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.... 8632.1.17. set_bbbtree__remove_least(+BbbtreeA,?Least,-BbbtreeB)

... 8632.1.18. set_bbbtree__remove_largest(+BbbtreeA,?Largest,-BbbtreeB)

........ 8632.1.19. set_bbbtree__list_to_set(+List,-Bbbtree)

..... 8632.1.20. set_bbbtree__sorted_list_to_set(+SortedList,?Bbbtree)

.. 8632.1.21. set_bbbtree__sorted_list_to_set_len(+SortedList,?Bbbtree,+Len)

...... 8732.1.22. set_bbbtree__to_sorted_list(+Bbbtree,?SortedList)

..... 8732.1.23. set_bbbtree__union(+BbbtreeA,+BbbtreeB,-BbbtreeC)

...... 8732.1.24. set_bbbtree__power_union(+Bbbtrees,-BbbtreeC)

.... 8732.1.25. set_bbbtree__intersect(+BbbtreeA,+BbbtreeB,-BbbtreeC)

..... 8732.1.26. set_bbbtree__power_intersect(+Bbbtrees,-BbbtreeC)

.... 8732.1.27. set_bbbtree__difference(+BbbtreeA,+BbbtreeB,-BbbtreeC)

....... 8732.1.28. set_bbbtree__subset(+BbbtreeA,+BbbtreeB)

...... 8732.1.29. set_bbbtree__superset(+BbbtreeA,+BbbtreeB)

x



1. FSA6: Finite State Automata Utilities Version 6
(manual generated with FSA Utilities version 6.159)

FSA6 is a collection of utilities to

construct finite automata (from regular expressions)

manipulate finite automata

visualise finite automata

apply finite automata

1.1 Functionality

1.1.1 Constructing Finite Automata with Regular Expressions

Many basic regular expression operators are provided, both for acceptors and transducers.
Moreover, it is easy to define new regular expression operators. The built-in regular
expression operators include:

Concatenation; Kleene star; Kleene plus; Option; Union

Complement; Difference; Intersection

Reversal; Containment; Ignore

Composition; Cross-product; Domain; Range; Identity; Inversion;

Interval

‘Any’ meta-symbol.

Arbitrary predicates instead of symbols

1.1.2 Manipulating Finite Automata

Tools are provided to manipulate finite automata. Such manipulations include determinization
and minimization (both the classical algorithms for recognizers and the recent algorithms for
transducers are provided).

Determinization. Currently there are three different implementations of this algorithm,
depending on how epsilon transitions (jumps) are treated. There is also an
implementation of Mohri’s determinization algorithm, both for ordinary (string-to-string)
transducers and string-to-weight transducers. The implementation is described in a paper
in Computational Linguistics, available from 
http://www.let.rug.nl/~vannoord/papers/
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Minimization. Three different minimization algorithms are supported. There is also an
implementation of Mohri’s minimization algorithm, both for ordinary (string-to-string)
transducers and string-to-weight transducers.

Random generation of finite automata, based on the algorithm in Leslie (1995).

Epsilon-removal.

Completion and Incompletion: extending a given automaton in order to make the
transition table total (typically by adding a sink state and adding transitions to this sink
state); and removing transitions leading to sink states.

Regular manipulations. The various regular expression operators can be applied to
automata directly as well.

1.1.3 Applying Finite Automata

Acceptance. Tools to check a given string for acceptance by a recognizer.

Transduction. Tools to apply a transducer to a given input string.

Production. Tools to produce strings of a given recognizer, and pairs of strings for a
given transducer.

Code Generation. Tools to compile finite automata into efficient Prolog or C programs
which can be used to check whether a given string is in the language defined by the
automaton, or to generate the transduction of a given string w.r.t. a given transducer.

1.1.4 Visualizing Finite Automata

Much attention has been paid to be able to visualize finite state recognizers and finite state
transducers. Support includes built- in visualization and interfaces to third party software:

DOT. The program is able to produce a representation of a finite automaton compatible
with the DOT graph visualisation program. DOT (part of AT&T’s graphviz) is a tool that
automatically figures out how a graph is best displayed (crossing-edges reduction, etc). It
can produce e.g. Postscript output. An example is 
http://www.let.rug.nl/~vannoord/Fsa/Manual/dot.png.

VCG. The program is able to produce a representation of a finite state automaton
compatible with the VCG graph visualisation program. VCG is a tool that automatically
figures outhow a graph is best displayed (crossing-edges reduction, etc). An example is 
http://www.let.rug.nl/~vannoord/Fsa/Manual/vcg.png.

daVinci. The program is able to produce a representation of a finite state automaton
compatible with the daVinci 1.4 graph visualisation program. This program
automatically computes the most optimal way to view the finite-state automaton by
minimizing the number of crossing edges. Postscript output can easily be generated from
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the result. An example is 
http://www.let.rug.nl/~vannoord/Fsa/Manual/daVinci.png.

TK Widget. The package contains an interface to a TK Widget to browse finite state
automata, providing a graphical user-interface for the toolbox. The TK Widget is
explained in much more detail below. An example is 
http://www.let.rug.nl/~vannoord/Fsa/Manual/dump.png. Note that
the GUI is not an integral part of the toolbox; it makes perfect sense to use the program
in batch mode. The graphical user interface is only available under SICStus.

LaTeX (if you want to be able to use the result you need the pstricks package). An
example is 
http://www.let.rug.nl/~vannoord/Fsa/Manual/pstricks.png.

Postscript (thanks to Peter Kleiweg). An example is 
http://www.let.rug.nl/~vannoord/Fsa/Manual/pk.png.

1.2 How to use the toolbox

There are a number of ways that the toolbox is meant to be used:

interactively using a command interpreter and/or a graphical user interface. For example,
in order to use fsa interactively with the graphical user interface, use the command:

% fsa -tk

as a UNIX-like filter. In such cases you use the fsa command with a number of options.
For instance:

% fsa write=postscript -r ’[a,b+,c*,d]’ | ghostview -

as a library in your own Prolog program. You can incorporate the FSA program in your
own program, just as you can use other Prolog libraries. In order for this to work, you
simply need to load the file fsa_library.pl in the installation directory. For example:

% sicstus
SICStus ...
Licensed to ...
| ?- use_module(fsa_library).
...
...
...
yes
| ?- fsa_regex_atom_compile(’[a*,b^,{d,e}]’,L).
L = fa(r(fsa_preds),3,[0],[1],[trans(0,a,0),trans(0,b,2),
    trans(0,d,1),trans(0,e,1),trans(2,d,1),trans(2,e,1)],[]) ? 
yes
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| ?- fsa_regex_transduces(’{a:b,? -a}*’,"ababac",L), atom_codes(Atom,L).
L = [98,98,98,98,98,99],
Atom = bbbbbc ?
yes
| ?-

All predicates that are imported have names starting with *fsa*. All module names start with 
fsa as well.

1.3 Examples

The package comes with a number of larger examples These examples include both automata
and extended regular expression definitions.

Examples/Automata Dale Gerdemann provided regular expression operators which
allows to input an automaton directly.

Examples/Booleans Dale Gerdemann provided collection of regular expression operators
including boolean operators and various predicates of automata.

Examples/Bouma Gosse Bouma’s finite-state automaton of all possible Dutch
monosyllabic words.

Examples/DutchWords Dutch words, taken somewhere from ftp site (see ftp_info.txt).
This list of words can then be used to experiment with the option to create perfect hashes 
(-dict2ph).

Examples/GerdemannVannoord99 The replace operator as defined in our EACL 99
paper. Also some further examples with longest match and finite-state parsing.

Examples/Graph2Phon Grapheme to Phoneme conversion for Dutch. Uses the Celex
format for phonemes. By Gosse Bouma.

Examples/Grimley-Evans Implementation of the Hopcroft minimization algorithm by
Edmund Grimley-Evans (does not work under YAP).

Examples/HMM HMM’s can be seen as a special type of weighted finite automata. This
example implements the Baum-Welch training algorithm. Fairly simple-minded 
implementation.

Examples/KaplanKay94 These examples are taken from Kaplan and Kay, Regular
Models of Phonological Rule Systems, Computational Linguistics, 20(3), 1994. Simple
examples of transducers, and composition.

Examples/Karttunen91 These examples are taken from Karttunen, Finite-state
Constraints, Proceedings International Conference on Current Issues in Computational
Linguistics, Universiti Sains Malaysia, Penang, 1991. Simple examples of transducers,
and composition.
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Examples/Karttunen95 Lauri Karttunen, The Replace Operator, ACL 1995, MIT Boston.
Fairly complex examples of regular expression operator definitions. Buggy?.

Examples/Karttunen96 Lauri Karttunen, Directed Replacement, ACL 1996. Includes
soundex example from MLTT home page.

Examples/Karttunen97 Lauri Karttunen, The Replace Operator, 1997. In volume edited
by Roche and Schabes. Buggy?.

Examples/Mohri97 Simple examples of weighted automata.

Examples/MohriSproat96 Mehryar Mohri and Richard Sproat, An Efficient Compiler for
Weighted Rewrite Rules. 34th Annual Meeting of the ACL, Santa Cruz 1996, pages
230-238. This only treats the non-weighted case. Nice example of the power of the
regular expression language: their algorithm only takes a few paragraphs in FSA6.

Examples/Nederhof These are examples used by Mark-Jan Nederhof while investigating
finite-state approximations of context-free grammars. The larger examples were used in
my Computational Linguistics paper, The Treatment of Epsilon-moves in Subset
Construction, available from http://www.let.rug.nl/~vannoord/papers/

Examples/Nerbonne examples from 
http://www.let.rug.nl/~nerbonne/teach.html material for a course on
computational morphology. Simple examples of transducers.

Examples/OptimalityTheory Implementation of Lauri Karttunen, The Proper Treatment
of Optimality in Computational Phonology. FSMNLP 1998, Ankara. Includes definition
of lenient composition operator and syllibification algorithm. Also includes
Gerdemann/van Noord (even more proper?) alternative implementation.

Examples/PredModules examples of predicate modules; for example using bitvectors to
represent sets of symbols, or using types. The bitvector stuff is only available under 
SICStus.

Examples/PereiraRiley96 Fernando C. N. Pereira and Michael D. Riley, Speech
Recognition by Composition of Weighted Finite Automata, 1996 (on cmp-lg). Also
appears as chapter 15 of the volume edited by Roche and Schabes. Simple examples of
weighted composition. Definition of their version of the composition operator (filtering
our spurious paths).

Examples/Queens Solving the N-queens problem with regular expressions, by Dale
Gerdemann. Another solution by G. van Noord. Interesting examples of definitions of
regular expression operators.

Examples/Random Random automata. Used for the experiments documented in my
FSMNLP98 paper, on the treatment of epsilon-moves in subset construction.
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Examples/Recognizers Small examples.

Examples/RocheSchabes95 Emmanuel Roche and Yves Schabes, Deterministic
Part-of-speech Tagging with Finite-state Transducers, Computational Linguistics, 21(2),
1995. Small examples of transducers. Also includes a definition of the local extension 
operator.

Examples/RocheSchabes97 Roche and Schabes, Introduction. In: Roche and Schabes
(eds), Finite State Language Processing. MIT Press 1997. Includes implementations of
is_functional, unambiguous, is_subsequential, build_bimachine, bitransform. Also has
simple utils to apply and visualize bimachines.

Examples/SemiringModules contains examples of others types of transducers
(semi-rings), apart from the two built-in transducer types ‘fsa_strings’ and ‘fsa_weights’.

Examples/Spell implements a simple spell-checker as the combination of a dictionary
and strings within Levenshtein distance d of the words in the dictionary (for some fixed
d). Interesting application of the priority union operator of Karttunen (1998).

Examples/Transducers small stuff, including my attempt to translate Dutch temporal
expression into a numerical format (that one is quite large, in fact).

Examples/twolevel Definitions to implement twolevel rules in the style of Kimmo.
Mostly by Rob Malouf.

Examples/Weights small stuff, weighted automata.

Examples/Wordgraphs some small acyclic weighted automata.
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1.7 Links

Up-to-date information on the program can be obtained via 
http://www.let.rug.nl/~vannoord/Fsa/. The latest version of the program
should be available there too.

For information on the daVinci program, we refer to its homepage 
http://www.informatik.uni-bremen.de/~inform/forschung/daVinci/.

For information on dot/GraphViz, we refer to 
http://www.research.att.com:80/sw/tools/graphviz/.

For information on the VCG program: 
http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html

There is lots of interesting material at MLTT Xerox Grenoble: 
http://www.rxrc.xerox.com/research/mltt/fst/. Be sure to read the
documentation, including a number of nice examples.

AT&T’s FSM toolset for weighted finite-state automata is available from 
http://www.research.att.com/sw/tools/fsm.
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For a web interface to FSA, refer to 
http://www.let.rug.nl/~vannoord/fsademo/.

For a web interface to FSA3, c.f.: 
http://i12www.ira.uka.de/Visualisierung.endlicher.Automaten/.

A tutorial for FSA by Gosse Bouma, in Dutch: 
http://www.let.rug.nl/~gosse/tt/fsa.html

An even simpler tutorial for FSA (in Dutch as well) used for highschool kids (!) is
available as 
http://www.let.rug.nl/~vannoord/fsademo/fsademo/klas.html

Electronic versions of some of the papers mentioned above are available through the
cmp-lg archive at http://xxx.lanl.gov:80/cmp-lg/.

A list of related projects at University of Western Ontario by Darrell Raymond is 
http://www.csd.uwo.ca/staff/drraymon/.grail/links.html. You
can also obtain a copy of Ted Leslie’s thesis from that site, which includes the algorithm
to generate random automata, and which discusses density of automata related to 
determinization.

Finite state Utilities by Jan Daciuk at 
http://www.pg.gda.pl/~jandac/fsa.html. Useful tools for dictionary
construction and spell checking. Also read his dissertation.

More finite-state software at Ribbit Software, 
http://www.RibbitSoft.com/ist/variants.html, mostly by Bruce 
Watson.

SICStus Prolog home page: http://www.sics.se/isl/sicstus.html.

Collection of links on Prolog and Regular Expressions: 
http://www.let.rug.nl/~vannoord/prolog-rx/PrologAndRegex.html

FILFLA Malta: Relic: Regular Languages Interactive Classroom 
http://www.cs.um.edu.mt/~gpace/relic_www/

Wiese’s Little Automata Builder at 
http://www-ti.informatik.uni-tuebingen.de/~wiese/Automaton/

Another Java applet for finite automata at 
http://www.cs.duke.edu/~rodger/tools/jflap/index.html

Interesting papers on Gene Myers’ Home Page 
http://www.cs.arizona.edu/people/gene
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1.8 Copyright

Copyright c 1995 - 1999 by Gertjan van Noord. This program is distributed under Gnu
General Public License (cf. the file COPYING in distribution).

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2 of the 
License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA.
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2. The Command Interpreter
The FSA command interpreter provides line-based interaction with the FSA functionality.
The command interpreter provides a history mechanism, escape to the operating system,
escape to Prolog and on-line help information. All startup options for fsa are also available as
commands in the command interpreter.

2.1. Syntax

A command is typed in by the user as one line of text; it’s tokenized as a sequence of ‘words’,
where spaces and tabs are treated as separators. Each word is treated as an atomic (Prolog
atom or Prolog integer), unless it is written within { and }. In the latter case the ‘word’ is
parsed as a Prolog term (in the latter case spaces and tabs are not interpreted as separators).

|: flag jan jan(a,b,c)

is equivalent to the Prolog goal
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?- fsa_globals:fsa_global_set(jan,’jan(a,b,c)’)

wherease

|: flag jan {jan(a,b,c)}

is equivalent to the Prolog goal

?- fsa_globals:fsa_global_set(jan,jan(a,b,c))

Variables occuring in such terms have scope over the full command-line!

