FSA ReferenceManual

Table of Contents

[1. FSAG: Finite State Automata Utilities Versifn
[1.1 Functionality . . .

[1.1.1Constructing Finite Automata with ReguBxpressions .

[1.1.2Manipulating FiniteAutomata .
[1.1.3Applying Finite Automata.
[1.1.4Visualizing FiniteAutomata
[1.2How to use théoolbox
.3Examplep
[1.5Referencds .
[1.6 Papers usingSA
.7 Linkg

I

=
fo')
@)
@]

(@
=.

@,
=1

[1.9 Acknowledgements .
10Authoq. . . .

I

[2. The Commanthterpreter

.1.Syntax . . .
[2.2.Alias andHistoryf
[2.3.Prologgoals. e
[2.4. Starting and Stopping the commantkrpreter .

!

N
®
O

.6.% Words
.7.fc Fileg .

NI
o
c
3
y
2

.9.el Files .
.10.c Fileg.

NN
|y
Nff=
alla
e
2z

[2.13.libum Fileg.
[2.14.librc Fileg .
[2.15.libc Fileg

[2.16.libel Fileg .
[2.17.libld Fileg .

.19.qu

NERNN
NN =
H9|[<f| @
ol |le; <

D

. =l=s

e [
(@]

©
o)
D,

.22.nd

N
N
w

P .
[2.24.! Commanfl . .

[2.25.alias [NamdVal]]| . .
[2.26.help [Module [Clas$Key]]l| .
27.?2[Cm

N
o

OO WNNRERERPREPRP

[2.28.spy [Module]Pred .
2.29.cd[Dir

2.31.19 . . .))
[2.32.<any FSA startupption>

[3. The Graphical Usénterfacé .

[3.1.tk fsa file(+File)
[3.2.tk fsa(+F4d).
[3.3.tk regex(+Atom)
[3.4.tk rx(+Expr)

[4. GlobalVariables.

4.1.tkconsd
[4.2.tk fsa add help mehu.

[4.3.fsa tcl directory
[4.4.pred module

4.6.fa

4.7.hash_size .
[4.8.interactivg¢ .
[4.9.pstricks stylp
[4.10.v algorithn
[4.11.v tree depth .
4.12.v_angl¢

4.13.v xdis .
[4.14.v ycoord . . .

[4.15.display unused states.
[4.16.symbol separatpr .
[4.17.symbol separator qut .
[4.18.symbol separator |in
[4.19.nr sol mak
[4.20.length mak
[4.21.interpreter .

4.22.debug
[4.23.regex cache
[4.24.set randoin

[4.25.w determinizer minimum .

I

4.26.read
27.write

.28.count . . .
[4.29.postscript rgs .
[4.30.no display beyond
[4.31.c with maif
[4.32.java with maih
[4.33.to ¢ conversidn
[4.34.to java conversign

i

I

[5. RegulaExpressions.

16
16
16
16
16
16
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
22
22
22
22
22
23
23
23
23
23
23
24
24
24
24
24
24
24
25

[5.1.Reqular expressiosyntax
[5.2. Spy Points on Regul@xpressior}s
[5.3. Extending the regular expressinatation

[5.4. Combining several auxiliary reqgular expression operfat-:cﬂ

[5.6. Expr# m[inimize](Expr) mh(Exprinb(Expr)
[5.7.A! determinize(A)determinize(A,Algorithn)

[5.8.efree(E) reachable efree(&) reachable efree(E).

[5.9.~E complement(H) .

[5.10.A-B difference(A,B)

[5.11.$E containment(H) .

[5.12.t determinize(E)

[5.13.t minimize(E) . .
[5.14.w_determinize(R) .

[5.15.w minimize(E). .
[5.16.perfect_hash(ListOfAtoms).
[5.17.dict(ListOfAtoms) .

[5.18.A:B pair(ABY
[5.19.A x B cross_product(A,B) .
[5.20.A xx B sl cross_product(A,B)
[5.21.escape(Sym) .

:

|5 23. cIass(Expri)

[5.24.negated class(Expr)
[5.25.incomplete(A) .
[5.26.coaccessible(A)
[5.27.reachable(A)
[5.28.accessible(4) .
[5.29.complete(A)

[5.30.ignore(A,B)

|5 32. {El E2, ,En} unlon(El E2$et([E1 E2, ,Enl)
:

|5 34 [El E2,.. En] concat(El E2)
[5.35.E* kleene_star(F) .
[5.36.E+[kleene]plus(H)
[5.37.option(E)EA
[5.38.intersect[ion](A,B) A &Bl
[5.39.E0 0 Elcompose(EQ,E])
[5.40.sigma(Set,Expr3igma(DomSet, RanSet Exbr)
[5.41.domain_sigma(Set,Expr) .
[5.42.range_sigma(Set,Expr).
[5.43.reverse(B).)
[5.44.inversion(E) mverse(E)wert(E]
[5.45.id(E) identity(E)
[5.46.domain(E) .

25
26
26
27
28
28
28
29
29
29
29
29
30
31
31
31
31
31
31
32
32
32
32
32
33
33
33
33
33
33
33
33
34
34
34
34
34
34
34
35
35
35
35
35
35
35

[5.58.random(NrStates,NrSymbols,Den,JD¢ns)
. Command-linéArguments . .

