
6.836 Embodied Intelligence, 2003
Research Assignment 3

Issued March 7, Due March 20
This assignment is about a Tom Ray-style evolution system inside a simulated computer.

We are giving you a number of ANSI C source files that together implement a Tierra-like
system, but this one is called Sierra. It is set up so that you can try different virtual machine
architectures, and watch the evolution of competing programs.

The biggest of the files is an implementation of a subset of Common Lisp. You absolutely
do not need to look inside this file at all. For this assignment it simply provides a convenient
front end so that you can poke around inside the emulated machine, and look at the history
of the genomes that have evolved.

The system is set up so that it runs in the background and you can type to it in the
foreground looking at various things as the system evolves.

The system requires a seed for a pseudo random number generator. Once this is set any
given run is completely deterministic and repeatable. If you use the same parameters and
the same seed you will get exactly the same results. The random number generator is used
to determine when cosmic rays hit, when there are copying errors, and where in simulated
memory a new program is placed.

There are really two things of importance given to you in the code. One is the Sierra
system itself, and the second is a particular virtual machine architecure called M1. In the
fifth and sixth tasks you are asked to copy and change M1 to be a new sort of virtual
machine. This will require you to program in C.

The M1 machine

The M1 machine uses four-bit words. Each M1 instruction is one or two words long. We
will write their numerical values in hexadecimal using the standard C notation (e.g., 0xb
for 1110).

The first (and perhaps only) word of an instruction is an opcode, representing one of
16 possible instructions. When an opcode requires a second word, that specifies either one
or two registers. Sometimes there are unused bits in instructions–these are always ignored–
they provide a good place for harmless mutations to accumulate so that evolution can make
new constructs. When a single register is specified it is in the low order two bits of the
word.

With each program instance in memory there are associated four registers, an accu-
mulator, a one deep stack for procedure calls, and a program counter. The registers and
the accumulator are each 32 bits wide, and are initialized to the following values when a
program instance is spawned:

acc −1
r0 0
r1 1
r2 2
r3 3

These can be used by a program to construct interesting constants, although the ancestor
program does not do so.

Each spawned program starts with a certain amount of energy units. It is the length of
the program in words, times a constant energy_init. Currently energy_init has value
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20. The program that successfully spawns a new program is also rewarded with energy. It
is given units numbering the length of the new program times a constant energy_success,
which is currently 10 in the distributed code.

Executing instructions costs energy. If a program runs down to zero units of energy it
is dead, and its memory space is returned to the free pool. There is no other form of reaper
or queue as existed in Tom Ray’s Tierra system.

The sixteen instructions, with the opcodes in the files handed out, are:

0x0 nop0 no operation
0x1 nop1 no operation
0x2 find find a label and place the address in acc
0x3 sto store acc into register
0x4 ld load acc from register
0x5 sub subtract register from acc and put result in acc
0x6 add add register to acc and leave result in in acc
0x7 go go to a label
0x8 alloc allocate a chunk of memory whose size is specified by a register

and put address in acc
0x9 copy copy word pointed to by one register to word pointed to by another;

the copy is subject to one bit mutation errors
0xa inc increment a register by 1 and copy to acc
0xb dec decrement a register by 1 and copy to acc
0xc bne branch to a label if acc is non-zero
0xd call call a procedure at a label
0xe ret return from the last called procedure
0xf spawn set an allocated memory space to go off as its own program,

starting from an address in memory specified by a register.

Each instruction executed takes one unit of energy. If an instruction encounters an
error, then it is not executed, and an additional unit of energy is consumed. The specific
conditions under which errors can occur are as follows:

copy The from register is specified by the high order two bits of the second instruction
word. The to register is specified by the low order two bits of the second word. This instruc-
tion is in error unless the from register is an integer in addressable memory ([0, 1048575]
in the initial version of the code), and the to register is an address within the bounds of an
allocated but unspawned child.