2.2. Alias and History

The command-interpreter has an alias mechanism which subsumes a history mechanism as
well. All occurences of $word are replaced by the definition of the alias word. The alias
command itself can be used to define aliases:

19 |: alias hallo ! cat hallo
20 |: $hallo

so command number 20 will have the same effect as typing

33 |: ! cat hallo

and if this command had indeed been typed as command number 33 then typing

35 |: $33

gives also the same result. The special meaning of $ can be turned off by prefixing it with
another $, e.g.:

|: cd $$HOME

Moreover, if no alias has been defined, then it will apply the last command that started with
the name of the alias:

66 |: parse john kisses mary
67 |: $parse

will have the same meaning (in this order) if the macro parse is not defined.

2.3. Prolog goals

It is also possible to issue Prolog commands; however some restrictions apply.
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39 |: p {member(X,[X|T])}

Note that this may succeed, but ’yes’ or ’no’ and variable bindings will NOT be printed.

2.4. Starting and Stopping the command interpreter

If no action option is provided, then the system runs in interactive mode. If the variable 
interpreter  is set to *on*, then fsa runs in interactive mode after the action indicated by the
action option has been performed. If the flag interactive has been set to *cmdint*, then fsa
runs the FSA command interpreter. The command interpreter can be started any time from the
Prolog prompt using the command r/0:

| ?- r.
*** Welcome to the FSA Command Interpreter (type ? for help) ***
5 |:

You can stop the command interpreter using the p command:

5 |: p
*** execution interrupted ***

yes
| ?-

You can quit FSA entirely using the quit  command. Note that you can also use the command
interpreter together with the graphical user interface.

2.5. p[rolog]

Stops the command interpreter.

2.6. % Words

ignores Words (comment). Note that there needs to be a space after %.

2.7. fc Files

fcompiles(Files).

2.8. um Files

use_module(Files).
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2.9. el Files

ensure_loaded(Files).

2.10. c Files

compile(Files).

2.11. rc Files

reconsult(Files).

2.12. ld Files

load(Files).

2.13. libum Files

for each File, use_module(library(File)).

2.14. librc Files

for each File, reconsult(library(File)).

2.15. libc Files

for each File, compile(library(File)).

2.16. libel Files

for each File, ensure_loaded(library(File)).

2.17. libld Files

for each File, load(library(File)).

2.18. version

displays version information.
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2.19. quit

quits FSA.

2.20. b

break; enters Prolog prompt at next break level.

2.21. d

debug/0.

2.22. nd

nodebug/0.

2.23. p [Goal]

without Goal: quits command interpreter -- falls back to Prolog prompt with Goal: calls Goal.
Normally you will need {} around the Goal. For example:

4 |: p { member(X,[a,b,c]), write(X), nl }

2.24. ! Command

Command is executed by the shell. Note that the space between ! and Command is required.

2.25. alias [Name [Val]]

No args: lists all aliases; one arg: displays alias Name; two args: defines an alias Name with
meaning Val.

2.26. help [Module [Class [Key]]]

displays help on Module-Class-Key; use ? to get help on commands only.

2.27. ? [Cmd]

displays help on Cmd; without Cmd prints list of commands.
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2.28. spy [Module] Pred

set spypoint on Module:Pred; Pred can either be Fun or Fun/Ar.

2.29. cd [Dir]

change working directory to Dir; without argument cd to home directory.

2.30. pwd

print working directory.

2.31. ls

listing of directory contents

2.32. <any FSA startup option>

Any valid option you can give to the fsa command is a valid command for the command
interpreter. For instance:

|: -d a.nd a.d

|: -m a.d a.m

|: -aux File

|: -tk

|: -r [[a,b]+,c]+

3. The Graphical User Interface
This section provides the graphical user interface for FSA. It’s mostly extremely obvious. So
this is a kind of ‘If you click on the help button, a help text will be displayed’ explanation.

MENU

The menu consists of a number of menu buttons. Really. The actions associated with the
menu buttons are:

File

[Load]: Loads a file that is assumed to contain an automaton.
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[LoadAux]: Loads a file that is assumed to contain auxiliary regular expression macro’s and 
operators.

[ReconsultAux]: Reconsults a file that is assumed to contain auxiliary regular expression
macro’s and operators. This allows tracing of your code.

[SaveAs]: Saves the automaton and the associated geometry information in a file. Such a file
can be read-in using the Load button, or as the startup file. Various formats are available
under various [SaveAsX] buttons.

[Revert] Redraws the current automaton without the current layout; a new layout will be 
computed.

[Redraw] Redraws the current automaton with the current layout.

[Close] Halts the graphical user interface, but FSA continues.

[Quit] Halts.

Settings A number of global variables can be set via this menu. Help is available on-line.

Operations A number of unary operations on the current regular expression can be fired
through this menu. The operations are a subset of those allowed in regular expressions.

Produce Produces a number of example strings (pairs of strings) accepted by the current
finite automaton.

Visualization Interface to a number of external visualization tools. These only work if
you have the tools installed (really!), and the appropriate commands are in your PATH
(yes, no magic here either).

Help Well. What do you think  this menubutton would do?

Now let’s consider some of the other widgets maintained by the graphical user interface:

Regex

If a regular expression is typed in the field, then after hitting <CR> the corresponding
automaton will be visualised on the canvas.

The [Expand User Macro’s] and [Expand All Macro’s] can be used to expand all the macro’s
of the current regular expression.

String

If a sequence of symbols (separated by whatever the symbol_separator flag requires) is typed
in this field, then (after hitting <CR>, or after pushing the ‘Submit’ button) the system runs
the current automaton on the input you provided. The actual way in which the automaton is
run depends on the value displayed in the radio-button available to the right of the ‘Submit’ 

17



button.

Canvas

The large canvas contains a picture of the current regular expression (or automaton read-in
from a file). Note that you can drag states to alter the layout interactively. If you point your
mouse to a label of an edge, then the corresponding edge will become red temporarily (this is
useful for large labels). Also note that for states P and Q all edges from P to Q are combined
in a single edge. Start states are green, final states are red and have a sunken relief. If a state is
both a start state and a final state, then it is green with a sunken relief.

ToolBar

The tool bar at the bottom consists of the following sub parts:

[EdgeAngle]: Text field should contain a real. Does a redraw using the current (typically) new
angle variable upon &lt;CR&gt;. Does not require re-computation of layout.

[Xdistance]: Text field should contain an integer. Re-computes and re-draws using the current
(typically new) distance of states parameter.

[Quality]: Re-computes and re-draws using the current (typically new) parameters.

[DisplaySigma]: Displays internal representation of alphabet and symbols list of current 
automaton.

[DisplayFa]: Displays internal representation of current automaton.

[CountFa]: Provides numerical information of current automaton.

[ClearCache]: Clears the cache of the regular expression compiler.

[ZoomIn]: This does the opposite of ZoomOut.

[ZoomOut]: This does the opposite of ZoomIn.

Finally, the [Interp] button can be used to get the name of the current Tcl/Tc interpreter. This
is of interest only for development work.

TkConsol (experimental)

As an experimental feature, you can include a widget displaying standard input and standard
output. If you want to try out this new feature, you have to set the global variable tkconsol to
*on*. E.g.:

fsa tkconsol=on -tk
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Note that this is currently not very robust.

The following global variables are relevant for this module:

tkconsol

v_angle

v_xdist

no_display_beyond

3.1. tk_fsa_file(+File)

Starts a Tcl/Tk widget for the automaton read from File

3.2. tk_fsa(+Fa)

Starts a Tcl/Tk widget for the automaton Fa

3.3. tk_regex(+Atom)

Atom is an atom, converted to regular expression and compiled into automaton. A Tcl/Tk
widget is started for that automaton.

3.4. tk_rx(+Expr)

Atom is a regular expression and compiled into automaton. A Tcl/Tk widget is started for that 
automaton.

4. Global Variables
This section lists the global variables and documents their effect. Global variables can be set
from the command line and the command interpreter using Var=Val. You can also set
variables using the Settings menu of the graphical user interface.

4.1. tkconsol

Boolean flag which determines whether library(tkconsol)  is used for standard output. Note
that support for tkconsol is very experimental. Current value is off. Default value is off.
Typical values are [on,off]
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4.2. tk_fsa_add_help_menu

Boolean flag which determines whether on-line help information is added to the menu. Since
this takes quite a bit of band-width, you might want to turn it off for slow internet
connections. Current value is on. Default value is on. Typical values are [on,off]

4.3. fsa_tcl_directory

Path to the directory in which the FSA tcl scripts are installed Current value is none. Default
value is none. Typical values are []

4.4. pred_module

Default module for interpreting predicates on symbols. Current value is fsa_preds. Default
value is fsa_preds. Typical values are [fsa_preds,fsa_frozen]

4.5. regex

Used internally Current value is []. Default value is []. Typical values are []

4.6. fa

Used internally Current value is []. Default value is []. Typical values are []

4.7. hash_size

Default size for hashes (refer to library fsa_arrays for detail). Current value is 65025. Default
value is 65025. Typical values are 
[500,1000,5000,10000,50000,100000,250000,500000,1000000]

4.8. interactive

This flag can be used to indicate that you want to run FSA interactively, even if you provide a
command-line argument which would normally cause non-interactive usage. The value 
cmdint also implies interactivity but in addition the command interpreter is started. Current
value is off. Default value is off. Typical values are [on,off,cmdint]

4.9. pstricks_style

Determines what kind of pstricks picture is contructed; at the moment fancy and plain are
equivalent except that fancy implies that colors are used. Current value is plain. Default value
is plain. Typical values are [fancy,plain]
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4.10. v_algorithm

One of dot or *tree*. The first uses AT&T’s dot program (from the GraphViz package) to
compute geometry of states. The latter uses a built-in method which works reasonable for
small graphs. Current value is tree. Default value is tree. Typical values are [tree,dot]

4.11. v_tree_depth

Is used by the tree algorithm for visualisation. Its effect has been forgotten by the author.
Current value is off. Default value is off. Typical values are [on,off]

4.12. v_angle

Angle of edges in visualization of automata on Tk Canvas, as well as for postscript and latex
output. A value of 0 implies straight lines between nodes. For larger values the lines that are
drawn between nodes will move further away from the straight line. Current value is 0.15.
Default value is 0.15. Typical values are [0.1,0.15,0.2,0.3,0.4,0.5,1.0]

4.13. v_xdist

Horizontal distance of states in visualization of automata on Tk Canvas, as well as for
postscript and latex output. Current value is 120. Default value is 120. Typical values are 
[40,60,80,100,120,150,200]

4.14. v_ycoord

Used internally by the tree algorithm for visualization. I don’t think it matters. Current value
is 200. Default value is 200. Typical values are []

4.15. display_unused_states

This boolean variable determines whether states should be visualized which have no outgoing
or incoming transitions, and which are neither a start state. Current value is on. Default value
is on. Typical values are [on,off]

4.16. symbol_separator

This flags determines which character is used to separate sequences of symbols that are
accepted/transduced. For instance, if the value is 32 (for space) then you can type

a b a bb b aaa

to indicate the sequence of six symbols a, b, a, bb, b, and aaa. If the value is 44 (for comma)
the same sequence is written/read as
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a,b,a,bb,b,aaa

As a special case, a value of 0 indicates that a sequence is written without a separator; every
single letter is assumed to be a symbol. For instance,

ababba

represents the sequence of symbols a, b, a, b, b and a.

Current value is 0. Default value is 0. Typical values are [0,32,43,44,45]

4.17. symbol_separator_out

As global variable *symbol_separator*, but only for output. If this variable is undefined, then
the value of the global variable symbol_separator is used instead. Current value is
undefined. Default value is undefined. Typical values are [undefined,0,32,43,44,45]

4.18. symbol_separator_in

As global variable *symbol_separator*, but only for input. If this variable is undefined, then
the value of the global variable symbol_separator is used instead. Current value is
undefined. Default value is undefined. Typical values are [undefined,0,32,43,44,45]

4.19. nr_sol_max

For the produce and the transduce options this global variable determines how many
transductions for each input string should be given at most. Current value is 25. Default value
is 25. Typical values are [1,5,10,25,50,100,1000,10000]

4.20. length_max

For the produce options this global variable determines the maximum length of strings that
should be produced. In the case of transducer the variable determines maximum length of left
string. A value of 0 indicates no restriction (in that case strings are not produced in order of
length). Current value is 30. Default value is 30. Typical values are 
[0,5,10,25,50,100,1000,10000]

4.21. interpreter

This boolean flag indicates whether input automata for fsa_interpreter are compiled (by
fsa_compiler_to_prolog) or interpreted. Current value is on. Default value is on. Typical
values are [on,off]
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4.22. debug

A value 0 indicates no continuation messages at all. A value of 1 will give cputime of
operation. A level of 2 will give cputime of all intermediate operations too. Finally, level 3 is
used for detailed continuation messages Current value is 0. Default value is 0. Typical values
are [0,1,2,3,4]

4.23. regex_cache

This global variable determines whether regular expression compilations are cached or not. If
the value selective is used, then only those operators are cached for which

bb_get(fsa_regex_cache:Fun)

succeeds. Current value is selective. Default value is selective. Typical values are 
[on,off,selective]

4.24. set_random

This boolean global variable indicates whether the random generator should start with a new
seed or not. If off the sequence of randomly generated automata will be the same for different
FSA incarnations. Current value is off. Default value is off. Typical values are [on,off]

4.25. w_determinizer_minimum

This flag determines whether the t_determinizer applied to transducers using the 
fsa_weights semiring should only consider paths with lowest scores. Current value is on.
Default value is on. Typical values are [on,off]

4.26. read

This global variable determines the format of input automata. The formats are explained in
*module(fsa_io)*. Current value is normal. Default value is normal. Typical values are 
[normal,old,fast,compact,compact_old,fsm]

4.27. write

This global variable determines the format of output automata. The formats are explained in
*module(fsa_io)*. Current value is normal. Default value is normal. Typical values are 
[normal,old,fast,compact,postscript,vcg,davinci,dot,pstricks,latex,prolog,c,t_c,w_c,count,fsm]
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4.28. count

This global variable determines if results are displayed in long or short format for the count
output format, the -count option and the fsa_count predicate. Current value is long. Default
value is long. Typical values are [short,long]

4.29. postscript_res

This variable determines which version of postscript output is used. lowres is better used for
conversion to pngs, normal is better used for printing postscript Current value is normal.
Default value is normal. Typical values are [normal,lowres]

4.30. no_display_beyond

Integer which determines a maximum number of states for automata that are displayed by any
of the visualization tools. Automata with more states are not displayed; in such cases a small
automaton is displayed indicating that the maximum was reached. Current value is 50.
Default value is 50. Typical values are [30,40,50,100,1000]

4.31. c_with_main

This variable has effect for compilation of automata to C. If *on*, then the resulting C
program will contain a main procedure. If off no such main procedure will be created. Current
value is on. Default value is on. Typical values are [on,off]

4.32. java_with_main

This variable has effect for compilation of automata to JAVA. If *on*, then the resulting
JAVA program will contain a main procedure. If off no such main procedure will be created.
Current value is on. Default value is on. Typical values are [on,off]

4.33. to_c_conversion

Boolean variable which has effect for compilation of automata to C, cf the 
fsa_compiler_to_c module for details. If on, the automaton is converted first; otherwise it’s
assumed the input is already converted. Current value is on. Default value is on. Typical
values are [on,off]

4.34. to_java_conversion

Boolean variable which has effect for compilation of automata to JAVA, cf the fsa_java
module for details. If on, the automaton is converted first; otherwise it’s assumed the input is
already converted. Current value is on. Default value is on. Typical values are [on,off]
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5. Regular Expressions
This section discusses the regular expressions of FSA as well as each of the built-in regular
expression operators.