[¢))
[EEN
D
c
X
>
[

.2.-pmFile
.3.-1 Fi

[¢))

i .
D

=2
~
o
3
=2
®
o
il

o)
ol
o
3
=
S

[O][O)]
~|[O
L | L
|
S8
=)
o|l®D
xS
—||» |
5 |—
7| =
=1([@)
3|
0|5
(O |

[6.8.-approx [In]String
[6.9.-w approx [In]String

[6.14.-w c[ompile] [In[Out]]] .
[6.15.-c[ompile to]c [In[Out]]|
[6.16.-t c[ompile to]c [INOut]]| .
[6.17.-w c[ompile to]c [INOut]]|
[6.18.-java [In] Out

[6.19.-t java [InN]Ouf.

[6.20.-w java [In]Out
[6.21.-compose A BOut]|

[6.25.-davinci [In[Out]]] .
[6.26.-vcqg [In[Out]]| .
[6.27.-dot [In[Out]]| .

[6.28.-d[eterminize] [in TOUT]] [-dgraph [in [OU]] -drgraph [in JOut] -dsubsed [In

[Out]] | -dstate [IMOut]]| .
[6.29.-efree [In[Out]]|
[6.30.-ignore A B[Out]|
[6.31.-diffference] A B[Out]| .

36
36
36
36
36
36

36
37
37
37
37
37
37
38
38
38
39
39
39
39
39
40
40
40
40
40
40
41
41
41
41
41
41
41
42
42
42
42
42
42

43
43
43
43

[6.32.-transduce [InBtring
[6.33.-transduce [InBtring

[6.34.-aa In | -accept all In | rmgek
[6.35.-ta In | -transduce all In | -rRegex .
[6.36.-wa In | -w transduce all In | -rvikegex .
[6.37.-prolog Goal

[6.38.-generate States Syms DQmBens[l
[6.39.-intersect A B[Out]] .

[6.40.-kleene star [InOut]]|

[6.41.-w minimum patHIn]| .
[6.42.-kleene plus [IHOut]]| .
[6.43.-reverse [IMOut]]|

[6.44.-inverse [IN[Out]]]

[6.45.-domain [In[Out]]| .

[6.46.-range [In[Out]]|

[6.47.-cleanup [INOut]]| .

[6.48.-identity [In [Out]]| .

[6.49.-option [In[Out]]]

[6.50.-union A B[Out]]|

[6.51.-concat A B[Out]]| .)
[6.52.-m[inimize] [In [Out]] | -mb [In [Out]] | mh [Ir{Out]]I
[6.53.-t m[inimize] [In[Out]]| .
[6.54.-produce [INOut]]| .

[6.55.-t produce [IMOut]]|

[6.56.-w produce [IMOut]]|

[6.57.-r[egex] [Regex]Out]|

[6.58.-tk [File] | -tk [-r Regex].
[6.59.-postscript [INf[Out]]]

[6.60.dict2ph [In[Out]]|

[6.61.dict2m [In[Out]]| .
[6.62.-pstricks tex [In [Out]] | pstrlcks plcture [[mut]]l
[6.63.-copy [In[Out]]|

[6.64.-t d[eterminize] [INOut]]|

[6.65.-w d[eterminize] [INOut]]| .
[6.66.-w mlinimize] [In [Out]]|

[7. Predicates o8ymbol$

[7.1.true(?Pred) .

[7.2.regex atom to pred(+Atom|c Prbd)
[7.3.evaluate predicate(+Pred,?Sympol).
[7.4.conjunction(+P0,+P1,?7P) .
[7.5.display predicate(+Pred,-Teim).)
[7.6.prepare _complement of set(+Fa,-Tgrm)

[7.7.complement of set(+SetOfPreds,+Term, Complerﬂents).

[7.8.determinize preds(+KeyList0,-KeyList) .
[7.9.t determinize preds(+KeyList0,-KeyList)
[7.10.identity(+Pred0,-Prefl) . .

43
43
43
44
44
44
44
44
44
44
45
45
45
45
45
45
45
46
46
46
46
46
46
46
46
47
47
47
47
47
47
47
47
48
48
48
49
49
49
49
49
49
50
50
50
50

[7.11.class to pred(+ListO,-Ligt) .

[7.12.negated class to pred(+ListO,-Llist)

[7.13.cleanup(+List0,-Lisf)

[8. Types otransducels

[8.1.zero(?Val). .

[8.2.plus(+Val0,+Vall ’>Sun1)

[8.3.minus(+Val0,+Vall,?Diff).

[8.4.minimum(+Val0,+Vall,?Min).

[8.5.minimum only(+YesNo).

[9. fsa array: Non-updatable Arrays (127%%3[)

[9.1.List of Predicatds

[9.1.1.fsa array new(- FsaArray[’>S|z|e])

[9.1.2.fsa array access(+Index,?Val[,?Default], +FsaArray)

[9.1.3.fsa_array get(+Index,?Val,+FsaArrpy)

[10. fsa compiler: Prolog Cod&eneration

[10.1.List of Predicatds .