alloc If there is already a child chunk of memory allocated to this program then it is
deallocated first. The absolute value of the contents of the register is taken to be the size
of memory chunk to be allocated. Sierra demands that it fall inside some range, specified
by the constants mingensize and maxgensize. Currently this range is [16, 128]. If the
requested amount falls outside of this range then it is an error. Sierra picks a random
location in memory to try to allocate. If that chunk of memory overlaps some existing
program or allocated child then it is an error. In any case the allocating program is
charged energy units, the size of the chunk of memory it tried to allocate. If there is an
error then the instruction is re-executed at the next tick of the clock. This means that a
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program requesting an illegal size chunk of memory will spin on the alloc instruction until
it dies. It also means that when memory is very full the program may die trying to allocate
a child, causing a die off of many programs, and a freeing up of memory.

spawn It is an error if there is no allocated child, or if the address in the register is outside
the range of that allocated child.

ret If there has not been a call instruction then this instruction causes an error and
falls through.

call If there is a pending call that has not returned then this instruction is an error and
falls through.

finding a label A label to be found must be three successive nops, from the set of nop0
and nop1. They must form a complementary pattern to the three words following the
instruction that needs a label. The pattern can be specified by any word patterns, and just
their low order bits are used. Thus a sequence of instructions words like go, nop1, ld r2,
will match a pattern nop0, nop1, nop1. The found label, however, must consist exactly of
nops. If the branch is not taken these three following words are skipped over. The pattern
is searched for in an extending radius from the instruction, looking in a range both forward
and backward of [3, 512] words from the current instruction. The upper bound is set by
the constant find_limit. It is an error if the complementary label set can not be found
within the limit, and then the branch is not taken. If the label is found forward, then the
address of the first instruction following it is returned in the accumulator. If the label is
found backward then the address of the first word of the label is returned. So a backward
branch will end up executing the label. In turn this makes it easier to compute the length
of a program without having to do an add of three.

The ancestral creature is specified by filling a character array with symbolic constants
corresponding to the opcodes and register names. It looks like this:

char ancestcode[] = {
nop0,
nop0,
nop1,
find,

...
spawn, r3,
ret,
nop0,
nop1,
nop1,
-1};

It is more easy to read is the assembled version. This is what gets printed out by the
Sierra system when you ask to print the code of a genome (e.g., with (print-code 0)–see
below). The comments were added manually later:

0: 0x0 nop0 /* start label */
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1: 0x0 nop0
2: 0x1 nop1
3: 0x2 find /* find start label */
4: 0x1 nop1
5: 0x1 nop1
6: 0x0 nop0
7: 0x30 sto r0 /* store it in r0 */
9: 0x2 find /* find end label */
10: 0x1 nop1
11: 0x0 nop0
12: 0x0 nop0
13: 0x50 sub r0 /* determine length of program */
15: 0x31 sto r1 /* and save that in r1 */
17: 0xd call /* call the copy routine */
18: 0x0 nop0
19: 0x1 nop1
20: 0x0 nop0
21: 0x7 go /* go back to the start */
22: 0x1 nop1
23: 0x1 nop1
24: 0x0 nop0
25: 0x1 nop1 /* copy routine label */
26: 0x0 nop0
27: 0x1 nop1
28: 0x81 alloc r1 /* allocate a chunk of memory */
30: 0x32 sto r2 /* and save its address in two places */
32: 0x33 sto r3
34: 0x1 nop1 /* label for loop */
35: 0x1 nop1
36: 0x1 nop1
37: 0x92 copy r0 to r2 /* copy a word */
39: 0xa0 inc r0 /* and update the from */
41: 0xa2 inc r2 /* and to pointers */
43: 0xb1 dec r1 /* and reduce the count */
45: 0xc bne /* see if count = 0 */
46: 0x0 nop0 /* and loop if not */
47: 0x0 nop0
48: 0x0 nop0
49: 0xf3 spawn r3 /* spawn off the child */
51: 0xe ret /* and return to main program */
52: 0x0 nop0 /* end label */
53: 0x1 nop1
54: 0x1 nop1

The supplied ancestor is thus 55 words of 4 bits each, giving a total of 220 bits, 75 of
which (those in the pattern providing nops, and those spare in single register specification
words) can be flipped without changing the semantics of the program.
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The Sierra system

The Sierra system itself is independent of the details of the M1 machine. You can put a
different machine architecture in and the Sierra system will not need to be changed.

The memory space in Sierra is represented as 8 bit bytes, so wider bytes in the machine
model could be used (only 7 bits without a change to how the ancestor is parsed by the C
compiler–see the -1 at the end).