The following global variables are important for regular expressions:

regex_cache

pred_module

5.1. Regular expression syntax

Regular expressions are defined as Prolog terms, and therefore Prolog syntax applies. For
detailed information on this, cf. the Prolog manual. The brackets () can always be used to
express the desired grouping. The order of precedence of operators is as follows:

: /         
..
+ * ^
& -         
o x xx      
! #

Operators with the same precedence are interpreted left-to-right. For example, the expression

a..z* - b* & c..d*

is interpreted as:

(((a..z)*) - (b*)) & ((c..d)*)

Syntax restrictions

These are all due to the use of Prolog syntax. The benefit of using Prolog syntax is that I don’t
need to implement a parser, and you have flexibility (by using your own operator definitions).
However, a few limitations are inherited as well. Here are a few rules of thumb:

Capitals can be used in regular expression in the Tk entry field, by putting them between 
quotes:

’A’..’Z’

At the Regex prompt (after fsa -r) you can use:
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’A’..’Z’

At the command-interpreter you can use:

2 |: -r ’A’..’Z’

As part of Expr in the fsa -r Expr command, use (this depends on the shell you are using. This
example works for bourne sh, csh, and bash):

fsa -r "’A’..’Z’"

Use space between operators. Use space before and after a question mark (?). Don’t use the
dot ’.’ or the vertical bar ’|’ as (part of) a new operator. Similarly, avoid using the comma ’,’,
the ’;’, and ’->’ as (part of a) regular expression operator. It’s neither a good idea to use ’:-’.
Operators can be escaped using (), but hardly ever have to (e.g. the following works, even if o
is the binary composition operator!).

fsa -r ’o o o’

Brackets can be used for grouping as well:

fsa -r ’o o o o (o o o)’

5.2. Spy Points on Regular expressions

The regular expression compiler provides detailed information on the computation time and
the size of the resulting automata for certain regular expression operators, namely for those
operators Op for which the predicate

bb_get(fsa_rx_spy:Op,on).

succeeds. So you can set a spy-point to operator concat by the directive:

?- bb_put(fsa_rx_spy:concat,on).

The special operator spy(Expr) is equivalent to Expr except that it has an associated 
spy-point.

5.3. Extending the regular expression notation

Using the -aux[file] command line option, or the AuxFile button of the TK Widget, you can
load auxiliary  regular expression operators. The file should be a Prolog source file (either .pl
or .ql). It will be loaded into module *fsa_regex_aux*. The syntax of regular expressions can
be used in this file (in fact it must be used, beware if the file also contains ordinary Prolog 
code!).

26



Two relations are important: 1. macro/2 2. rx/2

The first relation is usually defined by unit clauses. It simply states that the regular expression
in the first argument is an abbreviation for the regular expression in the second argument. For 
example:

macro(vowels,{a,e,i,u,o}).

Such macro’s can be parameterized using Prolog variables; e.g.:

macro(brz(Expr),determinize(reverse(determinize(reverse(Expr))).

The relation rx/2 can be used for more complicated operations (operations that are
cumbersome or impossible to define in terms of simpler regular expression operators). It
defines a relation between the regular expression in the first argument and the finite
automaton in the second argument. It is often useful to be able to call the regular expression
compiler recursively. This should be done through the predicate fsa_regex:rx/2. The
following is equivalent to the first example of macro/2 above:

rx( vowels, Fa) :-     
    fsa_regex:rx({a,e,i,u,o}, Fa).

Consult the Examples directory, for instance in the MohriSproat96, Karttunen95,
Karttunen96, Karttunen98, GerdemannVannoord, Queens directories, for some extensive 
illustrations.

5.4. Combining several auxiliary regular expression operator 
files

Suppose you want to use the definition of a replace operator in some file replace.pl in your
analysis of Dutch phonology. In the latter file you can include the definitions from replace.pl
by including somewhere at the top of your file the following directives:

:- ensure_loaded(replace).    %% loads replace.pl

:- multifile macro/2.
:- multifile rx/2.

This only works, if the multifile declarations are also present in the file you are importing. I.e.
in this example the file replace.pl should also have the directives

:- multifile macro/2.
:- multifile rx/2.
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5.5. ?

The set of one-symbol strings over the universal alphabet, ie. ? can be read as ‘any symbol
whatsoever’. It uses the true/1 predicate_declaration from the current predicate module. If that
declaration is not defined then no compilation for this operator is possible, and an error 
occurs.

5.6.  Expr# m[inimize](Expr) mh(Expr) mb(Expr)

Applies minimization to the result of compiling Expr. There are a number of related
expressions depending on which minimization algorithm is to be used.

mb uses the algorithm due to Brzozowski, mh uses the algorithm by Hopcroft (as described
in Aho, Hopcroft and Ullman, 1974).

If Expr is a transducer then it is temporarily treated as a recognizer over pairs of symbols
(using the fsa_frozen predicate module).

5.7. A! determinize(A) determinize(A,Algorithm)

Set of strings denoted by A, but moreover the subset construction determinization algorithm
is applied to ensure that the automaton is deterministic. The algorithm can be specified as the
second argument. There are several variants of the algorithm, which are different with respect
to the treatment of epsilon transitions:

per_graph: first construct efree automaton (jumps taken into account on target side of
transitions and on start states)

per_inverted_graph: first construct efree automaton (jumps taken into account on source
side of transitions and and final states)

per_reachable_graph: as per_inverted_graph, but maintains accessibility

per_co_reachable_graph: as per_graph, but maintains co-accessibility

per_subset: compute transitive closure of jumps on the fly for each subset

per_state: compute transitive closure of jumps on the fly for each state

These variants and some interesting experimental observations are described in a paper I
presented at the FSMNLP 98 workshop in Ankara. The paper is available from 
http://www.let.rug.nl/~vannoord/papers/. An improved version of the paper
will be published in Computational Linguistics.

By default the algorithm is chosen by a simple heuristic based on the number of states and
number of jumps of the input automaton. If A is a transducer then it is temporarily treated as a
recognizer over pairs of symbols.
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5.8. efree(E) reachable_efree(E) co_reachable_efree(E)

Constructs epsilon-free automaton for the automaton created for E. The first variant is faster,
the second and third algorithms yield smaller automata by only taking into account states
reachable from the start state, resp. from which a final state is reachable. If E is a transducer
then it is temporarily treated as a recognizer over pairs of symbols.

5.9. ~E complement(E)

The complement of the language denoted by E. E must be a recognizer.

5.10. A-B difference(A,B)

Set of strings denoted by A minus those given by B. A and B must be recognizers.

5.11. $E containment(E)

The language consisting of all strings that have an instance of E as a sub-string: [? *, E, ? *].
Note that the result is a minimal automaton. Since the definition of this operator depends on
the ?/0 operator it is only defined if the current predicate module provides a definition of
true/1. E can be both a recognizer or a transducer.

5.12. t_determinize(E)

The set of pairs denoted by E, but moreover the determinization algorithm for transducers by
Mohri, cf. also Roche and Schabes, is applied to E. NB: this is only guaranteed to terminate if
in fact E can be determinized in the appropriate sense. The implementation currently does not
check for this. Refer to the Examples/RocheSchabes97 directory for an experimental
implementation of that check and various related algorithms. Also note that the outputs
associated with final states that result from the construction are represented by new transitions
with epsilon input. A is (coerced into) a transducer.

representation of sequential transducers

Note that in FSA subsequential transducers are represented as ordinary transducers. This
implies in particular that instead of output symbols associated with final states, we have a
separate transition over epsilon input and final output to a new final state. Similarly, automata
which require an initial output to be associated with the start state will give rise to an extra
transition from a new start state with epsilon input and the required start output.

types of transducers

The predicates all take a flag which indicate the type of transducer. This flag is passed on to a
number of predicates in the transducer module. For each type of transducer, the transducer
module must define the predicates:
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zero(Type,Val).

plus(Type,Val0,Val1,Sum).

minus(Type,Val0,Val1,Diff).

minimum(Type,Val0,Val1,MinVal).

minimum_only(Type,YesNo).

Refer to the transducer module for an overview of the types of transducer currently supported.

The treatment of identity constraints over predicate pairs is especially tricky. This is mostly
hidden in the predicate module declaration of determinize/2 preds. Funny things to watch for:

certain non-functional automata become t_deterministic:

t_minimize([a x class([b,d]),d*])

whereas FSA5 would loop over

t_minimize([ a x {b,d}, d*])

This is actually quite useful.

delayed identity constraints: predicates apply on the input side before the transition
containing the target of the identity constraint is encountered. For example:

t_minimize({[a:b,?,?,?,?,?,b],[a:c,?,?,?,?,?,c]})

This is especially nasty if the number of question marks do not match up:

t_minimize({[a:b,?,?,?,?,?,b],[a:c,?,?,?,c]})

the opposite occurs as well: sometimes we have to output symbols satisfying a certain
predicate which must be identical to an input symbol which is yet to be encountered!
This currently works. Try for instance:

t_minimize([a:b,class(a..f)])

I think this is quite spectacular.

5.13. t_minimize(E)

The set of pairs denoted by E, but moreover the minimization algorithm for transducers by
Morhi is applied to E. NB: this is only guaranteed to terminate if in fact E can be
determinized in the appropriate sense. The implementation currently does not check for this.
Refer to the Examples/RocheSchabes97 directory for an experimental implementation of that
check and various related algorithms. Also note that the outputs associated with initial and
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final states that result from the construction are represented by new transitions with epsilon
input. E is (coerced into) a transducer.

5.14. w_determinize(E)

The set of pairs denoted by E, but moreover the determinization algorithm for string to weight
transducers by Mohri is applied to E. Thus, E must denote a string-to-weight transducer, i.e.,
all output symbols must be numbers. NB: this is only guaranteed to terminate if in fact E can
be determinized in the appropriate sense. E is a transducer where all output symbols are 
numbers.

5.15. w_minimize(E)

The set of pairs denoted by E, but moreover the minimization algorithm for string to weight
transducers by Mohri is applied to E. Thus, E must denote a string-to-weight transducer, i.e.,
all output symbols must be numbers. NB: this is only guaranteed to terminate if in fact E can
be determinized in the appropriate sense. E is a transducer where all output symbols are 
numbers.

5.16. perfect_hash(ListOfAtoms)

Creates perfect hash of minimal size for the words found in ListOfAtoms. This uses an
inefficient algorithm, intended for didactic purposes only. More efficent algorithms are
implemented in module fsa_dict but are not available as regular expression operators.

5.17. dict(ListOfAtoms)

Creates perfect hash for the words found in ListOfAtoms (you would normally apply the
w_minimize operator to the result). This uses an inefficient algorithm, intended for didactic
purposes only. More efficent algorithms are implemented in module fsa_dict but are not
available as regular expression operators.

5.18. A:B pair(A,B)

A and B are symbols; is a transducer mapping an A to a B.

5.19. A x B cross_product(A,B)

The set of pairs (A0,B0) such that A0 is in A and B0 is in B. Both A and B must describe 
recognizers.
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5.20. A xx B sl_cross_product(A,B)

The set of pairs (A0,B0) such that A0 is in A and B0 is in B, moreover the strings A0 and B0
are to be of the same length. Both A and B must be recognizers.

5.21. escape(Sym)

Sym is a symbol. This denotes the language consisting of that symbol. Can be used to
overwrite special meaning of some symbols. For instance, escape(?) can be used to denote a
literal question mark. Sym should be ground Prolog term, and it is passed through the
predicate regex_notation_to_predicate of the current predicate module.

5.22. S..T

S and T are one-character atoms or integers. In the first case, denotes the set of symbols from
S up to T in ASCII coding. For instance a..e is equivalent to {a,b,c,d,e}. If S and T are
integers, represents the set of integers in that interval: for instance 8..11 is equivalent to 
{8,9,10,11}.

5.23. class(Expr)

Identical to set(Expr), except that Expr must be a:

a list of symbols and intervals of symbols

an interval of symbols

a symbol

After expansion of the intervals, the resulting list of atomics is passed through
PredModule:class_to_pred, typically ensuring that the resulting set of transitions is smaller.
This operator is similar to the character classes found in UNIX-style regular expressions. For 
instance:

class([a..z,0..9])

5.24. negated_class(Expr)

Similar to class/1, except that in this case the complement of the symbols defined by
class(Expr) is used. Similar to the negated character classes found in UNIX-style regular
expressions, such as [^aeiou]. For example:

negated_class([’<1’,’<2’,’1>’,’2>’]).
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5.25. incomplete(A)

Ensures that all states in the automaton for A are co-accessible, i.e. for each state there is path
to a final state.

5.26. coaccessible(A)

Ensures that all states in the automaton for A are co-accessible, i.e. for each state there is path
to a final state.

5.27. reachable(A)

This operator ensures that for each state s in the automaton of A there is a path from a start
state to s.

5.28. accessible(A)

This operator ensures that for each state s in the automaton of A there is a path from a start
state to s.

5.29. complete(A)

Adds transitions and a sink state such that the transition table is total, i.e. there is a transition
for every symbol from every state. If A is a transducer then it is temporarily treated as a
recognizer over pairs of symbols. If A is a transducer then it is temporarily treated as a 
recognizer.

5.30. ignore(A,B)

Strings from A interspersed with substrings from B. For instance, ignore([a,a,a],c) contains all
strings over the alphabet {a,c} which contain exactly three a’s. Both A and B must be 
recognizers.

5.31. {}

{} denotes the empty language.

5.32. {E1,E2,..,En} union(E1,E2) set([E1,E2,..,En])

Union of the languages denoted by E1,..,En. As a special case, ’{}’ is the empty language, i.e.
a language without any strings. Note that the result is a minimal automaton. E1 .. En can be
both transducers or recognizers. If one of them is a transducer, then all of the others are
coerced into transducers as well.
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5.33. []

[] denotes the empty string (or equivalently the language solely consisting of the empty 
string).

5.34. [E1,E2,...En], concat(E1,E2)

The concatenation of the languages denoted by E1, E2, .. En. As a special case, [] is the
language solely containing of the empty string. Note that the result is a minimal automaton.
E1 .. En can be both recognizers and transducers. If one of them is a transducer then all of the
others are coerced into transducers as well.

5.35. E* kleene_star(E)

Kleene closure (zero or more concatenations) of the language denoted by E. Note that the
result is a minimal automaton. E can be both a recognizer or a transducer.

5.36. E+ [kleene_]plus(E)

Kleene plus (one or more concatentations) of the language denoted by E. Note that the result
is a minimal automaton. E can be both a recognizer or a transducer.

5.37. option(E) E^

Union of E with the empty string, i.e. a string from E occurs optionally. The result is a
minimal automaton. E can be both a recognizer or a transducer.

5.38. intersect[ion](A,B) A & B

The intersection of the languages denoted by A and B. Produces a minimal automaton. A and
B must be recognizers.

5.39. E0 o E1 compose(E0,E1)

The set of pairs (A,C) such that (A,B) is in E0 and (B,C) is in E1. Both E0 and E1 are
(coerced into) transducers. Note that the result is a minimal automaton.

Note that in case both E0 and E1 are not same-length transducers, then often the resulting
transducer will give rise to ‘spurious’ results in the sense that for a given input the same
output is produced several times. See the paper by Pereira and Riley, 1996, for some
suggestions to repair this. Obviously, in cases where you can determinize the transducer (with
t_determinize) the spurious ambiguities will disappear as well.
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5.40. sigma(Set,Expr) sigma(DomSet,RanSet,Expr)

Binary form is equivalent to Set* & Expr; ternary form is equivalent to DomSet* o Expr o
RanSet*. You are advised to use the class/1 operator for the specification of Set, but this is
not required. For example, the following two expressions define the same language, but the
latter expression typically results in a smaller automaton (this depends eventually on the
predicale module):

sigma(a..z,Expr)

sigma(class(a..z),Expr)

Set and Expr must both describe recognizers.

5.41. domain_sigma(Set,Expr)

Is equivalent to Set* o Expr. You are advised to use the class/1 operator for the specification
of Set, but this is not required. Set must be recognizer; Expr is (coerced into) a transducer.

5.42. range_sigma(Set,Expr)

Is equivalent to Expr o Set*. You are advised to use the class/1 operator for the specification
of Set, but this is not required. Set must be recognizer; Expr is (coerced into) a transducer.