[10.1.1.fsa compile to prolog(+Fd$a complle to prolog(+F|Ie|n +F|IeOL1t)

[10.1.2.fsa compile to prolog t(+F#a compile to prolog t(+Fileln,+FileOput)

[10.1.3.fsa_compile to prolog w(+Ff)

[fsa_compile to prolog w(+Fileln,+FileOut)

[11. fsa compiler to c: C Co@&eneratioh

[11.1.List of Predicatds .

c(+Fdsa _compile to c(+Fileln,+FileOlit)

[11.1.1.fsa compile to

[11.1.2.fsa compile to c t(+Fd¥a compile to c t(+Fileln,+FileOut)
[11.1.3.fsa compile to ¢ w(+Fd3a compile to c w(+Fileln,+FileOut) .
[11.1.4.fsa compile to c fa(+Fa,+FileOut).

[11.1.5.fsa _compile to c t fa(+Fa,+FileQut)

[11.1.6.fsa compile to ¢ w fa(+Fa,+FileQut) .

[12. fsa data: Internal Format of Finketomata .

[12.1.List of Predicatds .

[12.1.1.fsa

states number(’>Fa ’>Inteber)

[12.1.2.fsa

states set(+Fa,?States)

[12.1.3.fsa

state(+Fa,?State) .

[12.1.4.fsa

start states(?Fa, ’)StartStates)

[12.1.5.fsa

start_state(+Fa,?StartState)

[12.1.6.fsa

final_states(?Fa,?FinalStates) .

[12.1.7 fsa

final_state(+Fa,?FinalState)

[12.1.8.fsa

transitions(?Fa,?Trahs)

[12.1.9.fsa

transition(+Fa,?P,?Sym,7Q)

[12.1.10fsa_jumps(?Fa,?Jumps)

[12.1.11fsa jump(+Fa,?P,?Q).

12.1.12

50
51
51
51
51
52
52
52
52
52
53
53
53
53
53
53
53
54

54
55
56
56
56
56
56
57
57
57
57
57
58
58
58
58
58
58
58
58
58
58

[fsa_construct([[+Symbols,][+NumberStates,]+Starts,+Finals,+Trans,+Jumps,-F&8

[12.1.13fsa_components(?Symbols,?Length,?Starts, ?Finals,?Trans,?Jumps,?F&9

12.1.14

[fsa_construct rename_states([+Symbols,]+Starts,+Finals,+Trans,+Junpps,-Fa)59

Vi

[12.1.15fsa_copy except(+Key,?Fa0,?Fal,?Part0,?FPartl) .
[12.1.16fsa_type(+Fa,?Type) .) .
[13. fsa dict: Dictionaries and Perfétashep .
[13.1.List of Predicatds .
[13.1.1.fsa dict to perfect hash(+L|stOfStr|ngs 4Fa)
[13.1.2.fsa dict to perfect hash file(+Fileln,+FileQut) .
[13.1.3.fsa dict to fsa(+ListOfStrings,-Ha).
[13.1.4.fsa dict to fsa file(+Fileln,+FileOuit)
[14. fsa frozen: Predicates on symbéda: frozeh .
[15. fsa globals: Globalariable$
[15.1.List of Predicatds .
[15.1.1.fsa global set(+Key,’>VehI)
[15.1.2.fsa global get(+Key,?Val). .
[15.1.3.fsa global decl(?Key,?Help,?Default ’)Typlcal VaI"Gloal)
[15.1.4.fsa global list[-List] .
[15.1.5.fsa version
[15.1.6.fsa host prolog(’?Atorh)
[16. fsa hash: Non-updatable Hashes (Nlrelésl)
[16.1.List of Predicatds .
[16.1.1.fsa hash new(- FsaHash[Slte]))
[16.1.2.fsa hash access(+Key,?Val[,?Default], +Fsal—lash)
[16.1.3.fsa_hash to keylist(+HashedFsaArray,-Keylist).
[17. fsa interpreter: Applying Finit&utomata. .
[17.1.List of Predicatds .
[17.1.1fsa regex accepts(+Atom +Str|hg) .
[17.1.2.fsa regex transduces(+Atom,+String0,?Stfing).
[17.1.3.fsa regex transduces w(+Atom,+StringO,?WeIght).
[17.1.4fsa accepts(+String,+Ha) . .
[17.1.5.fsa transduces(+Stringln, ’>Str|ngOut +}Fa)
[17.1.6.fsa transduces w(+String,?Weight,+Fa)
[17.1.7 fsa regex approx accepts(+String,+Regex, Rdupe)
[17.1.8.fsa_approx accepts(+String,+Fa,-Redipe) . .
[17.1.9.fsa regex approx transduces(+String0,+Regex, +Str|ng)
[17.1.10fsa_approx_transduces(+String0,+Fa,+Stfing) . .
[17.1.11fsa regex approx transduces w(+String0,+Regex, +Str|ng)
[17.1.12fsa_approx_transduces w(+String0,+Fa,+Stfing) .
[18. fsa i0: Reading and Writing Finite StAigtomata .
[18.1.Description of I/Oformat$
(18.1.1. Thenormal formaf .
(18.1.2. Theold format .
[18.1.3. Theeompactformai
[18.1.4. Thdast formaf.
[18.2.List of Predicatds .
[18.2.1.copy fa(+FileO, +F|Ie1[) .
[18.2.2.fsa read file([+Format,]+File, ’?Ffa)
[18.2.3.fsa write file([+Format,]+File,+Fg) .