When you fire it up it drops you into a lisp listener. You can type Common Lisp
expressions at that listener. The ancestor is set up as a program instance of genome 0,
whose code was reproduced above.

There are a couple of commands you might like to issue at this stage.
(setparams <copyerror> <cosmicerror>) to set mutation parameters
(setseed <seed>) to set the random number seed

The first mutation parameter <copyerror> gives the odds that an error will occur during
copying a word. It is set by default to 2, 000 which means that one in two thousand copy
instructions will flip a bit. The <cosmicerror> gives the odds that at each instruction
executed a bit will be randomly flipped somewhere in the whole soup memory. It is initially
set to 500, so that roughly every five hundred instructions a bit somewhere in memory will
be flipped.

You can then run the simulated machine with the (run) command. It sets the machine
running, using a round robin strategy of giving 100 instructions to each program in turn,
unless one dies in less instructions than that. The relevant commands you can type are:

(run) to run for 100,000,000 more instructions
(run <n>) to run for <n> more instructions
(status) to get the current status of the run
(stop) to stop it running immediately

Sierra keeps track of instances, i.e., copies of code somewhere in memory with an asso-
ciated register set and energy level. It also keeps track of genomes, and whenever a new
program is spawned it records exactly what genome it had at the time (the genome may
later get altered by a cosmic ray). At times the system may print the name of a program
(like m347, the 347th machine spawned beyond the ancestral program), or a genome (like
g6853, the 6, 853rd genome produced beyond the genome of the ancestral program.

Sierra also keeps track of how memory is used. We will refer to an allocated block of
memory, whether yet containing a running program or not, as a body. If the block is running
as a separate program, i.e., it has been spawned by its parent, we will say it is alive.

As the machine is running in the background you can use various commands to see what
is happening. These include:

(rep) to report on the current status of the population
(best) to print the ids of the best genomes so far
(populations) prints a list of most populous genomes of each size
(genomes <size>) to list well performing genomes of that size
(genome-list <size) same but returns list of genome objects
(print-genome <id|gen>) tells about that genome’s success
(print-code <id|gen>) lists its code

Below is an excerpt from a report that was generated by (rep). This was produced
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with the code as distributed and doing (run) with the default random seed of 255. It has
a listing for every size block of memory that is currently active. The bodies column says
how many blocks there are of that size, while the alive column says how many of them
are running alive. The difference is those that have been allocated but not yet spawned.
The spawned column says how many programs currently in the alive column have ever
successfully spawned a program. It must be the case that spawned ≤ alive.

The final column, selfgene, looks up the genome of each currently alive program, and
says whether an instance of that genome has ever successfully reproduced an exact copy
of itself. Notice that if there are multiple instances of a particular genome alive it will get
counted multiple times. It must be the case that selfgene ≤ alive.

#? (rep)
size bodies/ alive spawned/selfgene

16 59/ 14 5/ 0
17 52/ 5 2/ 0
18 89/ 36 1/ 0
19 64/ 8 4/ 0
20 45/ 6 3/ 0
21 95/ 29 8/ 13
22 64/ 27 3/ 0
23 37/ 2 1/ 0
24 59/ 18 3/ 0
25 37/ 1 1/ 0
26 49/ 15 1/ 0
27 213/ 123 10/ 7

...
48 5/ 1 0/ 0
49 18/ 9 2/ 0
50 7/ 2 1/ 0
51 18/ 15 2/ 0
52 16/ 3 1/ 0
53 26/ 16 2/ 0
54 70/ 46 9/ 0
55 5146/ 3589 1482/ 2063
56 96/ 61 16/ 32
57 84/ 52 26/ 40

...
121 13/ 12 1/ 0
127 4/ 4 0/ 0

7662 bodies, 393837/1048576 = 37.559%
genomes: 153654, individuals: 213803/4858, ticks: 100000075

The last two lines above give some summary information. In this case there are 7, 662
blocks of memory allocated, which occupy 393, 837 words of the 1, 048, 576 word soup,
meaning that it is 37.559% full. There have been 100, 000, 075 instructions executed (this is
not a multiple of one hundred because sometimes programs died in the middle of their one
hundred instruction quotas), and there have been programs with 153, 654 different genomes
produced. A total of 213, 803 programs have been produced, of which 4, 858 are still alive.
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In searching for interesting genomes, the command (best) tells you something about
the best genomes at each program size:

#? (best)
size selfrep genome gen | ratio genome gen

21 24 g153 1 | 0.5000 g19269 1
24 3 g3448 2 | 0.3333 g16703 2
25 1 g4169 3 | 0.5000 g4169 3
26 4 g21116 3 | 0.8000 g21116 3
27 37 g318 1 | 0.6667 g74647 2

...
48 1 g25480 2 | 0.5000 g25480 2
49 4 g37218 5 | 0.6667 g37218 5
51 3 g7143 3 | 0.6000 g7143 3
52 1 g8476 4 | 0.5000 g8476 4
54 1 g150539 2 | 0.5000 g150539 2
55 14962 g0 0 | 0.9796 g4107 2
56 42 g50966 3 | 0.9565 g86811 5
57 34 g93033 5 | 0.9286 g99878 5

...
64 58 g83456 4 | 0.9355 g83456 4
65 4 g73668 3 | 0.8000 g73668 3
66 7 g81990 2 | 0.8750 g81990 2

...

The selfrep column tells how many times the specified genome has managed to repro-
duce an exact copy of itself so far in this run. The ratio column indicates for a possibly
different genome the proportion of instances of a genome which managed to self reproduce.

Thus, for instance, for genomes of size 55, above, genome g0 was able to self reproduce
14, 962 times, but a more efficient reproducer of size 55 was g4107 which reproduced itself
in 98% of its instances. The two gen columns refer to how many different genomes had to
be mutated to get to this from the ancestor.

Another way to look at the best performers is with (populations).

#? (populations)
size genome total num selfrep gen

21 g153 667 24 1
24 g3448 14 3 2
25 g95529 12 1 4
26 g21116 5 4 3
27 g318 307 37 1

...
48 g25480 2 1 2
49 g37218 6 4 5
51 g7143 5 3 3
52 g8476 2 1 4
54 g150539 2 1 2
55 g0 15913 14962 0
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56 g50966 60 42 3
57 g683 44 20 3
58 g39729 33 20 2

...

Here for each size the genome is identified that had the most instances (printed under
total num) as long as it was able to self reproduce. The selfrep column tells how many
times it was able to do that, and as before the gen column says how many generations it
was from the ancestor.

These genomes, and ones of smaller size, are interesting to investigate further. You
might use print-genome and print-code to do that. In fact, let’s do it!

#? (print-genome 0)
Genome: 0 (parent -1) [generation 0]
55 bytes. 15913 instances. 46652 children. 14962 selfrep.
appeared: [0, 99945166]
ancestor history:

g0 size: 55
()
#? (print-genome 4107)
Genome: 4107 (parent 211) [generation 2]
55 bytes. 49 instances. 70 children. 48 selfrep.
appeared: [11572629, 65631743]
ancestor history:

g4107 size: 55
g211 size: 55
g0 size: 55

()

From this we can see that the 15, 913 instances of genome g0 produced 46, 652 children of
which 14, 962 were exact copies of the parent’s genome. On the other hand the 49 instances
of genome g4107, produced 48 exact copies, but that is a very high number of identical
copies over a small sample.

Further we see from the parentheses that the first instance of g4107 was produced by
a program that had genome g211, which itself was originally produced by a program with
the ancestral genome. So g4107 is only a second genomic generation from the ancestor. It
may have been produced via a chain of many more program instances, but there was only
two inexact reproduction events. We also see that the first instance of g4107 appeared after
11, 572, 629 instructions, whereas the last one appeared after 65, 631, 743 instructions–no
doubt it has now died off.

The command (genomes <size>) prints a list of well performing genomes of the given
size. Those that managed to self reproduce have asterisks next to them. Others may just
be ones that produced lots of offspring. Here is an example:

#? (genomes 21)

Genomes: g149795* g153* g56112* g86940 g134260 g129259 g2636 g152057
g151658 g41439* g152148* ()
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When we investigate one of these more closely we see:

#? (print-genome 153)
Genome: 153 (parent 0) [generation 1]
21 bytes. 667 instances. 345 children. 24 selfrep.
appeared: [1654280, 99946801]
ancestor history:

g153 size: 21
g0 size: 55

()
#? (print-code 153)