5.43. reverse(E)

set of strings F such that the reversal of F is in E.

5.44. inversion(E) inverse(E) invert(E)

The set of pairs B:A such that A:B is in E. If E is a recognizer, then it is converted to its
identity transducer.

5.45. id(E) identity(E)

The set of pairs A:A such that A is in E.

5.46. domain(E)

The set of strings A such A:B is in E.
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5.47. range(E)

The set of strings B such A:B is in E.

5.48. cleanup(E)

The cleanup operator attempts to pack several transitions into one. For instance, assume there
are two transitions from state p to q over the predicates p1 and p2 respectively. If p3 is a
predicate which is true just in case either p1 or p2 is true, then we replace the two transitions
by one transition over predicate p3.

5.49. subs(E)

E is supposed to be a transducer. The result will be all pairs allowed by E and furthermore all
pairs (x,y) such that (x’,y) is in E and x’ can be formed by substituting one symbol in x.

5.50. del(E)

E is supposed to be a transducer. The result will be all pairs allowed by E and furthermore all
pairs (x,y) such that (x’,y) is in E and x’ can be formed by deleting one symbol in x.

5.51. ins(E)

E is supposed to be a transducer. The result will be all pairs allowed by E and furthermore all
pairs (x,y) such that (x’,y) is in E and x’ can be formed by deleting one symbol in x.

5.52. word(Atom)

Denotes the string Atom, as a concatenation of its individual characters. For instance
word(regular) is equivalent to [r,e,g,u,l,a,r].

5.53. convert_pred_module(NewModule,Expr) 
convert_pred_module(NewDomainMod,NewRangeMod,Expr)

Converts the automaton defined by Expr into an automaton using the pred_module
declarations found in NewModule. Note that this is possible only in case the newer module is
at least as expressive as the old one. For instance, you can convert an automaton with the 
fsa_frozen predicate module into an automaton with the fsa_preds predicate module, but not
vice versa. The binary operator is for recognizers, the ternary operator for letter transducers.
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5.54. fa(Fa)

Fa is already a finite automaton in appropriate format.

5.55. file(X)

This denotes the finite-automaton read from file X.

5.56. spy(Expr)

Equivalent to Expr, but sets spy-point on compilation of Expr. This implies that for debug
level 1 or higher the CPU-time is reported required to compile Expr, as well as the size of the
resulting automaton.

5.57. cache(Expr)

Equivalent to Expr, but caches result of compiling Expr, if the flag regex_cache is set to
*selective*. If that flag has value off then there is no caching. If the value is on then the
regular expression compiler caches every sub-computation.

5.58. random(NrStates,NrSymbols,Den,JDens)

A random automaton is constructed consisting of the number of states specified in the first
argument, number of symbols in the second argument. The desired density of the automaton
is given in the third argument, whereas the final argument is the jump density. E.g.
random(20,10,0.1,0.1) will be an automaton with 20 states, 10 symbols, approximately 400
transitions and 40 jumps.

6. Command-line Arguments
Usage: fsa [Flag=Val]* [ActionOption] [Flag=Val]*

The fsa program can be started with command-line arguments (options). A command-line
consists of a number of global variable assignments, following by (at most one) action
option, followed by more global variable assignments. If no action option is provided, then
the system runs in interactive mode. If the variable interpreter  is set to *on*, then fsa runs in
interactive mode after the action indicated by the action option has been performed. If the flag 
interactive has been set to *cmdint*, then fsa runs the FSA command interpreter. Otherwise,
you get the ordinary SICStus Prolog prompt.

Typical actions that can be performed through the use of an action option are:

regular expression operations such as kleene closure, complementation for given 
automata
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determinization and minimization of automata

construction of automaton on the basis of regular expression

visualization of given automaton

apply automaton to a string or set of strings

6.1. -aux Aux

Aux is a file containing auxiliary regular expression operator definitions. It is loaded into
module fsa_regex_aux, and will be used for compiling regular expressions.

Note that your file with definitions of regular expression operators is consulted with the
special Prolog-syntax operators for regular expression notation loaded. Thus you can use * ..
& etc. in your definitions. Drawback is that you cannot use operator notation for e.g. the is/2 
predicate.

A typical auxiliary definition will be:

macro(vowel,{a,e,i,o,u}).

A slightly more interesting one:

macro(free(Expr), ~ $ Expr).

You can also explicitly construct an automaton yourself, e.g.:

rx(my_operator(Expr),Fa) :-
fsa_regex:rx(Expr,Fa0),
my_operator_definition(Fa0,Fa).

so you can call fsa_regex:rx/2 for further compilations.

There can be multiple -aux options.

6.2. -pm File

File is supposed to contain the definition of a predicate module. The file is loaded and
moreover the global variable pred_module is set to the name of the module defined in that
file. There can be multiple -pm options

6.3. -l File

The File is loaded, using use_module/1. There can be multiple -l options.
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6.4. -cmd Goal

evaluates Prolog Goal; Goal is parsed as Prolog term. Example:

fsa -cmd ’listing(library_directory),halt’).

There can be multiple -cmd options

6.5. -cmdint

Run interactively with the FSA6 command interpreter.

6.6. -a[ccepts] [In] String

This option can be used to test a given string for acceptance by an automaton read from In (or
standard input). Fsa prints ‘yes’ or ‘no’ to standard error. Example:

% fsa -r ’a+’ | fsa -a aaa

Prints ‘yes’.

6.7. -approx [In] String

This option can be used to get all best matches for a given string and an automaton read from
In (or standard input). In must contain an automaton.

% fsa -r ’[a,a]+’ | fsa -approx aaa

Prints:

aa
aaaa

6.8. -approx [In] String

This option can be used to get the transductions for all best matches for a given string and an
automaton read from In (or standard input). In must contain an string-to-string transducer.

% fsa -r ’[a,a:b]+’ | fsa -t_approx aaa

Prints:

ab
abab
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6.9. -w_approx [In] String

This option can be used to get the transductions for all best matches for a given string and an
automaton read from In (or standard input). In must contain a string-to-weight transducer.

% fsa -r ’[a:2,a:1]+’ | fsa -w_approx aaa

Prints:

3
6

6.10. -fsa2fsm In Syms Aut | -fsa2fsm [In [Out]]

If three file names are given, then the automaton read from the first file is converted to an
automaton in AT&T’s fsm software format. That automaton is written into Aut; Syms will
contain a mapping from the integers used in Aut to the actual symbols. If less than three file
names are given, then it is assumed that the actual symbols can be ignored and no Syms is 
written.

6.11. -fsm2fsa [In [Out]]

Converts an automaton in AT&T’s fsm software format into fsa5 format. Note that a separate
symbol definition file is currently not supported.

6.12. -c[ompile] [In [Out]]

For a given automaton (recognizer) in In a Prolog program definiting the corresponding
accepts/2 relation is written to Out. For details, see the module fsa_compiler.

6.13. -t_c[ompile] [In [Out]]

For a given automaton (string to string transducer) in In a Prolog program definiting the
corresponding t_accepts/2 relation is written to Out. For details, see the module fsa_compiler.

6.14. -w_c[ompile] [In [Out]]

For a given automaton (string to weight transducer) in In a Prolog program definiting the
corresponding w_accepts/2 relation is written to Out. For details, see the module 
fsa_compiler.

40



6.15. -c[ompile_to_]c [In [Out]]

For a given recognizer read from In a C program is written to Out which will read strings
from standard input and report for each string whether it is described by that recognizer. For
details, see module compiler_to_c.

6.16. -t_c[ompile_to_]c [In [Out]]

For a given string-to-string transducer read from In a C program is written to Out which will
read strings from standard input and transduce each string according to that transducer. For
details, see module compiler_to_c.

6.17. -w_c[ompile_to_]c [In [Out]]

For a given string-to-weight transducer read from In a C program is written to Out which will
read strings from standard input and transduce each string according to that transducer. For
details, see module compiler_to_c.

6.18. -java [In] Out

For a given recognizer read from In, a JAVA program is written to Out which will read
strings from standard input and report for each string whether it is accepted by that
recognizer. For details, see module fsa_java.

6.19. -t_java [In] Out

For a given transducer read from In, a JAVA program is written to Out which will read
strings from standard input and report for each string the transduction to standard output. For
details, see module fsa_java.

6.20. -w_java [In] Out

For a given string-weight-transducer read from In, a JAVA program is written to Out which
will read strings from standard input and report for each string the transduction to standard
output. For details, see module fsa_java.

6.21. -compose A B [Out]

The transducers read from A and B are composed, and the result is written to Out. Equivalent 
to

fsa -r ’compose(file(A),file(B))’ >Out
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6.22. -complement [In [Out]]

The complementation operator is applied to the automaton read from In, and the result is
written to Out.

6.23. -count [In [Out]]

For the automaton read from In the number of transitions and symbols and some other
properties is written to Out. If -short is specified, then the output is given as a single line
consisting of the number of states, start states, final states, transitions, jumps, and symbols
respectively. Otherwise a more elaborate message is printed meant for human consumption.

6.24. -density [In [Out]]

For the automaton read from In various densities are reported to Out. Deterministic density is
the number of transition divided by the number of states times the number of symbols;
absolute density is the number of transitions dividided by the number of states squared times
the number of symbols. Jump density is the number of jumps dividied by the squared number
of states. Deterministic density can be used to characterize the difficulty of determinization.
For deterministic densities of around 2, exponential blow-up of the output (and hence
processing time) can be expected (Leslie 1995). Jump density can be used to estimate the
most efficient subset construction algorithm (van Noord 1998).

6.25. -davinci [In [Out]]

For the automaton read from In a corresponding DaVinci term is written to Out. This can be
used to visualize the automaton In using DaVinci:

fsa -davinci a.nd > a.davinci
daVinci a.davinci

6.26. -vcg [In [Out]]

For the automaton read from In a corresponding vcg term is written to Out. This can be used
to visualize the automaton In using (x)vcg:

fsa -vcg a.nd | xvcg -

6.27. -dot [In [Out]]

For the automaton read from In a corresponding dot term is written to Out. This can be used
to visualize the automaton In using dot or dotty:
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fsa -dot a.nd | dotty -
fsa -dot a.nd | dot -Tps | gv -
fsa -dot a.nd | dot -Tgif | xv -

6.28.  -d[eterminize] [In [Out]] | -dgraph [In [Out]] -drgraph
[In [Out]] -dsubset [In [Out]] | -dstate [In [Out]]

The automaton read from In is determinized and written to Out. FSA6 supports four variants
of the determinization algorithm. In the first form, a heuristic is used (based on the jump
density) to select the variant of the determinization variant. The other forms indicate the
particular variant that is to be used. For details, refer to the fsa_determinizer module.

6.29. -efree [In [Out]]

For the automaton read from In an equivalent automaton without any epsilon transitions
(jumps) is written to Out.

6.30. -ignore A B [Out]

Equivalent to:

fsa -r ’ignore(file(A),file(B))’ > Out

6.31. -diff[erence] A B [Out]

Equivalent to:

fsa -r ’difference(file(A),file(B))’ > Out

6.32. -transduce [In] String

The transducer read from In is applied to String; the resulting string is printed.

6.33. -transduce [In] String

The transducer read from In is applied to String; the resulting string is printed.

6.34. -aa In | -accept_all In | -raa Regex

The program checks each string read from standard input for acceptance by the recognizer
read from In. If the string is accepted then ‘yes’ is printed to standard error; otherwise ‘no’. In
the third form the recognizer is specified by regular expression Regex rather than by an 
automaton.
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6.35. -ta In | -transduce_all In | -rta Regex

The program transduces each string read from standard input according to the transducer read
from In. The actual transductions are written to standard output; for each input string a
message is written to standard error indicating the number of outputs for that string. In the
third form the recognizer is specified by regular expression Regex rather than by an 
automaton.

6.36. -wa In | -w_transduce_all In | -rwa Regex

The program transduces each string read from standard input according to the
string-to-weight transducer read from In. The actual transductions are written to standard
output; for each input string a message is written to standard error indicating the number of
outputs for that string. In the third form the recognizer is specified by regular expression
Regex rather than by an automaton.

6.37. -prolog Goal

Evaluates Prolog goal. Example:

fsa -prolog ’listing(user:file_search_path).’

6.38. -generate States Syms Dens [JDens]

This option is used to generate random finite automata, using the algorithm of Leslie 1995.
States is the number of states, Syms is the number of symbols, Dens is absolute density, and
JDens is the jump density.

6.39. -intersect A B [Out]

Equivalent to:

fsa -r ’intersect(file(A),file(B))’ > Out

6.40. -kleene_star [In [Out]]

Equivalent to:

fsa -r ’file(In)*’ > Out

6.41. -w_minimum_path [In]

Writes the path with the minimum weigth of the string-to-weight transducer read from In.
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6.42. -kleene_plus [In [Out]]

Equivalent to:

fsa -r ’file(In)+’ > Out

6.43. -reverse [In [Out]]

Equivalent to:

fsa -r ’reverse(file(In))’ > Out

6.44. -inverse [In [Out]]

Equivalent to:

fsa -r ’inverse(file(In))’ > Out

6.45. -domain [In [Out]]

Equivalent to:

fsa -r ’domain(file(In))’ > Out

6.46. -range [In [Out]]

Equivalent to:

fsa -r ’range(file(In))’ > Out

6.47. -cleanup [In [Out]]

Equivalent to:

fsa -r ’cleanup(file(In))’ > Out

6.48. -identity [In [Out]]

Equivalent to:

fsa -r ’identity(file(In))’ > Out
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6.49. -option [In [Out]]

Equivalent to:

fsa -r ’option(file(In))’ > Out

6.50. -union A B [Out]]

Equivalent to:

fsa -r ’union(file(A),file(B))’ > Out

6.51. -concat A B [Out]]

Equivalent to:

fsa -r ’concat(file(A),file(B))’ > Out

6.52. -m[inimize] [In [Out]] | -mb [In [Out]] | -mh [In [Out]]

Minimizes the automaton read from In. The first version uses the default minimization
algorithm (by Brzozwski). The other options explicitly require the algorithms by,
respectively, Brzozowski or Hopcroft. Refer to the fsa_regex module and the fsa_minimizer
module for details.

6.53. -t_m[inimize] [In [Out]]

Applies the minimization algorithm for transducers (by Mohri) to the transducer read from In.
Refer to the fsa_t_determinizer module for details.

6.54. -produce [In [Out]]

For the recognizer read from In strings accepted by In are written to Out.

6.55. -t_produce [In [Out]]

For the string-to-string transducer read from In pairs of strings are written to Out.

6.56. -w_produce [In [Out]]

For the string-to-weight transducer read from In pairs of string and weights are written to Out.
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6.57. -r[egex] [Regex] [Out]

The automaton described by regular expression Regex are written to Out. If Regex is not
specified, it is read from standard input.

6.58. -tk [File] | -tk [-r Regex]

Starts the graphical user interface on the automaton in File, or the automaton defined by the
regular expression Regex.

6.59. -postscript [In [Out]]

Produces postscript version of the automaton read from In.

6.60. dict2ph [In [Out]]

A minimal string-to-weight transducer will be written to Out, transducing each of the lines
read from In into its rank in alphabetic ordering; in other words, the transducer computes a
perfect hash for the keys read from In. For more info, see module *fsa_dict*.

6.61. dict2m [In [Out]]

A minimal recognizer will be written to Out, recognizing each of the lines read from In.

6.62. -pstricks_tex [In [Out]] | -pstricks_picture [In [Out]]

Produces LaTeX code using PsTricks macro’s for the automaton read from In. In the first
variant a self-contained LaTeX document is produced; in the second variant a LaTeX picture
is produced to be included in another document.