vii

59
59
59
60
60
60
60
60
60
61
61
61
61
61
61
61
61
62
62
62
62
62
62
63
63
63
63
63
64
64
65
65
65
65
66
66
66
67
67
68
68
69
69
70
70
70

[19. fsa java: JAVA Cod&eneraton 70

[19.1.List of Predicatds . . .
[19.1.1.fsa java(+Fileln, +F|Ieoqt) e %4
[19.1.2fsa java t(+Fileln,+FileO4yt) 172
[19.1.3fsa java w(+Fileln,+FileOQyt) T2

[20. fsa m array: Mutablerrays 1712

[20.1.List of Predicatds . . Y %4
[20.1.1.fsa m array new(- MutabIeraArray [+S|te]) . .. 713
[20.1.2.fsa m array get(+Index,?Val[,?Default], +MutabIeraA|‘ray) .. 73
[20.1.3.fsa_m_array put(+Index,?Val,+MutableFsaArray)

[fsa_m_array put(+index,?ValOld,?ValDefault,?Val,+MutableFsaArray). . 73
[21. fsa m hash: Mutabldashes 173

[21.1.List of Predicatds 13
[21.1.1fsa m hash new(- MutableraHash[SIze]) 13
[21.1.2.fsa m_hash get(+Key,?Val,+MutableFsaHash)
fsa_m hash get(+Key,?Val,?Default,+MutableFsaHlash) 73
[21.1.3.fsa_m_hash put(+Key,?Val,+MutableFsaH4sh)

[fsa_m hash put(+Key,?OldVal,?Default,?Val,+MutableFsallash) . . . 74
[22. fsa minimum path: Minimum Weight PathTliransducets. 74

[22.1.List of Predicatds . . e
[22.1.1.fsa minimum path flle(+FIag +InF||e) o £
[22.1.2fsa_minimum_path(+Fa[,-Path],+Flag) 74
[22.1.3.fsa_minimum_path array(+Fa,-Array,+Flag) 74

[23. fsa preds: Predicates on symbfda: preds 75
[24. fsa regex: Reqular Express@ompilef 75

[24.1.List of Predicatds . . Y £5)
[24.1.1fsa load aux flle(+F|Id3) Y £5)
[24.1.2.fsa reconsult aux file(+File) 176
[24.1.3.fsa regex atom compile file(+RegexAtom, +FF|Ie) 176
[24.1.4fsa regex atom compile(+RegexAtom4Fa) 76
[24.1.5fsa regex read compile file(F{le) 76
[24.1.6.fsa regex read compile(-ba) 76
[24.1.7 fsa regex _compile file(+Expr,tFile 76
[24.1.8.fsa regex compile(+Term,-FR)(+Term,-Fa). 76

[25. fsa strings: Types of Transdudsa strings 77
[26. fsa u array: Updatable Arrays (15#es) 77

[26.1.List of Predicatds . . N & 4
[26.1.1.fsa u array new(- UpdatabIeraArray[?Slze])) .. 17
[26.1.2.fsa u array get(+Index,?Val[,?Default,]+UpdatabIeraArray) .. 717
26.1.3.

[f[sa_u_array put(+Index[,?0OldVall],?Val,+UpdatableFsaArray0,?UpdatableFsaAifay)
[27. fsa u hash: Updatabt®shes 78

[27.1.List of Predicatds 78
[27.1.1.fsa u hash new(- UpdatableraHash[Sllze]) 78
[27.1.2.fsa u hash get(+Key,?Val,+UpdatableFsaHash) 78

[27.1.3.fsa u hash put(+Key,?Val,+UpdatableFsaHashoO, ’)UpdatabIerhHash)

viii

fsa_u hash put(+Key,?OldVal,?Default,?Val,+UpdatableFsaHash0,?UpdatableHsargsh)

[28. fsa visualization: Visualization of Finkutomatqa. 78
[28.1.List of Predicatds . . e e]
[28.1.1.fsa davinci(+FileO, +F|Ieijsa daV|nC|(+F¢) e A]
[28.1.2.fsa dot(+File0,+Filejsa dot(+Fg) 79
[28.1.3.fsa vcg(+File0,+Filejsa vcg(+F4d) 719
[28.1.4.fsa pstricks picture(+FileO,+File) 79
[28.1.5.fsa pstricks tex(+FileO,+Fie) 80
[28.1.6.fsa postscript(+FileO,+Filg). 80
[28.1.7 fsa visualization(+Format,+Ka). 80

