
6.836 Embodied Intelligence–Research Assignment 2

Massachusetts Institute of Technology

Due: Thursday, March 6, 2003

We have seen a number of different architectures where computation is represented as a circuit. How
can computations specified in this manner be run on a conventional computer architecture? In this
research assignment you will write a compiler which takes a textual description of a network like
this one from Friday 21st’s lecture on REX:

right
sensor

left
sensor

OR

OR

NOT

5

5

∆

=

>

> LED

>

>

1

1

0

+

+ left
motor*

right
motor*

∆0

Figure 1: A REX architecture

and compiles it into a language that can run on a conventional machine. Your compiler will produce
two procedures, one to initialize the state of the network, and one which gets called repeatedly
to simulate one propagation of the network. The output language for your compiler can be any
computer language you choose. For instance you might have your compiler produce C code that
would effectively do the computation described by the original network diagram.

You won’t actually need to compile or run your compiled code, just turn it in. You will also need
to turn in your compiler code.

Now don’t panic. We are giving you a fully functional compiler for a slightly different language
and you can just modify that one if you choose (see the end of the assignment).

As an example of another sort of compiler consider the following neural network diagram (Figure 2)
which is a possible solution to research assignment 1, question 1b.

1

�
 � �

�
 � �

�
 � �

�

�

right
motor

left
motor

1

left
sensor

right
sensor

middle
sensor

1

1

-1

1

-2

1

-2

1

-1

5

-1

1

-0.5

1

-0.5

Figure 2: A neural network for obstacle avoidance. It has three inputs from the sensors and two
outputs that connect to the motors.

This could be coded as:

;;; note that the order of the forms do not matter in this file
;;; things can refer to things not yet defined
;;; also the specification in connections if very loose,
;;; where it can be (name weight) or just name. in the latter
;;; case a weight of 1.0 is assumed.

(list-inputs left right middle) (list-outputs leftmotor rightmotor)
(define-neuron rightmotor :sum c2 n1 (halter -2))
(define-neuron leftmotor :sum c2 n2 (halter -2))
(define-const c1 1) (define-const c2 1)

(define-neuron n1 :threshold (c1 -0.5) left (right -1))
(define-neuron n2 :threshold (c1 -0.5) (right 1) (left -1))
(define-neuron halter :threshold (c1 5) (middle -1))

and a suitable compiler might turn this source into the following C code:

void mainloop (double left, double right, double middle,
double *leftmotor, double *rightmotor) {

double n1;
double n2;
double halter;
n1 = (-1.0*right + left + -0.5)>=0.0?1.0:0.0;
n2 = (-1.0*left + right + -0.5)>=0.0?1.0:0.0;
halter = (-1.0*middle + 5.0)>=0.0?1.0:0.0;
*rightmotor = -2.0*halter + n1 + 1.0;
*leftmotor = -2.0*halter + n2 + 1.0;
return;}

Problem 1. (2 points) Consider again the REX diagram above. The boxes are labeled with simple
computations that they do, like + or *. For such boxes the output wire is the sum or product of the
numbers on the input wires. Some are logical operators like <, and in that case the output wire has
a 1 or a 0 on it, for true or false respectively. At any time the the input numbers are propagated
through the network, and once any race conditions have settled down the output numbers are latched

2

to the outputs. The boxes labeled things like ∆n delay for one clock tick, until the next invocation
of the network simulator, the propogation of their input to their output. On the first invocation
such a box would output n. Backward loops in REX diagrams are only valid if they include a ∆
box.

In lecture we noted that such networks could be unfolded into purely feed forward networks. The
REX network above unfolds to:

LED

right
motor

left
motor

OR

5

5

1

1

=

>

>

>

NOT

*

*

OR out0

out1
in0

in1

left
sensor

right
sensor

0

0

>

+

+

Figure 3: Unfolding of the REX network in figure 1.

Write two C procedures with the following prototypes for this network:

void initiliaze ();
void mainloop (int leftsense, int rightsense,

int *leftmotor, int *rightmotor);

You may need to make some additional declarations. The procedure initialize will be called only
once and will initialize any data structures (e.g., any n’s in ∆n’s). Then the procedure mainloop
would get called repeatedly to carry out one time step of the network for every invocation.

Problem 2. (2 points) Design a specification language that can be used to specify REX networks.
Describe the syntax of your language and write down a specification for the original REX network
shown above.

Problem 3. (2 points) Write the first part of a compiler which reads in a REX specification in your
language, and then turns it into the unfolded network–this is done internally, so there is no need to
have it draw the diagram. Explain how your algorithm works in words.

Problem 4. (2 points) Write the code generation phase of your compiler and show the output code
it generates. Also turn in your compiler code.

Problem 5. (2 points) A REX solution for problem 3b of RA1 is shown in figure 4. Run your
compiler on this diagram and hand in the compiled code.

An existing compiler

You can find an existing compiler for the neural network example above at
http://www.ai.mit.edu/courses/6.836/handouts/handouts.html. You can use this com-
piler as a basis for this research assignment. Or you can choose to write you own from scratch.

This compiler is written in Emacs Lisp. All you need to use it is Emacs. The instructions of how to
load it are at the head of compiler.el. Once it is loaded simply visit a file named foo.robot and
type C-x C-g and an output file foo.c will be produced.

Most of the compiler is language independent. There are all the utilities you need to manipulate
files. There are also syntax checking utilities, graph loop detection utilities, and a utility that orders

3

a feedforward graph so that code can be generated that only needs backward references.

Project Ideas

Projects related to this problem set can be writing a compiler for translating a given architecture
to:

• reconfigurable hardware such as a Field Programmable Gate Array (FPGA)

• assembler/C code for a specific microcontroller.

N
O

T

N
O

T

A
N

D

N
O

T

A
N

D

A
N

D

X
O

R

N
O

T

< < > <

le
ft

se

ns
or

ri
gh

t
se

ns
or

ra
nd

om

nu
m

be
r

m
id

dl
e

se
ns

or

15

15

0.
5 5

O
R

O
R

* *

10
0

10
0

=
*

+

� 5
+

5
-1

0

* *

10

10

+ +

* *

ri
gh

t
m

ot
or

le
ft

m

ot
or

Figure 4: Controller implemented in REX.

4