6.63. -copy [In [Out]]

Copies the automaton from In to Out. Useful to convert between different formats using the 
read and write  global variables:

fsa read=fast write=normal -copy a.nd b.nd

6.64. -t_d[eterminize] [In [Out]]

The determinization algorithm for transducers (by Mohri) is applied to string-to-string
transducer In and yields Out. For details, refer to module t_determinizer.
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6.65. -w_d[eterminize] [In [Out]]

The determinization algorithm for transducers (by Mohri) is applied to string-to-weight
transducer In and yields Out. For details, refer to module t_determinizer.

6.66. -w_m[inimize] [In [Out]]

The minimization algorithm for transducers (by Mohri) is applied to string-to-weight
transducer In and yields Out. For details, refer to module t_determinizer.

7. Predicates on Symbols
In standard regular expressions, the atomic symbols are normally treated ‘as is’: these
symbols represent themselves. In FSA6 the possibility exists to have these atomic symbols
stand for arbitrary (user-defined) predicates instead. In order to use this possibility, a
collection of declarations must be provided in a module. Such declarations define, for
instance, what the conjunction is of two predicates. In a regular expression such as p1 & p2,
where p1 and p2 are predicates, the resulting automaton is equivalent to p3 where p3 is the
conjunction of p1 and p2.

The global variable pred_module defines the name of a module which is the module that is
used (by default) to obtain the definitions of these declarations. Recognizers are associated
with the name of such a module as well. Transducers have two such predicate module names:
one for the domain and one for the range.

Two standard predicate modules are:

fsa_preds
fsa_frozen

The use of the fsa_preds module leads to functionality which is equivalent to the
functionality of FSA5 (in particular it provides a way to treat the ?/0 any symbol operator). In
fsa_preds each predicate is a set of symbols or the complement of a set of symbols. The 
fsa_frozen module can be used for cases in which you want to treat symbols ‘as is’. If this
module is used, you cannot use the ?/0 any symbol operator.

If automata are combined using regular expression operators, then their corresponding
modules must be identical. For instance, union of two recognizers implies that both
recognizers have the same predicate module. Composition of two transducers imply that the
predicate module of the output side of the first transducer is identical to the predicate module
of the input side of the second transducer; the resulting transducer will take for its input side
the input module of the first transducer, and as its output module it uses the output module of
the second transducer.
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This section lists the predicates that should be provided by a predicate module. An interesting
example is provided by the fsa_preds module. A boring example is provided by the
fsa_frozen module. In the Examples directory you will find a sub-directory PredModules
which contains various other examples of predicate module declarations.

7.1. true(?Pred)

Pred is a predicate which is true for all symbols. This declaration is used to provide a
translation for the ‘any symbol’ operator ?/0. Predicate modules which do not define true/1
cannot employ this operator, and as a consequence cannot use operators which are defined in
terms of ?/0. The predicate should succeed at most once.

7.2. regex_atom_to_pred(+Atomic,-Pred)

This predicate translates the regular epxression notation into a predicate. This allows internal
and external form of predicates; cf. display_predicate to translate from internal to an external
form. Note: ?/0 is treated by the regular expression compiler itself, and uses true/1. The
predicate should succeed exactly once.

7.3. evaluate_predicate(+Pred,?Symbol)

This predicate should succeed if Pred is true of Symbol, and fail otherwise.

7.4. conjunction(+P0,+P1,?P)

Predicate P is a predicate that is equivalent to the conjunction of P0 and P1. If the conjunction
of P0 and P1 is inconsistent, then conjunction/3 should fail. The predicate should succeed at
most once.

7.5. display_predicate(+Pred,-Term)

This predicate is used by the various visualization tools. It allows for the possibility to have
an external format of a predicate. The predicate should succeed exactly once.

7.6. prepare_complement_of_set(+Fa,-Term)

Cf. complement_of_set/3. This predicate is used in the complete/1 operator. It computes any
information from the finite automaton Fa that is useful later in complement_of_set/3. This
computation is then only performed once for each complete/1 operator. Term is an arbitrary
term that is passed on to complement_of_set/3. The predicate should succeed exactly once.
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7.7. complement_of_set(+SetOfPreds,+Term,-Complements)

Complements is a list of predicates such that the disjunction of that set is equivalent to the
complement of the disjunction of SetOfPredicates. Set is some datastructure computed in
preparation phase. This definition is used in the complete/1 operator. The predicate should
succeed exactly once.

7.8. determinize_preds(+KeyList0,-KeyList)

This code is required during the construction of deterministic automata, (the subset
construction algorithm). Refer to the fsa_determinizer module for more details. In that
module you can also find a definition of this predicate provided your predicate module has
definitions for negation/2. In that case you can simply define:

determinize_preds(U0,U):-
        fsa_determinizer:determinize_preds(U0,U,YourPredModule).

This declaration is used in determinize/1 The predicate should succeed exactly once.

7.9. t_determinize_preds(+KeyList0,-KeyList)

This code is required during the construction of deterministic transducers, (the subset
construction algorithm for transducers). Refer to the fsa_t_determinizer module for more
details. In that module you can also find a definition of this predicate provided your predicate
module has definitions for negation/2. In that case you can simply define:

t_determinize_preds(U0,U):-
        fsa_t_determinizer:t_determinize_preds(U0,U,YourPredModule).

This declaration is used in t_determinize/1 The predicate should succeed exactly once.

7.10. identity(+Pred0,-Pred)

If Pred0 is a predicate that is true of more than a single symbol, then Pred should be bound to 
’$@’(Pred0). If, on the other hand, Pred0 is true only of a single symbol, then Pred should be
bound to Pred0. This is used in the computation of the regular operator identity/1. Predicate
should succeed exactly once.

7.11. class_to_pred(+List0,-List)

List0 is a list of atomic symbols as used in a regular expression. List is a list of predicates
which, taken together as a disjunction, is true of exactly the symbols in List0. This declaration
is used to have a simple translation of the class/1 regular expression operator. Should succeed
exactly once.
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7.12. negated_class_to_pred(+List0,-List)

List0 is a list of atomic symbols as used in a regular expression. List is a list of predicates
which, taken together as a disjunction, is true of all symbols not in List0. This declaration is
used to have a simple translation of the negated_class/1 regular expression operator. Should
succeed exactly once.

7.13. cleanup(+List0,-List)

Used in cleanup/1 operator. List0 is a list of predicates (interpreted as disjunction). List is an
equivalent (but shorter) list of predicates (interpreted as disjunction). This predicate is used to
translate sets of transitions into smaller sets of transitions. The predicate should succeed
exactly once.

8. Types of transducers
The determinization, minimization and minimum path algorithms for transducers are
implemented in a fully general way, i.e., for various types of transducers (‘semirings’).

For each supported type, a number of predicates must be defined in a corresponding module
(these are called ‘semiring declarations’):

zero(Val).

plus(Val0,Val1,Sum).

minus(Val0,Val1,Diff).

minimum(Val0,Val1,MinVal).

minimum_only(YesNo).

Currently, the following types of transducers are supported:

fsa_strings (ordinary string-to-string transducers)

fsa_weights (string-to-weight transducers a.k.a weighted acceptors)

The examples directory SemiringModules might contain additional semiring declarations.

8.1. zero(?Val).

The identity element for addition. For strings, this is the empty string; for weights it is 0.
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8.2. plus(+Val0,+Val1,?Sum).

Addition. For weights this is number addition, for strings this is concatenation.

8.3. minus(+Val0,+Val1,?Diff).

Inverse of the addition operator.

8.4. minimum(+Val0,+Val1,?Min).

Minimum value of two given values. For weights this is the minumum of two numbers, for
strings this is the longest common prefix.

8.5. minimum_only(+YesNo).

YesNo is one of the atoms

yes

no

indicating whether we are intested in all outputs associated with a path or only in the minimal
output. For weights this is ‘yes’, for strings this is ‘no’.

9. fsa_array: Non-updatable Arrays (127+32 trees)
This module provides a non-updatable array data-structure. Accessing individual items in the
array is very efficient. The arrays are implemented using O’Keefe’s N+K trees, with N=127
and K=32.

NB. Array indices start at 0: so 0 refers to the first element of the array.

Here’s an overview of the predicates provided:

fsa_array_new/[1,2]         create a new non-updatable array

fsa_array_access/[3,4]      access a value in a non-updatable array

fsa_array_get/3             get a value in a non-updateble array

fsa_array_to_list/2         conversion of array -> list

The N+K tree data-structure is described in The Craft of Prolog, by Richard A. O’Keefe, MIT
Press, 1990, chapters 4.5. and 4.6.
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9.1. List of Predicates

This section lists the predicates defined by this module.

9.1.1. fsa_array_new(-FsaArray[,?Size])

Initializes FsaArray as a new array. In this implementation of arrays the optional second
argument is not used.

9.1.2. fsa_array_access(+Index,?Val[,?Default],+FsaArray)

Val is unified with the Index’th entry of FsaArray. This predicate thus subsumes setting and
reading of a value in the array. Remember that you can’t change values of an array (except by
further instantiation). For the 4-ary form, if the Index’th entry was not yet defined, then Val is
unified with Default (and not with the Index’th entry).

9.1.3. fsa_array_get(+Index,?Val,+FsaArray)

Val is unified with the Index’th entry of FsaArray. That entry must not be variable. This
predicate is different from fsa_array_access/3 in that it can fail.

10. fsa_compiler: Prolog Code Generation
This module provides predicates to create Prolog code on the basis of a finite automaton.
Various tricks are employed to make the resulting code efficient (rather than readable), but
functionality has an ever higher priority. The functionality is the same as that provided by the
fsa_interpreter module, only faster. For pure speed, you should consider using the
fsa_compiler_to_c module.

10.1. List of Predicates

This section lists the predicates defined by this module.

10.1.1. fsa_compile_to_prolog(+Fa) 
fsa_compile_to_prolog(+FileIn,+FileOut)

In the first variant, a Prolog program is written to standard output for the automaton Fa. The
Prolog program defines the predicate accepts(?List) which succeeds if Fa accepts the list of
symbols List. In the second variant, the Prolog program is written to FileOut on the basis of
the automaton read in from FileIn.

accepts(?String) can be used both to recognize a given string or to produce a string according
to Fa. This is why dif/2 is used in the implementation. We prefer functionality over efficiency
here. If you didn’t know: dif/2 is the SICStus built-in for inequality which delays until
arguments are sufficiently instantiated.
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Since input can be non-deterministic we check for epsilon-cycles by keeping track of a list of
states visited after last consumption of input). There are cases where it would make more
sense to pre-compute efree automata first. We provide it anyway.

10.1.2. fsa_compile_to_prolog_t(+Fa) 
fsa_compile_to_prolog_t(+FileIn,+FileOut)

In the first variant, a Prolog program is written to standard output for the transducer Fa. The
Prolog program defines the predicate t_accepts(+In,?List) which succeeds if In x List is a
transduction defined by Fa. In the second variant, the Prolog program is written to FileOut on
the basis of the automaton read in from FileIn.

t_accepts(+In,?Out) can be used to transduce a given string or to produce pairs of strings, if
the length of the input list is known. This is why we (possibly) use dif/2 in the
implementation. We prefer functionality over efficiency here. If you didn’t know: dif/2 is the
SICStus built-in for inequality which delays until arguments are sufficiently instantiated.

Since input can be non-deterministic we check for epsilon-cycles by keeping track of a list of
states visited after last consumption of input).

Uses special meta-notation |N+| for ‘output’ loops, to indicate that last N characters can be
repeated any number of times.

Supports unknown symbols, including occurrences of delayed identity constraints (using a
queue; trick was explained to me by Lauri Karttunen, Xerox Grenoble. I have never seen it
described in the literature). E.g. try regex tminimize({[a:b,?,c],[a,?,d]}).

10.1.3. fsa_compile_to_prolog_w(+Fa) 
fsa_compile_to_prolog_w(+FileIn,+FileOut)

In the first variant, a Prolog program is written to standard output for the
string-to-weight-transducer Fa. The Prolog program defines the predicate
w_accepts(+In,?List) which succeeds if In x List is a transduction defined by Fa. In the
second variant, the Prolog program is written to FileOut on the basis of the automaton read in
from FileIn.

w_accepts(+String,?Weight) can be used to transduce a given String to the corresponding
Weight. In case of output loops only the minimum weight is produced.

Since input can be non-deterministic we check for epsilon-cycles by keeping track of a list of
states visited after last consumption of input.
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11. fsa_compiler_to_c: C Code Generation
This module provides predicates to create C code on the basis of a finite automaton. There are
certain restrictions to the input automaton. The automaton must be:

deterministic (for input)

each symbol is a one-letter atom

input predicates are automatically expanded to each of the symbols with character
number 1-255, except for number 10 (new-line), since new-line is used as a separator in
the final program.

Note that meta-symbol expansion only works for recognizers and letter transducers. In
particular, it does not work for transducers which are the result of t_determinization or
t_minimization. Therefore in such cases you need to appy
t_determinization/t_minimization to the result of applying an appropriate
domain_sigma/2 operation.

The compiler performs the following operation to ensure that the above conditions hold:

recognizers:     m(expand_predicates(Sig* & fa(Fa0)))

string to string transducers:     t_minimize(expand_predicates(Sig* o fa(Fa0)))

string to weight transducers:     w_minimize(expand_predicates(Sig* o fa(Fa0))

where Sig is equivalent to the union of all one-letter atoms, and Fa0 is the input automaton.

The C program will contain definitions of the following functions:

recognizers:

int accepts(char *in)

string-string-transducers:

int t_accepts(char *in,char *out)

string-weight-transducers:

int w_accepts(char *in,int *out)

In each case, the functions return 1 if the string in is accepted. Otherwise they return 0. For
transducers the resulting string or weight is available in *out*.
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If the global variable c_with_main is set to *on*, then the resulting C program will also
contain a main function. This function is defined in such a way that it reads lines from
standard input and applies the corresponding accept functions for each line. For recognizers,
either yes or no is printed to standard error. For transducers, the transduction is written to
standard output; if the input string is not in the domain of the transducer then no is written to
standard error.

The representation of the finite-automaton in C is similar to the technique explained on page
43 (table 4.2) of Jan Daciuk’s dissertation ‘Incremental Construction of Finite-State Automata
and Transducers and their use in the Natural Language Processing’. Politechnika Gdanska, 
1998.

11.1. List of Predicates

This section lists the predicates defined by this module.

11.1.1. fsa_compile_to_c(+Fa) fsa_compile_to_c(+FileIn,+FileOut)

In the first variant, a C program is written to standard output for the automaton Fa. The C
program will read lines from standard input and report for each line whether it is a string
accepted by Fa. In the second variant, the C program is written to FileOut on the basis of the
automaton read in from FileIn.

11.1.2. fsa_compile_to_c_t(+Fa) fsa_compile_to_c_t(+FileIn,+FileOut)

In the first variant, a C program is written to standard output for the transducer Fa. The C
program will read lines from standard input and print for each line its transduction according
to Fa. In the second variant, the C program is written to FileOut on the basis of the automaton
read in from FileIn. Remember that Fa must be deterministic for input.

11.1.3. fsa_compile_to_c_w(+Fa) 
fsa_compile_to_c_w(+FileIn,+FileOut)

In the first variant, a C program is written to standard output for the string to weight
transducer Fa. The C program will read lines from standard input and print for each line its
transduction according to Fa. In the second variant, the C program is written to FileOut on the
basis of the automaton read in from FileIn. Remember that Fa must be deterministic for input.

11.1.4. fsa_compile_to_c_fa(+Fa,+FileOut)

A C program is written to FileOut for the automaton Fa. The C program will read lines from
standard input and report for each line whether it is a string accepted by Fa.
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11.1.5. fsa_compile_to_c_t_fa(+Fa,+FileOut)

A C program is written to FileOut for the transducer Fa. The C program will read lines from
standard input and print for each line its transduction according to Fa.

11.1.6. fsa_compile_to_c_w_fa(+Fa,+FileOut)

A C program is written to FileOut for the string to weight transducer Fa. The C program will
read lines from standard input and print for each line its transduction according to Fa.