[29. fsa weights: Types of Transdudsa weights 80
[30. help: The Hel®ystem 80
[30.1.List of Hook Predicatds. . . . < 1
[30.1.1.help info(Class,Key,Usage, Exlpl) A < 1
[30.2.List of Predicatqgs 81
[30.2.1.help listing . . . < 1
(30.2.2. heIp/help(ModuIe)/heIp(ModuIe Claiss) . < 1
[30.2.3.help modulef(Mv} 81
[30.2.4.help class(cC[M}) 81
[30.2.5.help key(K[C[MI} 81
[30.2.6.help add to _menu(Menu,Intefyp) 82
[31. map bbbtree: Balanced Binary Trédsaps 82
[31.1.List of Predicatds 82
[31.1.1.map bbbtree _init(?Bbbtr¢e) 82
[31.1.2.map bbbtree _empty(?Bbbtgee) 82
[31.1.3.map_bbbtree _size(+Bbbtree,?Size) 82
[31.1.4.map bbbtree get(+Key,?Val,+Bbbtjee) 82
[31.1.5.map bbbtree least(+Bbbtree,?Least,3val) 83
[31.1.6.map bbbtree largest(+Bbbtree,?Largest,Pval) 83
[31.1.7.map bbbtree _ put(+Key,?Val,+Bbbtree0,-Bbbtree). 83
[31.1.8.map bbbtree put list(+Bbbtree0,+KeyValList,-Bbtree . . . 83
[31.1.9.map bbbtree _delete(+Bbbtree0,+Key,-Bbbtree) 83
[31.1.10.map bbbtree delete list(+Keys,+Bbbtree0,-Bbhbttee). . . . 83
[31.1.11.map bbbtree remove(+Bbbtree0,+Key,-Bbbfree). 83
[31.1.12.map bbbtree remove list(+Keys,+Bbbtree0,-Bbltree) . . . 83
[31.1.13.map bbbtree remove least(+Bbbtree0,?Key,?Val,-Bbptree) . . 83
[31.1.14.map bbbtree remove largest(+Bbbtree0,?Key,?Val,-Bbhtree) . 84
[31.1.15.map bbbtree list to _map(+KeyValList,-Bbbtfee). . 84

[31.1.16. map bbbtree sorted list to map(+SortedKeyValueList, Bbbtree) 84
31.1.17
[map_bbbtree _sorted list to_map len(+SortedKeyValueList,-Bbbtreel+Len) 84

[31.1.18.map bbbtree to sorted list(+Bbbtree,?SortedKeyValList) . . 84
[32. set bbbtree: Balanced Binary Tre®sts 84
[32.1.List of Predicatds 84
[32.1.1.set bbbtree init(?Bbbtrge) 84

[32.1.2.set bbbtree empty(?Bbbtree). 85

[32.1.3.set

bbbtree

non_empty(?Bbbtfee)

[32.1.4.set

bbbtree

size(+Bbbtree,?Integer) .

[32.1.5.set

bbbtree

is_member(+EIl,+Bbbtree,?Bool) .

[32.1.6.set

bbbtree

member(?El,+Bbbtfee)

[32.1.7.set

bbbtree

least(+Bbbtree, PEI) .

[32.1.8.set

bbbtree

largest(+Bbbtree, PEI)

[32.1.9.set

bbbtree

singleton_set(?BbbTree|?El).

[32.1.10set

bbbtree

equal(+BbbtreeA,+BbbtrgeB)

[32.1.11 set

bbbtree

insert(+BbbtreeA,+EI,-BbbtreeB[,?New]).

[32.1.12 set

bbbtree

insert_list(+BbbtreeA,+List,-BbbtrgeB)

[32.1.13set

bbbtree

delete(+BbbtreeA,+El,-BbbtieeB

[32.1.14 set

bbbtree

delete list(+List,+BbbtreeA,-Bbbtr¢eB) .

[32.1.15set

bbbtree

remove(+BbbtreeA,+El -BbbtieeB

[32.1.16 set

bbbtree

remove _list(+List,+BbbtreeA,-Bbbtré¢eB).

[32.1.17 set

bbbtree

remove least(+BbbtreeA,?Least,-BbbireeB).

[32.1.18 set

bbbtree

remove_largest(+BbbtreeA,?Largest,-BbbjreeB).

[32.1.19 set

bbbtree

list to set(+List,-Bbbtiee)

[32.1.20 set

bbbtree

sorted list to set(+SortedList, ’>Bblbtree)

[32.1.21 set

bbbtree

sorted list to _set len(+SortedList,?Bbbtree|+Len) .

[32.1.22 set

bbbtree

to_sorted list(+Bbbtree,?SortedList).

[32.1.23 set

bbbtree

union(+BbbtreeA,+BbbtreeB,-BbbtrgeC).

[32.1.24 set

bbbtree

power_union(+Bbbtrees,-BbbtreeC).

[32.1.25set

bbbtree

intersect(+BbbtreeA,+BbbtreeB,-BbbtieeC) .

[32.1.26 set

bbbtree

power _intersect(+Bbbtrees,-BbbtjeeC) .

[32.1.27 set

bbbtree

difference(+BbbtreeA,+BbbtreeB,-BbbtreeC)

[32.1.28 set

bbbtree

subset(+BbbtreeA,+Bbbtr¢eB) .

