we investigate a couple of these more closely we see:

#7 (print-genome 76151)
Genome: 76151(1586) [4]
48 bytes. 1 instances. 137 children. O selfrep.
appeared: [67807280, 67807280]
O
#7 (print-genome 85827)
Genome: 85827(83599)[7]
48 bytes. 2293 instances. 2366 children. 1860 selfrep.
appeared: [76365935, 99991952]
O

One instance of genome g76151 produced 137 offspring, but never self reproduced. Genome
g85827 which is a seventh genomic generation genome had lots of instances which self reproduced.
The ancestor genome for g85827 was genome 83599.

Hacking on the code

If you wish to make a new machine architecture you will only have to change file m1.c. If you want
to change the statistics that are collected you will have to change sierra.c.

If you want to make different things available on the Lisp side you will have to change sierra.c,
and possibly sierra.lisp. Look at the bottom of sierra.c to see how to place a C procedure into
Lisp’s namespace. Note that such procedures can only take up to three arguments. Also note that
genomes are a Lisp data type so it is alright to return one of them, as does get_ancestor (to see
how it prints in Lisp try (get-ancestor)). So you could write accessors and then be able to write
all sorts of automated search procedures in Lisp to investigate the structure of genome space.

The research questions

Get the source files following the instructions on the web at
http://www.ai.mit.edu/courses/6.836/handouts/handouts.html. Then make in the fell direc-
tory, and make in main directory to get an executable image m1.

1. Use the supplied files and run the simulation. Try it with different random seeds. To get a
fresh run you need to restart the program. Look around for the smallest parasite you can find (with
random seed 37, plenty of parasites of size 40 will pop up in the first hundred million, but it is
possible to find much smaller ones). All the interesting stuff seems to happen in the first half giga
instructions. Once you have found a nice parasite give us a code listing for it, and explain how it
could possibly self reproduce.

2. Experiment with different settings for cosmic rays and the copying errors. Make a few runs
at each setting you choose for, say, one hundred million instructions. Observe what happens to
the system and come up with some qualitative explanation for what you see. If you notice any
particularly interesting genome tell us about it.

3. Write a new ancestral machine that has a different decomposition of work between the main pro-
gram and the subroutine. Experiment (using the old verions of the cosmic and copying parameters)
with versions that do give rise to parasites and those that do not. Give a qualitative explanation (if
there are always parasites then tell us about that too). Show us the code of the parasites.

4. Modify the code for the underlying machine so that when searching for a label it searches for a
matching label rather than a complementary label. Modify the ancestral code accordingly. Tell us

what happens (and show us the code of the ancestral program and any parasites).

5. Make a more drastic set of changes to the simulated machine. Be as creative as you want. Show
us the results (hopefully interesting) of what happens when you run this system.