12. fsa_data: Internal Format of Finite Automata
This module provides a consistent interface to the internal format of finite automata. A finite
automaton is a term

fa(Symbols,States,Starts,Finals,Transs,Jumps)

Symbols is a term r(Sig) (for recognizers) or t(SigD,SigR) for transducers. Here Sig, SigD,
SigR are the predicate modules.

States is an integer indicating the number of states in the automaton.

Starts is an ordered list of integers indicating the start states of the automaton.

Finals is an ordered list of integers indicating the final states of the automaton.

Transs is an ordered list of triples trans(A,B,C) where A and C are integers indicating source
and target state, and B is a symbol (recognizers) or a symbol pair InSym/OutSym
(transducers). InSym is a symbol or the empty list. OutSym is a symbol or a (possibly empty)
list of symbols.

Jumps is an ordered list of pairs jump(A,B) where A and B are integers indicating source and
target state. This implies there is an epsilon transition from A to B.

12.1. List of Predicates

This section lists the predicates defined by this module.

12.1.1. fsa_states_number(?Fa,?Integer)

The number of states in Fa is Integer.

57



12.1.2. fsa_states_set(+Fa,?States)

States is an ordered list of integers: all states in Fa.

12.1.3. fsa_state(+Fa,?State)

State is a state in Fa.

12.1.4. fsa_start_states(?Fa,?StartStates)

StartStates is the ordered list of start states of Fa.

12.1.5. fsa_start_state(+Fa,?StartState)

StartState is a start states of Fa.

12.1.6. fsa_final_states(?Fa,?FinalStates)

FinalStates is the ordered list of final states of Fa.

12.1.7. fsa_final_state(+Fa,?FinalState)

FinalState is a final states of Fa.

12.1.8. fsa_transitions(?Fa,?Trans)

Trans is the ordered list of transitions of Fa.

12.1.9. fsa_transition(+Fa,?P,?Sym,?Q)

In Fa there is a transition from P to Q with symbol(pair) Sym.

12.1.10. fsa_jumps(?Fa,?Jumps)

Jumps is the ordered list of jumps of Fa.

12.1.11. fsa_jump(+Fa,?P,?Q)

In Fa there is a jump from P to Q.

12.1.12. 
fsa_construct([[+Symbols,]+NumberStates,]+Starts,+Finals,+Trans,+Jumps,-Fa)

Predicate to construct a finite automaton on the basis of lists of start states, final states,
transitions and jumps. These lists need not be ordered. It’s somewhat more efficient to specify
the number of states, if known. It’s even more efficient if you also know the symbols
data-structure you want for Fa.
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12.1.13. 
fsa_components(?Symbols,?Length,?Starts,?Finals,?Trans,?Jumps,?Fa)

Predicate to construct an automaton on the basis of its components, or to query the
components of a given automaton. The difference with fsa_construct/7 is that Starts, Finals,
Trans and Jumps must be sorted already.

12.1.14. 
fsa_construct_rename_states([+Symbols,]+Starts,+Finals,+Trans,+Jumps,-Fa)

Predicate to construct a finite automaton on the basis of lists of start states, final states,
transitions and jumps. These lists need not be ordered. Moreover, state names can be arbitrary
Prolog terms. These state names will be renamed to integers. Symbol list is computed on the
basis of Trans. Sigma is determined by the current default predicate module (i.e. by flag
*pred_module*).. It’s more efficient if you also know the symbols data-structure you want for
Fa. Some checking on these symbols is performed nevertheless.

12.1.15. fsa_copy_except(+Key,?Fa0,?Fa1,?Part0,?Part1)

This predicate unifies Fa0 and Fa1 except for the part specified by Key. Part must be one of
the atoms symbols, states, start_states, final_states, transitions, jumps. Part0 and Part1 are the
corresponding parts in Fa0 and Fa1.

12.1.16. fsa_type(+Fa,?Type)

Type is the type of the automaton Fa, where type is one of recognizer, transducer(letter), 
transducer(sequence)

13. fsa_dict: Dictionaries and Perfect Hashes
This module provides predicates to create (acyclic) finite automata on the basis of a set of
strings. This can be used to implement word lists and perfect hashes.

A perfect hash is a hash in which each key is associated with a unique hash code: the rank of
the key in the alphabetic ordering of the set of keys. This is possible by providing an
enumeration of all keys in advance. For instance, if you provided the strings:

voordeur

achterdeur

voor

achter
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then a string-to-weight transducer will be constructed which maps achter to 0, achterdeur to
1, voor to 2, and voordeur to 3.

13.1. List of Predicates

This section lists the predicates defined by this module.

13.1.1. fsa_dict_to_perfect_hash(+ListOfStrings,-Fa)

A string-to-weight transducer Fa will be constructed implementing the perfect hash for the
ListOfStrings; i.e. the transducer maps each string to its rank (in alphabetic order), and does
not accept any string not listed in ListOfStrings. The transducer is (w_)minimal.

13.1.2. fsa_dict_to_perfect_hash_file(+FileIn,+FileOut)

FileIn is assumed to contain a set of strings: each line is a string. A string-to-weight
transducer will be written to FileOut implementing the perfect hash for the set of strings read
from FileIn: i.e. the transducer maps each string to its rank (in alphabetic order), and does not
accept any string not listed in FileIn. The transducer is (w_)minimal.

13.1.3. fsa_dict_to_fsa(+ListOfStrings,-Fa)

A minimal recognizer Fa will be constructed recognizing exactly the strings in ListOfStrings

13.1.4. fsa_dict_to_fsa_file(+FileIn,+FileOut)

FileIn is assumed to contain a set of strings: each line is a string. A minimal automaton
recognizing exactly those strings is written to FileOut

14. fsa_frozen: Predicates on symbols: fsa_frozen
This module is one of the standard ‘predicate’ modules. It provides a consistent set of
predicate_declarations. This predicate module is the module of choice if you are not
interested in predicates on symbols, and you don’t need the ?/0 any symbol operator.

The module only has a restricted set of predicate_declarations; most notably it lacks
definitions for true/1 and therefore the use of the any symbol ?/0 operator is not allowed (and
neither the corresponding complement ~/1 operator).

This predicate module is used internally for treating transducers temporarily as recognizers;
e.g. if you want to determinize a transducer as if it were a recognizer by viewing each
transition pair as an atomic unit.
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15. fsa_globals: Global Variables
This section lists the predicates of the fsa_globals module. This module maintains a number
of global variables for FSA. These variables are maintained using the blackboard primitives
of SICStus; all variables live in the fsa module.

15.1. List of Predicates

This section lists the predicates defined by this module.

15.1.1. fsa_global_set(+Key,?Val)

Predicate to set the global variable with name Key to *Val*.

15.1.2. fsa_global_get(+Key,?Val)

Predicate to query the value of the global variable with name *Key*. If the value is undefined
then Val is unified to a default value. These default values are available as the third argument
of the fsa_global_decl predicate.

15.1.3. fsa_global_decl(?Key,?Help,?Default,?Typical,Val^Goal)

Key is a global variable with default value *Default*. Some typical values are given in the list
*Typical*. Help is a string explaining the variable. Val^Goal can be used to check that Val is
an appropriate value for this flag.

15.1.4. fsa_global_list[-List]

List  will be unified with a keylist of all the global variables with their associated values. If no
argument is given, then this list is written to standard output

15.1.5. fsa_version

FSA version information is displayed on standard error. Note that the version information is
available through the fsa_version global variable.

15.1.6. fsa_host_prolog(?Atom)

Atom is an atom indicating the current Prolog system. At the moment Atom is one of
*sicstus*, *yap*, or *swi*.
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16. fsa_hash: Non-updatable Hashes (N+K trees)
This module provides a non-updatable hash datastructure, on top of the fsa_array module.

Here’s an overview of the predicates provided:

fsa_hash_new/[1,2]          create a new non-updatable hash

fsa_hash_access/[3,4]       access a value in a non-updatable hash

fsa_hash_get/3              get a value in a non-updatable hash

The hash function is taken from library(terms). The default size of the hashes is determined
by the global variable *hash_size*.

16.1. List of Predicates

This section lists the predicates defined by this module.

16.1.1. fsa_hash_new(-FsaHash[,Size])

Initializes a new FsaHash with size Size; or default size if there is no second argument. The
default size is given by the global variable *hash_size*.

16.1.2. fsa_hash_access(+Key,?Val[,?Default],+FsaHash)

Unifies Val with the value associated with Key in FsaHash. Note that keys must be ground
Prolog terms. For the 4-ary form, if Key had no associated value, then Default is unified with
Val (and Key is not added to the table).

16.1.3. fsa_hash_to_keylist(+HashedFsaArray,-Keylist)

Keylist is a list of all the Key-Value pairs in HashedFsaArray.

17. fsa_interpreter: Applying Finite Automata
The fsa_interpreter contains various predicates to interpret finite automata. The following
global variables influence the fsa_interpreter module:

interpreter

length_max

symbol_separator
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symbol_separator_in

symbol_separator_out

nr_sol_max

17.1. List of Predicates

This section lists the predicates defined by this module.

17.1.1. fsa_regex_accepts(+Atom,+String)

Succeeds if String is accepted by the regular expression in Atom. For example:

fsa_regex_accepts(’[{a,b}*,b,a,b,{a,b}*]’,"abbbbabababa").

17.1.2. fsa_regex_transduces(+Atom,+String0,?String)

String is a transduction of String0 according to the regular expression in Atom. Example:

fsa_regex_transduces(’a:b’,"a",L).

L = [98] ?

17.1.3. fsa_regex_transduces_w(+Atom,+String0,?Weight)

String is a transduction of String0 according to the regular expression in Atom. Example:

fsa_regex_transduces_w(’[a:3,b:1*]’,"abbb",L).

L = 6 ?

17.1.4. fsa_accepts(+String,+Fa)

This predicate can be used both to recognize a given string or to produce a string according to
Fa. This is why we use dif/2 below. We prefer functionality over efficiency here; note that the
compiler-to-prolog implements the same functionality.

Making this code faster could be done for instance by indexing on source state and symbol.
For deterministic automata, use the compiler-to-c for a fast and compact recognizer.

Since input can be non-deterministic we check for epsilon-cycles (the fifth argument of
accepts/6 is a list of states visited after last consumption of input). Again, there are cases
where it would make more sense to pre-compute efree automata first. But if that’s the case
you could do it, right?
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17.1.5. fsa_transduces(+StringIn,?StringOut,+Fa)

StringOut is a transduction of StringIn according to transducer Fa.

This predicate employs a meta-notation in cases where loop-checking encounters a cycle. In
that case the notation

|N+|

is written into the output string indicating that the previous N symbols could be repeated here
as many times as desired. For example, consider the simple regular expression mapping an a
to one or more b’s:

a:(b+)

If a transduction is request for input string a, then the following outputs occur:

b
bb|1+|

In the second output string the meta-notation indicates that the second b could be repeated
multiple times.

Many of the same remarks wrt fsa_accepts/2 apply here: works for non-instantiated input
(lists with variable elements work OK, but variable length lists typically don’t). Also takes
care of identity constraints in the transducer, including delayed identity constraints and too
early identity constraints, by using a non-proper implementation of queues which allow
dequeue-ing before enqueue-ing! Examples to try, using the fsa_preds predicate module:

t_minimize([a:b,class(a..f)])

t_minimize({[a:b,?,?,?,?,?,b],[a:c,?,?,?,?,?,c]})

I think this is neat.

17.1.6. fsa_transduces_w(+String,?Weight,+Fa)

Weight is the weight assigned to String by Fa.

Similar to fsa_accepts/2 and fsa_transduces/3 above. However, we assume that there are no
identity constraints. Loop-checking for [] input, but no meta-notation in output: we simply
produce the minimum in such cases. That seems to be appropriate in most applications (?).
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17.1.7. fsa_regex_approx_accepts(+String,+Regex,-Recipe)

String is a Prolog string, and Regex is an atom that will be parsed as a regular expression. The
system will match String approximately to that regular expression, returning each of the
matches which require a minimal number of substitutions, insertions, deletions, and
transpositions. A match is given by a recipe which is a list of Prolog terms as follows:

P:d        deletion at position P
P:i(Pred) insertion of symbol for which Pred is true, at P
P:s(Pred) substitution of symbol for which Pred is true, at P
P:t        transposition at position P

where P refers to the position in the sequence of symbols extracted from String where the
corresponding edit operation takes place.

17.1.8. fsa_approx_accepts(+String,+Fa,-Recipe)

String is a Prolog string, and Fa is a finite automaton. The system will match String
approximately to this Fa, returning each of the matches which require a minimal number of
substitutions, insertions, deletions, and transpositions. A match is given by a recipe which is a
list of Prolog terms as follows:

P:d        deletion at position P
P:i(Pred) insertion of symbol for which Pred is true, at P
P:s(Pred) substitution of symbol for which Pred is true, at P
P:t        transposition at position P

where P refers to the position in the sequence of symbols extracted from String where the
corresponding edit operation takes place.

17.1.9. fsa_regex_approx_transduces(+String0,+Regex,+String)

String0 and String is a Prolog string, Regex is an atom that will be parsed as a regular
expression denoting a string to string transducer. The system will match String0
approximately to the domain of the regular expression, and return each of the transductions of
these approximate matches.

17.1.10. fsa_approx_transduces(+String0,+Fa,+String)

String0 and String is a Prolog string, Fa a string to string transducer. The system will match
String0 approximately to the domain of Fa, and return each of the transductions of these
approximate matches.
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17.1.11. fsa_regex_approx_transduces_w(+String0,+Regex,+String)

String0 and String is a Prolog string, Regex is an atom that will be parsed as a regular
expression denoting a string-to-weight transducer. The system will match String0
approximately to the domain of the regular expression, and return each of the transductions of
these approximate matches.

17.1.12. fsa_approx_transduces_w(+String0,+Fa,+String)

String0 and String is a Prolog string, Fa a string to weight transducer. The system will match
String0 approximately to the domain of Fa, and return each of the transductions of these
approximate matches.

18. fsa_io: Reading and Writing Finite State Automata
This module provides predicates to read and write finite automata in a variety of formats. The
defaul format for reading is determined by the global variable *read*. The default format for
writing is determined by the global variable *write*.

The following formats are available both for reading and writing:

fast. Binary format of the normal format. Uses library(fastrw). Much faster reading and
writing of automata. Drawback: binary files.

normal. Internal representation (single Prolog term).

old. Prolog program defining clauses start/1, final/2, trans/3, jump/2. A variant of this
was used by FSA2 and FSA3, but it is still useful, for instance, if you want to input
automata directly, rather than by means of regular expressions.

fsm. Format of automata as used in AT&T’s fsm library.

compact. text format, fairly compact. Slow (especially for output).

For writing, the following additional formats are available:

ps (PostScript)

vcg (input to the Xvcg graph visualization tool)

davinci (input to the DaVinci graph visualization tool)

tk (starts a interactive tcl/tk widget)

dot (input for the GraphViz visualization tools dot and dotty)
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pstricks (LaTeX code to be included in a document; requires pstricks macro’s)

latex (LaTeX document; requires pstricks macro’s).

prolog (Prolog program; interface to fsa_compiler module).

c, t_c, w_c (C program; interface to fsa_compiler_to_c module), resp. for recognizers,
string-string-transducers and string-weight transducers.

java, t_java, w_java (JAVA program; interface to fsa_java module), resp. for
recognizers, string-string-transducers and string-weight transducers.

fsm. Format of automata as used in AT&T’s fsm library. Experimental.

The normal format is the internal format used in FSA6. The module fsa_data provides a
consistent interface to this format.

Here is a table indicating the relative speed of the standard input and output formats:

format      compact    fast     normal
writing          20       1          4
reading           5       1          4

Here is a table indicating the relative size of the standard input and output formats (measured
in bytes):

compact    fast     normal
      1     1.8        1.6

18.1. Description of I/O formats

This section describes the various I/O formats.