[32.1.29 set

bbbtree

superset(+BbbtreeA,+BbbtrgeB)

85
85
85
85
85
85
85
85
85
85
86
86
86
86
86
86
86
86
86
87
87
87
87
87
87
87
87

1. FSAG: Finite State Automata Ultilities Version6
(manual generated with FSA Utilities versi®mn59)
FSAG is a collection of utilitie®

® construct finite automata (from regul@axpressions)

® manipulate finite automata

e visualisefinite automata

® apply finite automata

1.1 Functionality

1.1.1Constructing Finite Automata with Regular Expressions

Many basic regular expression operators are provided, both for acceptors and transducers.
Moreover, it is easy to define new regular expression operators. The built-in regular
expression operatomsclude:

e Concatenation; Kleene star; Kleene plus; Optidmipn

e Complement; Differencdntersection

® Reversal; Containmenignore

e Composition; Cross-product; Domain; Range; Identitygrsion;
® |[nterval

® ‘Any’ meta-symbol.

® Arbitrary predicates instead symbols

1.1.2Manipulating Finite Automata

Tools are provided to manipulate finite automata. Such manipulations include determinization
and minimization (both the classical algorithms for recognizers and the recent algorithms for
transducers angrovided).

® Determinization. Currently there are three different implementations of this algorithm,
depending on how epsilon transitions (jumps) are treated. There is also an
implementation of Mohri’s determinization algorithm, both for ordinary (string-to-string)
transducers and string-to-weight transducers. The implementation is described in a paper
in Computational Linguistics, available from
[http://ww | et.rug. nl / ~vannoor d/ paper s/ |

http://www.let.rug.nl/~vannoord/papers/

® Minimization. Three different minimization algorithms are supported. There is also an
implementation of Mohri’'s minimization algorithm, both for ordinary (string-to-string)
transducers and string-to-weighansducers.

e Random generation of finite automata, based on the algorithm in [E386).
® Epsilon-removal.

® Completion and Incompletion: extending a given automaton in order to make the
transition table total (typically by adding a sink state and adding transitions to this sink
state); and removing transitions leading to sitates.

® Regular manipulations. The various regular expression operators can be applied to
automata directly asell.

1.1.3Applying Finite Automata
® Acceptance. Tools to check a given string for acceptancedmpognizer.
® Transduction. Tools to apply a transducer to a given isipuig.

® Production. Tools to produce strings of a given recognizer, and pairs of strings for a
giventransducer.

® Code Generation. Tools to compile finite automata into efficient Prolog or C programs
which can be used to check whether a given string is in the language defined by the
automaton, or to generate the transduction of a given string w.r.t. atigiasducer.

1.1.4Visualizing Finite Automata

Much attention has been paid to be able to visualize finite state recognizers and finite state
transducers. Support includes built- in visualization and interfaces to thirdspéxtsare:

e DOT. The program is able to produce a representation of a finite automaton compatible
with the DOT graph visualisation program. DOT (part of AT&T’s graphviz) is a tool that
automatically figures out how a graph is best displayed (crossing-edges reduction, etc). It
can produce e.g. Postscript output. An example is
[http://wwv. | et.rug. nl/~vannoor d/ Fsa/ Manual / dot . pngl

® VCG. The program is able to produce a representation of a finite state automaton
compatible with the VCG graph visualisation program. VCG is a tool that automatically
figures outhow a graph is best displayed (crossing-edges reduction, etc). An example is
[http://ww. | et.rug. nl /~vannoor d/ Fsa/ Manual / vcg. pngl

® daVinci. The program is able to produce a representation of a finite state automaton
compatible with the daVinci 1.4 graph visualisation program. This program
automatically computes the most optimal way to view the finite-state automaton by
minimizing the number of crossing edges. Postscript output can easily be generated from

http://www.let.rug.nl/~vannoord/Fsa/Manual/vcg.png
http://www.let.rug.nl/~vannoord/Fsa/Manual/dot.png

the result. An example is
[http://ww. | et.rug. nl/~vannoord/ Fsa/ Manual / daVi nci . pngl

e TK Widget. The package contains an interface to a TK Widget to browse finite state
automata, providing a graphical user-interface for the toolbox. The TK Widget is
explained in much more detail below. An example is
[http://ww | et.rug. nl / ~vannoor d/ Fsa/ Manual / dunp. pngl Note that
the GUI is not an integral part of the toolbox; it makes perfect sense to use the program
in batch mode. The graphical user interface is only available @1@&tus.

® |aTeX (if you want to be able to use the result you need the pstricks package). An
example is
[http://ww. | et.rug. nl/ ~vannoor d/ Fsa/ Manual / pstri cks. pngl

® Postscript (thanks to Peter Kleiweg). An example is
[http://wwv. | et.rug.nl/~vannoord/ Fsa/ Manual / pk. pngl

1.2How to use thetoolbox
There are a number of ways that the toolbox is meant tisdxu

® interactively using a command interpreter and/or a graphical user interface. For example,
in order to use fsa interactively with the graphical user interface, usertiraand:

% fsa-tk

® as a UNIX-like filter. In such cases you use the fsa command with a number of options.
Forinstance:

% fsa write=postscript -r '[a,b+,c*,d]’ | ghostview

® as a library in your own Prolog program. You can incorporate the FSA program in your
own program, just as you can use other Prolog libraries. In order for this to work, you
simply need to load the file fsa_library.pl in the installation directoryekample:

% sicstus

SICStus...

Licensed ta..

| ?-use_module(fsa_library).

yes

| ?-fsa_regex_atom_compile([a*,b?{d,e}]’,L).