0: 0x0 nop0
1: 0x0 nop0
2: 0x1 nop1
3: 0x2 find
4: 0x1 nop1
5: 0x1 nop1
6: 0x0 nop0
7: 0x30 sto r0
9: 0x2 find
10: 0x1 nop1
11: 0x0 nop0
12: 0x1 nop1
13: 0x50 sub r0
15: 0x31 sto r1
17: 0xd call
18: 0x0 nop0
19: 0x1 nop1
20: 0x0 nop0
()

We see that instruction 12 mutated from nop0 to a nop1, which resulted in an ancestor
finding a much shorter piece of code to copy, but it has no instruction to loop back so it is
not able to make lots of copies of itself. Genome g4169, it turns out, has two mutations,
and almost gets it right but still suffers from some problems.

There is another version of genomes, namely genome-list, which returns a lisp list of
genomes. These can be fed to print-genome or print-code, or they can be used with a
number of other procedures which can be found by typing (morehelp). Here is that help
message:

(number-genomes) total number of genomes
(get-genome <id>) returns genome with <id>
(genome-id <genome>) id of <genome>
(genome-instances <genome>) how many of these existed
(genome-spawned <genome>) how many of these reproduced
(genome-selfrep <genome>) how many exact reproductions
(genome-generations <genome>) how many generations to produce
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(genome-length <genome>) length of <genome>
(genome-parent <genome>) parent genome of <genome>

This lets you write little lisp scripts to poke around the genome data base and look for in-
teresting things. Since you can dynamically load new lisp source code with (load "filename")
you can have a carcass lying around, say after running 1, 000, 000, 000 instructions, and dy-
namically decide on new search routines without having to recompile the Sierra system and
running the whole thing again.

Hacking on the code

If you wish to make a new machine architecture you will only have to change file m1.c. If
you want to change the statistics that are collected you will have to change sierra.c.

If you want to make different things available on the Lisp side you will have to change
sierra.c, and possibly sierra.lisp. Look at the bottom of sierra.c to see how to place
a C procedure into Lisp’s namespace. Note that such procedures can only take up to three
arguments. Also note that genomes are a Lisp data type so it is alright to return one of
them, as does get_ancestor (to see how it prints in Lisp try (get-ancestor)). So you can
use the accessors described by (morehelp) to write all sorts of automated search procedures
in Lisp to investigate the structure of genome space.

The research questions

Get the source files following the instructions on the web at
http://www.ai.mit.edu/courses/6.836/handouts/handouts.html. Then make in main
directory to get an executable image m1. Make sure you don’t hand in anything without
comments in the code as well as qualitative descriptions of what is going on, especially when
the answer is in the form of an ancestral machine or a parasite.

1. [1 point] Use the supplied files and run the simulation. Try it with different random
seeds. To get a fresh run you need to restart the program. Look around for the smallest
parasite you can find. All the interesting stuff seems to happen in the first half giga in-
structions. Once you have found a nice parasite give us a code listing for it, and explain
how it could possibly self reproduce.

2. [2 points] Describe the “perfect” parasite and how it might possibly evolve from the
ancestoral creature. Have you been able to observe a perfect parasite? How can you change
the ancestoral creature to make it more likely to arise? Make some runs with such a new
ancestoral creature and describe the results.

3. [2 points] Experiment with different settings for cosmic rays and the copying errors.
Make a few runs at each setting you choose for, say, one hundred million instructions.
Observe what happens to the system and come up with some qualitative explanation for
what you see. If you notice any particularly interesting genome tell us about it.

4. [2 points] You can suppress all copying errors and cosmic rays by using (errors 0)
at startup (note that (errors 1), will allow errors to happen as normal). Try running the
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system with no errors. You will still get mutated creatures!! How could that be? (Hint: if
you also say (dealloc 0) at startup this will force the memory of a dead creature to revert
to zero, but still you get some mutated creatures, but perhaps not as many as before.)

5. [2 points] Modify the code for the underlying machine so that when searching for a label
it searches for a matching label rather than a complementary label. Modify the ancestral
code accordingly. Tell us what happens (and show us the code of the ancestral program
and any parasites).

6. [1 point] Make a more drastic set of changes to the simulated machine. Be as creative
as you want. Show us the results (hopefully interesting) of what happens when you run
this system.
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