18.1.1. The normal format

In the normal format, a finite automaton is a single Prolog term

fa(Symbols,States,Starts,Finals,Transs,Jumps).

Symbols is a term r(Sig) (for recognizers) or t(SigD,SigR) for transducers. Here *Sig*,
*SigD*, SigR are the predicate modules.

States is an integer indicating the number of states in the automaton.

Starts is an ordered list of integers indicating the start states of the automaton.
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Finals is an ordered list of integers indicating the final states of the automaton.

Transs is an ordered list of triples trans(A,B,C) where A and C are integers indicating source
and target state, and B is a symbol (recognizers) or a symbol pair InSym/OutSym
(transducers). InSym is a symbol or the empty list. OutSym is a symbol or a (possibly
empty) list of symbols.

Jumps is an ordered list of pairs jump(A,B) where A and B are integers indicating source and
target state. This implies there is an epsilon transition from A to *B*.

18.1.2. The old format

In the old format a finite automaton is given as a Prolog program. The automaton is defined
by clauses for the predicates:

start(State)

final(State)

trans(State0,Sym,State)

jump(State0,State)

Note that in this format states can be are arbitrary ground Prolog terms (these will be
converted to integers). In the case of transducers, Sym is a pair Left/Right. The empty list [] is
used to indicate the empty string. In the case of sequential transducers, Right must be a list of 
symbols.

18.1.3. The compact format

The compact format fairly closely follows the normal format. See the documentation on the 
normal format in the fsa_data module for more information. In this format a file is an
ordinary text file. The format is intended to be used for machines only, and is not very helpful
for human consumption.

The first line of the file is the string "fsa6". This is used to differentiate the file from the
pre-fsa6 compact formats (which can still be read-in).

The second line is the letter r  for recognizers or t for transducers.

For recognizers, the third line is the name of the predicate module.

For transducers, there are two such lines. The first line defines the domain predicate
module, the second line the range predicate module.

The next line is an integer indicating the number of states
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The next line is an ordered sequence of integers, separated by tabs, indicating the start 
states

The next line is an ordered sequence of integers, separated by tabs, indicating the final 
states

The next lines each represent a transition, until an empty line is encountered. The
transitions are ordered. Each transition is a triple State Symbol State. Seperator is the tab
again. States are integers. Symbols are readable as Prolog terms (recognizers) or pairs of
In/Out, where In is a term and Out is either a single term or a list of terms. If the source
state is identical to the source state of the previous line, it can be left out. If the symbol is
identical as well, then it can be left out as well.

The next lines are jumps. Jumps are ordered. Each line consists of two states separated
by a tab. If the source state is identical to the source state of the previous line, it can be
left out. If the symbol is identical as well, then it can be left out as well.

Example:

fsa write=compact -r ’[class(a..f),{g,h}]’

fsa6
r
fsa_preds
3
0
1
0       in([a,b,c,d,e,f])       2
2       g       1
        h       1

18.1.4. The fast format

The fast format uses the same Prolog term representation as the normal format, except that
library(fastrw) is used to read and write the Prolog term. This implies that reading and writing
of automata in this format is very fast; the disadvantage is that fast is a binary format and
therefore cannot be (easily) treated by other programs.

18.2. List of Predicates

This section lists the predicates defined by this module.
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18.2.1. copy_fa(+File0,+File1).

The automaton in File0 is copied to File1. Useful to convert between different formats, by
setting the read and write  global variables.

18.2.2. fsa_read_file([+Format,]+File,?Fa)

Fa is read from File. If Format is unspecified the value of the global variable read is taken as
the input format.

18.2.3. fsa_write_file([+Format,]+File,+Fa)

Fa is written to File. If Format is unspecified the value of the global variable write  is taken as
the input format.

19. fsa_java: JAVA Code Generation
This module provides predicates to create JAVA code on the basis of a finite automaton.
There are certain restrictions to the input automaton. The automaton must be:

deterministic (for input)

each symbol is a one-letter atom

predicates are automatically expanded to each of the symbols with character number
1-255, except for number 10 (new-line), since new-line is used as a separator in the final 
program.

Note that meta-symbol expansion only works for recognizers and letter transducers. In
particular, it does not work for transducers which are the result of t_determinization or
t_minimization. Therefore in such cases you need to appy
t_determinization/t_minimization to the result of applying an appropriate sigma/3 
operation.

The compiler performs the following operation to ensure that the above conditions hold:

recognizers:     m(expand_predicates(Sig* & fa(Fa0)))

string to string transducers:     t_minimize(expand_predicates(Sig* o fa(Fa0) o Sig*))

string to weight transducers:     w_minimize(expand_predicates(Sig* o fa(Fa0))

where Sig is equivalent to the union of all one-letter atoms, and Fa0 is the input automaton.

The JAVA program will define a class (named in accordance with the given output file name)
which inherits from Applet. The class defines the method:
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static void main(String argv[])

The instance itself is an applet in which you can write strings which are checked against the 
automaton.

either starts a graphical user interface in which you can input strings (if the option -w is the
single option), or reads lines from standard input and writes the result of applying the
automaton to standard output.

public void gui();

starts a graphical user interface in which you can input strings.

public DFA automaton();

returns the automaton part of the applet. This DFA class in turn defines the following 
methods:

public boolean Recognizer();
public boolean Transducer();
public boolean WeightedRecognizer();
public boolean WeightedTransducer();

As well as:

public void filter ()

reads lines from standard input and displays the result of running each line through the
automaton to standard output.

public boolean accepts ( String in )
public String transduces ( String in )
public Integer weighs ( String in )

The ‘main’ method is provided only if the global variable java_with_main is set to on.

The representation of a finite-automaton in JAVA is similar to the technique explained on
page 43 (table 4.2) of Jan Daciuk’s dissertation ‘Incremental Construction of Finite-State
Automata and Transducers and their use in the Natural Language Processing’. Politechnika
Gdanska, 1998, except that instead of the number of transitions we have a boolean flag
indicating for each line whether that line is the last transition for the current state.

19.1. List of Predicates

This section lists the predicates defined by this module.
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19.1.1. fsa_java(+FileIn,+FileOut)

A JAVA program is written to FileOut for the recognizer read from FileIn. The JAVA
program will read lines from standard input and report for each line whether the string is
accepted or not.

19.1.2. fsa_java_t(+FileIn,+FileOut)

A JAVA program is written to FileOut for the string-to-string transducer read from FileIn.
The JAVA program will read lines from standard input and report for each line the 
transduction.

19.1.3. fsa_java_w(+FileIn,+FileOut)

A JAVA program is written to FileOut for the string-to-weight transducer read from FileIn.
The JAVA program will read lines from standard input and report for each line the 
transduction.

20. fsa_m_array: Mutable Arrays
This module provides a mutable array datastructure. The arrays are implemented using
O’Keefe’s N+K trees, with N=127 and K=32.

NB. Array indices start at 0: so 0 refers to the first element of the array.

Here’s an overview of the predicates provided:

MutableFsaArray:

fsa_m_array_new/[1,2]       create a new mutable array

fsa_m_array_get/3           lookup a value from a mutable array

fsa_m_array_put/[3,5]       update a value in a mutable array

The N+K tree data-structure is described in The Craft of Prolog, by Richard A. O’Keefe, MIT
Press, 1990, chapters 4.5. and 4.6.

20.1. List of Predicates

This section lists the predicates defined by this module.
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20.1.1. fsa_m_array_new(-MutableFsaArray,[+Size])

Initializes MutableFsaArray as a new mutable array.

20.1.2. fsa_m_array_get(+Index,?Val[,?Default],+MutableFsaArray)

Val is unified with the Index’th entry in MutableFsaArray. The predicate succeeds if that
entry has not yet been set, without binding Val (first form); or it binds Val to Default (second 
form).

20.1.3. fsa_m_array_put(+Index,?Val,+MutableFsaArray) 
fsa_m_array_put(+Index,?ValOld,?ValDefault,?Val,+MutableFsaArray)

The Index’th entry in MutableFsaArray is updated to Val (using the SICStus built-in
update_mutable/create_mutable). ValOld will be bound to the old value, or to ValDefault if
no value existed.

21. fsa_m_hash: Mutable Hashes
This module provides a mutable hash datastructure on top of the fsa_hash datastructure.

Here’s an overview of the predicates provided:

fsa_m_hash_new/[1,2]        create a new mutable hash

fsa_m_hash_get/3            lookup a value from a mutable hash

fsa_m_hash_put/[3,5]        update a value in a mutable hash

21.1. List of Predicates

This section lists the predicates defined by this module.

21.1.1. fsa_m_hash_new(-MutableFsaHash[,Size])

Initializes a new MutableFsaHash with size Size; or default size if there is no second
argument. The default is determined by the global variable *hash_size*.

21.1.2. fsa_m_hash_get(+Key,?Val,+MutableFsaHash) 
fsa_m_hash_get(+Key,?Val,?Default,+MutableFsaHash)

Val is unified with the value associated with Key in MutableFsaHash. If no such key exists in
MutableFsaHash already, then the predicate succeeds without binding Val (in the first form)
or unifies Val and Default (second form).
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21.1.3. fsa_m_hash_put(+Key,?Val,+MutableFsaHash) 
fsa_m_hash_put(+Key,?OldVal,?Default,?Val,+MutableFsaHash)

The value associated with Key in MutableFsaHash is updated to Val (using the SICStus
built-in update_mutable). OldVal is unified with the old value (it it existed) or with Default (if
it didn’t exist).

22. fsa_minimum_path: Minimum Weight Path in 
Transducers
This module implements a generalization of Dijkstra’s algorithm to find the minimum weight
path in a given transducer. The algorithm for transducers are implemented in a fully general
way, i.e., for various types of transducers (cf. the various semiring modules).

The implementation is more general than the predicates provided by the SICStus libraries for
graphs. And much more efficient, even though the agenda is not maintained as a heap (the
latter decision was caused by the fact that it would be hard to implement such a heap
efficiently for the various types of transducers with their corresponding ‘minimum’ 
definitions).

22.1. List of Predicates

This section lists the predicates defined by this module.

22.1.1. fsa_minimum_path_file(+Flag,+InFile)

Reports on standard output the minimum weight path in the transducer read from InFile. Flag
is an atom indicating the type of transducer.

22.1.2. fsa_minimum_path(+Fa[,-Path],+Flag)

Reports on standard output (if Path is not present) or instantiates Path to the minimum weight
path in the transducer Fa. Flag is an atom indicating the type of transducer.

22.1.3. fsa_minimum_path_array(+Fa,-Array,+Flag)

Array will be instantiated to an UpdatableFsaArray (cf. module fsa_arrays) indicating for
each state in the transducer Fa the minimum cost from that state to a final state. Flag is an
atom indicating the type of transducer.
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23. fsa_preds: Predicates on symbols: fsa_preds
This module is one of the standard ‘predicate’ modules. It provides a consistent set of 
predicate_declarations.

In this predicate module, it is assumed that labels in a finite automaton are associated with
sets of symbols (represented with in(List) and with negated sets of symbols, represented with
not_in(List). Singleton sets in([El]) are represented with El.

The negated sets are useful to provide a treatment of the any symbol ?/0 operator, in a way
which is functionally equivalent to the treatment of ?/0 in FSA5. For instance, the expression
? - a will result in an automaton with a transition over not_in([a]).

The module has a full set of predicate_declarations and can be used as a model for new,
user-defined task-specific predicate modules.

24. fsa_regex: Regular Expression Compiler
This module provides the regular expression compiler. Its public predicates are listed below.

24.1. List of Predicates

This section lists the predicates defined by this module.

24.1.1. fsa_load_aux_file(+File)

File is assumed to contain auxiliary regular expression operators. It is loaded in module
fsa_regex_aux and will be used for compiling regular expressions.

Note that your file with definitions of regular expression operators is compiled with the
special Prolog-syntax operators for regular expression notation loaded. Thus you can use * ..
& etc. in your definitions. Drawback is that you cannot use operator notation for e.g. the is/2 
predicate.

A typical auxiliary definition will be:

macro(vowel,{a,e,i,o,u}).

A slightly more interesting one:

macro(free(Expr), ~ $ Expr).

You can also explicitly construct an automaton yourself, e.g.:
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rx(my_operator(Expr),Fa) :-
    fsa_regex:rx(Expr,Fa0),
    my_operator_definition(Fa0,Fa).

so you can call fsa_regex:rx/2 for further compilations.

24.1.2. fsa_reconsult_aux_file(+File)

File is assumed to contain auxiliary regular expression operators. It is reconsulted in module
fsa_regex_aux and will be used for compiling regular expressions. Normally you want to use
fsa_load_aux_file instead. Use this predicate if you need to debug your Prolog definitions in 
File.

24.1.3. fsa_regex_atom_compile_file(+RegexAtom,+File)

RegexAtom is parsed as a regular expression. This expression is compiled to a finite
automaton which is written to File.

24.1.4. fsa_regex_atom_compile(+RegexAtom,+Fa)

RegexAtom is parsed as a regular expression. This expression is compiled to a finite
automaton Fa.

24.1.5. fsa_regex_read_compile_file(File)

A regular expression is read-in from standard input. The expression is compiled and the
resulting automaton is saved in file File.

24.1.6. fsa_regex_read_compile(-Fa)

A regular expression is read-in from standard input. The expression is compiled into an
automaton Fa.

24.1.7. fsa_regex_compile_file(+Expr,+File)

The regular expression Expr (ground Prolog term) is compiled into an automaton. The
automaton is saved into File.

24.1.8. fsa_regex_compile(+Term,-Fa) rx(+Term,-Fa)

Term is a regular expression. It is compiled into the automaton Fa. The first form is typically
used for a new regular expression compilation, whereas the second form is used for embedded
compilations (called from user definitions). The only difference is that during debugging the
depth of recursion is set to zero for the first form.
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25. fsa_strings: Types of Transducer: fsa_strings
The determinization, minimization and minimum path algorithms for transducers are
implemented in a fully general way, i.e., for various types of transducers. For each supported
type, a number of predicates must be defined in a special semiring module *Type*. This
module supplies the definitions for the fsa_strings semiring, which is used for ‘ordinary’
string to string transducers.

26. fsa_u_array: Updatable Arrays (15+16 trees)
This module provides an updatable array datastructure. The arrays are implemented using
O’Keefe’s N+K trees, with N=15 and K=16.

NB. Array indices start at 0: so 0 refers to the first element of the array.

Here’s an overview of the predicates provided:

fsa_u_array_new/[1,2]       create a new updatable array

fsa_u_array_get/[3,4]       lookup a value from an updatable array

fsa_u_array_put/[4,5]       update a value in an updatable array

The N+K tree data-structure is described in The Craft of Prolog, by Richard A. O’Keefe, MIT
Press, 1990, chapters 4.5. and 4.6.

26.1. List of Predicates

This section lists the predicates defined by this module.

26.1.1. fsa_u_array_new(-UpdatableFsaArray[,?Size])

Initializes UpdatableFsaArray as a new mutable array. In this implementation the optional
Size argument is not used.

26.1.2. fsa_u_array_get(+Index,?Val[,?Default,]+UpdatableFsaArray)

Val is unified with the Index’th entry in UpdatableFsaArray.

26.1.3. 
fsa_u_array_put(+Index[,?OldVal],?Val,+UpdatableFsaArray0,?UpdatableFsaArray)

The Index’th entry in UpdatableFsaArray0 is updated to Val; UpdatableFsaArray is the
resulting new array. OldVal is unified with the old value of Index.
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27. fsa_u_hash: Updatable Hashes
This module provides an updatable hash data-structure on top of the updatable array 
datastructure.

Here’s an overview of the predicates provided:

fsa_u_hash_new/[1,2]        create a new updatable hash

fsa_u_hash_get/3            lookup a value from an updatable hash

fsa_u_hash_put/[4,6]        update a value in an updatable hash

The hash function is taken from library(terms). The default size of the hashes is determined
by the global variable *hash_size*.

27.1. List of Predicates

This section lists the predicates defined by this module.