L =fa(r(fsa_preds),3,[0],[1],[trans(0,a,0),trans(0,b,2),
trans(0,d,1),trans(0,e,1),trans(2,d,1),trans(2,e,1)],[]) ?

yes

http://www.let.rug.nl/~vannoord/Fsa/Manual/pk.png
http://www.let.rug.nl/~vannoord/Fsa/Manual/pstricks.png
http://www.let.rug.nl/~vannoord/Fsa/Manual/dump.png
http://www.let.rug.nl/~vannoord/Fsa/Manual/daVinci.png

| ?- fsa_regex_transduces('{a:b,? -a}*',"ababac"dtpm_codes(Atom,L).

L =[98,98,98,98,98,99],
Atom = bbbbbc?
yes

|7

All predicates that are imported have names starting with *fsa*. All module names start with
fsaaswell.

1.3Examples

The package comes with a number of larger examples These examples include both automata
and extended regular expressd#finitions.

Examples/Automata Dale Gerdemann provided regular expression operators which
allows to input an automatatirectly.

Examples/Booleans Dale Gerdemann provided collection of regular expression operators
including boolean operators and various predicatasitaimata.

Examples/Bouma Gosse Bouma’s finite-state automaton of all possible Dutch
monosyllabiovords.

Examples/DutchWords Dutch words, taken somewhere from ftp site (see ftp_info.txt).
This list of words can then be used to experiment with the option to create perfect hashes
(-dict2ph).

Examples/GerdemannVannoord99 The replace operator as defined in our EACL 99
paper. Also some further examples with longest match and finitepstesiag.

Examples/Graph2Phon Grapheme to Phoneme conversion for Dutch. Uses the Celex
format for phonemes. By GosBeuma.

Examples/Grimley-Evans Implementation of the Hopcroft minimization algorithm by
Edmund Grimley-Evans (does not work untié&P).

Examples/HMM HMM'’s can be seen as a special type of weighted finite automata. This
example implements the Baum-Welch training algorithm. Fairly simple-minded
implementation.

Examples/KaplanKay94 These examples are taken from Kaplan and Kay, Regular
Models of Phonological Rule Systems, Computational Linguistics, 20(3), 1994. Simple
examples of transducers, acamposition.

Examples/Karttunen91 These examples are taken from Karttunen, Finite-state
Constraints, Proceedings International Conference on Current Issues in Computational
Linguistics, Universiti Sains Malaysia, Penang, 1991. Simple examples of transducers,
andcomposition.

Examples/Karttunen95 Lauri Karttunen, The Replace Operator, ACL 1995, MIT Boston.
Fairly complex examples of regular expression operator definitBurggy?.

Examples/Karttunen96 Lauri Karttunen, Directed Replacement, ACL 1996. Includes
soundex example from MLTT honpage.

Examples/Karttunen97 Lauri Karttunen, The Replace Operator, 1997. In volume edited
by Roche and Schabdguggy?.

Examples/Mohri97 Simple examples of weightedomata.

Examples/MohriSproat96 Mehryar Mohri and Richard Sproat, An Efficient Compiler for
Weighted Rewrite Rules. 34th Annual Meeting of the ACL, Santa Cruz 1996, pages
230-238. This only treats the non-weighted case. Nice example of the power of the
regular expression language: their algorithm only takes a few paragrdfBa6n

Examples/Nederhof These are examples used by Mark-Jan Nederhof while investigating
finite-state approximations of context-free grammars. The larger examples were used in
my Computational Linguistics paper, The Treatment of Epsilon-moves in Subset
Construction, available frofmt t p: / / wwww. | et . rug. nl / ~vannoor d/ paper s/|

Examples/Nerbonne examples from
[http://ww. | et.rug. nl/~nerbonne/teach. ht M| material for a course on
computational morphology. Simple examplesrahsducers.

Examples/OptimalityTheory Implementation of Lauri Karttunen, The Proper Treatment
of Optimality in Computational Phonology. FSMNLP 1998, Ankara. Includes definition
of lenient composition operator and syllibification algorithm. Also includes
Gerdemann/van Noord (even more proper?) alternatipiementation.

Examples/PredModules examples of predicate modules; for example using bitvectors to
represent sets of symbols, or using types. The bitvector stuff is only available under
SICStus.

Examples/PereiraRiley96 Fernando C. N. Pereira and Michael D. Riley, Speech
Recognition by Composition of Weighted Finite Automata, 1996 (on cmp-lg). Also
appears as chapter 15 of the volume edited by Roche and Schabes. Simple examples of
weighted composition. Definition of their version of the composition operator (filtering

our spurioupaths).

Examples/Queens Solving the N-queens problem with regular expressions, by Dale
Gerdemann. Another solution by G. van Noord. Interesting examples of definitions of
regular expressiooperators.

Examples/Random Random automata. Used for the experiments documented in my
FSMNLP98 paper, on the treatment of epsilon-moves in sabastruction.

http://www.let.rug.nl/~nerbonne/teach.html
http://www.let.rug.nl/~vannoord/papers/

® Examples/Recognizers Smakamples.

® Examples/RocheSchabes95 Emmanuel Roche and Yves Schabes, Deterministic
Part-of-speech Tagging with Finite-state Transducers, Computational Linguistics, 21(2),
1995. Small examples of transducers. Also includes a definition of the local extension
operator.