27.1.1. fsa_u_hash_new(-UpdatableFsaHash[,Size])

Initializes a new UpdatableFsaHash with size Size; or default size if there is no second
argument. The default size is determined by the global variable *hash_size*.

27.1.2. fsa_u_hash_get(+Key,?Val,+UpdatableFsaHash)

Val is unified with the value associated with Key in UpdatableFsaHash. If no such key exists
in UpdatableFsaHash already, then the predicate fails.

27.1.3. 
fsa_u_hash_put(+Key,?Val,+UpdatableFsaHash0,?UpdatableFsaHash) 
fsa_u_hash_put(+Key,?OldVal,?Default,?Val,+UpdatableFsaHash0,?UpdatableFsaHash)

The value associated with Key in UpdatableFsaHash0 is updated to Val, resulting in the new
hash UpdatableFsaHash. OldVal is unified with the old value (it it existed) or with Default (if
it didn’t exist).

28. fsa_visualization: Visualization of Finite Automata
This module provides various predicates to visualize finite automata. Visualization is
provided through interfaces with generic graph visualization tools (GraphViz, VCG,
DaVinci), but there is also a built-in graph visualization algorithm with output in LaTeX or
Postscript. The following global variables influence visualization:
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display_unused_states

no_display_beyond

v_algorithm

v_tree_depth

v_ycoord

v_xdist

pstricks_style

v_angle

postscript_res

28.1. List of Predicates

This section lists the predicates defined by this module.

28.1.1. fsa_davinci(+File0,+File) fsa_davinci(+Fa)

In the first variant, a representation accepted by the daVinci graph visualization program is
written to File on the basis of the automaton read from File0. In the second form, the
representation for Fa is written to standard output.

28.1.2. fsa_dot(+File0,+File) fsa_dot(+Fa)

In the first variant, a representation accepted by the dot / GraphViz graph visualization
program is written to File on the basis of the automaton read from File0. In the second form,
the representation for Fa is written to standard output.

28.1.3. fsa_vcg(+File0,+File) fsa_vcg(+Fa)

In the first variant, a representation accepted by the vcg graph visualization program is written
to File on the basis of the automaton read from File0. In the second form, the representation
for Fa is written to standard output.

28.1.4. fsa_pstricks_picture(+File0,+File)

A piece of LaTeX code with pstricks macro’s which produces a picture of the automaton read
from File0 is written to File. This LaTeX code is supposed to be included in a full LaTeX
document. The global variable pstricks_style influences the result.
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28.1.5. fsa_pstricks_tex(+File0,+File)

A standalone LaTeX document with pstricks macro’s which produces a picture of the
automaton read from File0 is written to File. The global variable pstricks_style influences the 
result.

28.1.6. fsa_postscript(+File0,+File)

Postscript code which produces visualization of automaton read from File0 is written to File.
The Postscript macro’s are due to Peter Kleiweg. The global variable postscript_res can be set
to indicate whether output is meant to be displayed on the screen, or printed.

28.1.7. fsa_visualization(+Format,+Fa)

Starts an external visualization program visualizing Fa. Format indicates what program is to
be used and must be one of:

vcg

dot_ghostview (dot -Tps | gv )

pstricks_ghostview (latex ; dvips ; gv)

dotty

davinci

29. fsa_weights: Types of Transducer: fsa_weights
The determinization, minimization and minimum path algorithms for transducers are
implemented in a fully general way, i.e., for various types of transducers. For each supported
type, a number of predicates must be defined in a special semiring module *Type*. This
module supplies the definitions for the fsa_weights semiring, which is used for string to
weight transducers, i.e. weighted recognizers.

30. help: The Help System
The help module provides support to create both on-line and off-line documentation on
Prolog programs. Documentation must be defined by the hook predicate help_info/4.
Documentation on a per module basis is provided if a
help_info(module,Module,TitleString,DescriptionString) definition is given for Module. In
that case the system also checks for Module:help_info/4 definitions.

The module supports production of the help information on standard output, (which can be
converted into html format), and there also is an interface to a graphical user interface based
on library(tcltk).
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30.1. List of Hook Predicates

This section lists the hook predicates which an application can define for the help module.

30.1.1. help_info(Class,Key,Usage,Expl)

Provides help information for Class and Key (both must be atoms). Usage and Expl are
Prolog strings. Typically the Usage string is a short summary, and Expl is a longer
explanation. Class is typically pred, hook, flag, command, option, etc. Note that each module
can have its own help_info predicates. You can also define user:help_info/4 declarations on
the special class module. In that case, if a full documentation on a module is requested the
Usage string is used as the title and the Expl string as an introduction to the module. There
can also be Module:help_info/4 declarations on the special class ‘class’. If a full listing on a
class in Module is requested, then Usage and Expl are used as the title and introduction to that 
section.

30.2. List of Predicates

This section lists the predicates defined by the help module.

30.2.1. help_listing

Lists all help information.

30.2.2. help/help(Module)/help(Module,Class)

Use help/0 to see for which modules help is available. Use help/1 for an overview which
classes are available for a given module. Use help(Module,Class) to see for which keys help
is available.

30.2.3. help_module[(M)]

Use help_module(M) for a full listing of the help information available on module M.
Without M uses module user.

30.2.4. help_class(C[,M])

Use help_class(C,M) for a full listing of the help information available for class C in module
M. Without M module user is assumed.

30.2.5. help_key(K[,C[,M]])

Use help_key(K,C,M) for a full listing of the help information available for key K in class C
in module M. If C (and M) are not given, then use variable for C (and M).
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30.2.6. help_add_to_menu(Menu,Interp)

Interface of the help system and a graphical user interface based on library(tcltk). Menu must
be a menu already existing for Tcl/Tk interpreter Interp. The various help messages are added
as cascaded menu entries in Menu. Cf. also the help/1 predicate and the help_info/4 hook 
predicate.

31. map_bbbtree: Balanced Binary Trees: Maps
This module implements maps using bounded balanced binary trees. It is adapted from
set_bbbtree, which itself is adapted from the Mercury version. The original of that version is
available from http://www.cs.mu.oz.au/research/mercury/. That
implementation is based on ‘Functional Pearls: Efficient sets -a balancing act’ by Stephen
Adams, J. Functional Programming 3 (4): 553-561, Oct 1993.

A map is a set of key/value pairs, such that each key is associated with at most one value.
Keys are required to be ground. The typical operations on maps such as lookup the value of a
given key are O(log n) where n is the number of pairs in the map. A potentially more efficient
implementation of maps is provided by the *fsa_hash*, fsa_m_hash and fsa_u_hash 
modules.

31.1. List of Predicates

This section lists the predicates defined by this module.

31.1.1. map_bbbtree__init(?Bbbtree)

Initializes Bbbtree as an empty map.

31.1.2. map_bbbtree__empty(?Bbbtree)

Bbbtree is an empty map.

31.1.3. map_bbbtree__size(+Bbbtree,?Size)

Size is the number of pairs in map *Bbbtree*.

31.1.4. map_bbbtree__get(+Key,?Val,+Bbbtree)

Val is the value associated with Key in the map *Bbbtree*. This predicate fails if Key is not a
key of *Bbbtree*.
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31.1.5. map_bbbtree__least(+Bbbtree,?Least,?Val)

Key is the least key in Bbbtree (using the standard order ordering of terms. Its value is 
*Val*.

31.1.6. map_bbbtree__largest(+Bbbtree,?Largest,?Val)

Key is the largest key in Bbbtree (using the standard order ordering of terms. Its value is 
*Val*.

31.1.7. map_bbbtree__put(+Key,?Val,+Bbbtree0,-Bbbtree)

Bbbtree is the same map as *Bbbtree0*, except that Key is now associated with *Val*.

31.1.8. map_bbbtree__put_list(+Bbbtree0,+KeyValList,-Bbbtree

Bbbtree is the same map as *Bbbtree0*, except that each of the key-value pairs in 
KeyValList  are in *Bbbtree*.

31.1.9. map_bbbtree__delete(+Bbbtree0,+Key,-Bbbtree)

*Bbbtree is the result of removing Key and its associated value from *Bbbtree0*. Succeeds if 
Key was not a key of Bbbtree0 (cf map_bbbtree__remove).

31.1.10. map_bbbtree__delete_list(+Keys,+Bbbtree0,-Bbbtree)

Bbbtree is the result of deleting all keys Keys with associated values from *Bbbtree0*. These
keys are not required to exist in Bbbtree0 (cf map_bbbtree__remove_list).

31.1.11. map_bbbtree__remove(+Bbbtree0,+Key,-Bbbtree)

*Bbbtree is the result of removing Key and its associated value from *Bbbtree0*. Fails if Key
was not a key of Bbbtree0 (cf map_bbbtree__delete).

31.1.12. map_bbbtree__remove_list(+Keys,+Bbbtree0,-Bbbtree)

Bbbtree is the result of removing all keys Keys with associated values from *Bbbtree0*.
These keys are required to exist in Bbbtree0 (cf map_bbbtree__delete_list).

31.1.13. map_bbbtree__remove_least(+Bbbtree0,?Key,?Val,-Bbbtree)

Key is the least key in Bbbtree0 (using standard ordering of terms). Its value is *Value*. 
Bbbtree is the same map as Bbbtree0 except that Key is removed.
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31.1.14. 
map_bbbtree__remove_largest(+Bbbtree0,?Key,?Val,-Bbbtree)

Key is the largest key in Bbbtree0 (using standard ordering of terms). Its value is *Value*. 
Bbbtree is the same map as Bbbtree0 except that Key is removed.

31.1.15. map_bbbtree__list_to_map(+KeyValList,-Bbbtree)

Bbbtree is the map for the key-value pairs given as a list in *KeyValList.

31.1.16. 
map_bbbtree__sorted_list_to_map(+SortedKeyValueList,-Bbbtree)

SortedKeyValueList is a sorted list of key value pairs; *Bbbtree is the corresponding map.

31.1.17. 
map_bbbtree__sorted_list_to_map_len(+SortedKeyValueList,-Bbbtree,+Len)

SortedKeyValueList is a sorted list of key value pairs; *Bbbtree is the corresponding map. 
Len is the lenth of the list.

31.1.18. map_bbbtree__to_sorted_list(+Bbbtree,?SortedKeyValList)

SortedKeyValList is a sorted list of the key-value pairs in the map *Bbbtree*.

32. set_bbbtree: Balanced Binary Trees: Sets
This module implements sets using bounded balanced binary trees. It is adapted from the
Mercury version. The original is available from 
http://www.cs.mu.oz.au/research/mercury/. That implementation is based on
‘Functional Pearls: Efficient sets -a balancing act’ by Stephen Adams, J. Functional
Programming 3 (4): 553-561, Oct 1993.

32.1. List of Predicates

This section lists the predicates defined by this module.

32.1.1. set_bbbtree__init(?Bbbtree)

Bbbtree is initialized as an empty set.
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32.1.2. set_bbbtree__empty(?Bbbtree)

Succeeds if Bbbtree is the empty set.

32.1.3. set_bbbtree__non_empty(?Bbbtree)

Succeeds if Bbbtree is a non-empty set.

32.1.4. set_bbbtree__size(+Bbbtree,?Integer)

Integer is the cardinality of the set *Bbbtree*.

32.1.5. set_bbbtree__is_member(+El,+Bbbtree,?Bool)

Bool is the atom yes if El is an element of *Bbbtree*. Otherwise it is the atom *no*.

32.1.6. set_bbbtree__member(?El,+Bbbtree)

El is an element of *Bbbtree*. Can be used to enumerate all elements of *Bbbtree*.

32.1.7. set_bbbtree__least(+Bbbtree,?El)

El is the least element occurring in *Bbbtree*, using the standard ordering of terms.

32.1.8. set_bbbtree__largest(+Bbbtree,?El)

El is the largest element occurring in *Bbbtree*, using the standard ordering of terms.

32.1.9. set_bbbtree__singleton_set(?BbbTree,?El)

Bbbtree is a set with single element *El*.

32.1.10. set_bbbtree__equal(+BbbtreeA,+BbbtreeB)

BbbtreeA and BbbtreeB are the same sets.

32.1.11. set_bbbtree__insert(+BbbtreeA,+El,-BbbtreeB[,?New])

BbbtreeB is the result of inserting El in *BbbtreeA*. The optional fourth argument is the
atom yes if El is not an element of *BbbtreeA*; otherwise it is the atom *no*.

32.1.12. set_bbbtree__insert_list(+BbbtreeA,+List,-BbbtreeB)

BbbtreeB is the result of inserting each of the elements in List  to *BbbtreeA*.
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32.1.13. set_bbbtree__delete(+BbbtreeA,+El,-BbbtreeB

BbbtreeB is the result of removing the element El from *BbbtreeA*. The predicate succeeds
if El is not an element of BbbtreeA (cf. set_bbbtree__remove).

32.1.14. set_bbbtree__delete_list(+List,+BbbtreeA,-BbbtreeB)

*BbbtreeB is the result of deleting each of the elements of List  from *BbbtreeA*. The
elements are not required to be contained in BbbtreeA (cf. set_bbbtree__remove_list).

32.1.15. set_bbbtree__remove(+BbbtreeA,+El,-BbbtreeB

BbbtreeB is the result of removing the element El from *BbbtreeA*. The predicate fails if El
is not an element of BbbtreeA (cf. set_bbbtree__delete)

32.1.16. set_bbbtree__remove_list(+List,+BbbtreeA,-BbbtreeB)

*BbbtreeB is the result of deleting each of the elements of List  from *BbbtreeA*. The
elements are required to be contained in BbbtreeA (cf. set_bbbtree__delete_list).

32.1.17. set_bbbtree__remove_least(+BbbtreeA,?Least,-BbbtreeB)

BbbtreeB is the result of removing the least element Least from *BbbtreeA*, in the standard
ordering of terms.

32.1.18. set_bbbtree__remove_largest(+BbbtreeA,?Largest,-BbbtreeB)

BbbtreeB is the result of removing the largest element Largest from *BbbtreeA*, in the
standard ordering of terms.

32.1.19. set_bbbtree__list_to_set(+List,-Bbbtree)

Bbbtree is a set containing precisely all elements of *List*.

32.1.20. set_bbbtree__sorted_list_to_set(+SortedList,?Bbbtree)

Bbbtree is the set containing precisely the elements of *SortedList*.

32.1.21. 
set_bbbtree__sorted_list_to_set_len(+SortedList,?Bbbtree,+Len)

Bbbtree is the set containing precisely the elements of *SortedList*. Len is the length of 
*SortedList*.
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32.1.22. set_bbbtree__to_sorted_list(+Bbbtree,?SortedList)

SortedList is a sorted list of the elements of the set *Bbbtree*.

32.1.23. set_bbbtree__union(+BbbtreeA,+BbbtreeB,-BbbtreeC)

BbbtreeC is the union of BbbtreeA and *BbbtreeB*.

32.1.24. set_bbbtree__power_union(+Bbbtrees,-BbbtreeC)

Bbbtrees is a set of sets. BbbtreeC is the union of all of of these sets.

32.1.25. set_bbbtree__intersect(+BbbtreeA,+BbbtreeB,-BbbtreeC)

BbbtreeC is the intersection of BbbtreeA and *BbbtreeB*.

32.1.26. set_bbbtree__power_intersect(+Bbbtrees,-BbbtreeC)

Bbbtrees is a set of sets. BbbtreeC is the set containing the elements which occur in each of 
Bbbtrees

32.1.27. set_bbbtree__difference(+BbbtreeA,+BbbtreeB,-BbbtreeC)

BbbtreeC is the set BbbtreeA minus all elements of *BbbtreeB*.

32.1.28. set_bbbtree__subset(+BbbtreeA,+BbbtreeB)

BbbtreeA is a subset of *BbbtreeB*.

32.1.29. set_bbbtree__superset(+BbbtreeA,+BbbtreeB)

BbbtreeA is a superset of *BbbtreeB*.
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