® Examples/RocheSchabes97 Roche and Schabes, Introduction. In: Roche and Schabes
(eds), Finite State Language Processing. MIT Press 1997. Includes implementations of
is_functional, unambiguous, is_subsequential, build_bimachine, bitransform. Also has
simple utils to apply and visualiz@machines.

® Examples/SemiringModules contains examples of others types of transducers
(semi-rings), apart from the two built-in transducer types ‘fsa_stringstsadveights’.

® Examples/Spell implements a simple spell-checker as the combination of a dictionary
and strings within Levenshtein distance d of the words in the dictionary (for some fixed
d). Interesting application of the priority union operator of Karttuii&98).

® Examples/Transducers small stuff, including my attempt to translate Dutch temporal
expression into a numerical format (that one is quite lardacth

® Examples/twolevel Definitions to implement twolevel rules in the style of Kimmo.
Mostly by RobMalouf.

® Examples/Weights small stuff, weightadtomata.

Examples/Wordgraphs some small acyclic weiglatgdmata.

1.5References

e Alfred V. Aho and John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of
Computer Algorithms. Addison Weslei974.

® Meera Blattner and Tom Head, Single-Valued a-Transducers. In: Journal of Computer
and System Sciences, 15. Pp. 310--337.7.

® J.A. Brzozowski. Canonical Regular Expressions and Minimal State Graphs for Definite
Events. In: Mathematical Theory of Automata, Polytechnic Press Brodidgz,

® Gosse Bouma, A Modern CL course using Dutch. In: EACL 99 Postconference
Workshop “Computer and Internet supported Education in Language and Speech
Technology”, June 12 1999, Bergblorway.

® Jan Daciuk, Incremental Construction of Finite-State Automata and Transducers and
their use in the Natural Language Processing. Thesis, Politechnika Gde#ka,

Jeffrey Friedl. Mastering Regular Expressions. O’'RdiB@7.

Dale Gerdemann and Gertjan van Noord. Transducers from Rewrite Rules with
Backreferences. EACL 19%ergen.

John E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton.
In: Z. Kohavi (editor), The Theory of Machines and Computations. Academic Press
1971.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wes|&979.

C. Douglas Johnson. Formal Aspects of Phonological Descriptions. Mouton The Hague,
1972.

Ronald M. Kaplan and Martin Kay. Regular Models of Phonological Rule Systems.
Computational Linguistics 20 (3)994.

Lauri Karttunen. Finite-state Constraints. In: Proceedings International Conference on
Current Issues in Computational Linguistics. Unviersiti Sains Malaysia, Pel291g.

Lauri Karttunen. The Replace Operator. 33rd ACL, Bost885.

Lauri Karttunen and Jean-Pierre Chanod and Gregory Grefenstette and Anne Schiller,
Regular Expressions for Language Engineering. Natural Language Engineering 2 (4)
1996.

Lauri Karttunen, Directed Replacement. ACL 1996 Samte.

Lauri Karttunen, The Proper Treatment of Optimality Theory in Computational
Phonology. In: FSMNLP 199&nkara.

George Anton Kiraz and Edmund Grimley-Evans, Multi-Tape Automata for Speech and
Language Systems: A Prolog Implementation. In D. Wood and S. Yu (eds.), Automata
Implementation, Lecture Notes in Computer Science 1436, Spritfs,

Ted Leslie, Efficient Approaches to Subset Construction. University of WatE9R®.

Mehryar Mohri, Compact Representations by Finite-state Transducers. ACL New
Mexico 1994.

Mehryar Mobhri, Finite-State Transducers in Language and Speech Processing,
Computational Linguistics 23 (2997.

Mehryar Mohri and Fernando C.N. Pereira and Michael Riley. A rational design for a
weighted finite-state transducer library. In: Automata Implementation. WIA '97. Lecture
Notes in Computer Science 1436. Spring Vellags.

Mehryar Mohri and Richard Sproat. An Efficient Compiler for Weighted Rewrite Rules.
ACL 1996 Sant&ruz.

Gertjan van Noord. FSA Utilities: A Toolbox to Manipulate Finite-state Automata. In:
Raymond, Woord, Yu (editors), Automata Implementation. Lecture Notes in Computer
Science 1260. Spring Verld®97.

Gertjan van Noord. The Treatment of Epsilon Moves in Subset Construction. In:
Computational Linguistics 26 (2000.

Gertjan van Noord and Dale Gerdemann. An Extendible Regular Expression Compiler
for Finite-state Approaches in Natural Language Processing.189A4.

Emmanuel Roche and Yves Schabes. Deterministic Part-of-speech Tagging with
Finite-state Transducers. Computational Linguistics 2199p.

Emmanuel Roche and Yves Schabes. Finite-State Language Processing. MIT Press
1997.

Bruce Watson, Taxonomies and Toolkits of Regular Language Algorithms. Ph.D. thesis
TU Eindhoven1996.

Bruce Watson, Implementing and Using Finite Automata Toolkits. In: Proceedings of
the ECAI'96 Workshop Extended Finite State Models of Langub@@s.

1.6 Papers usingFSA

Gosse Bouma, A Modern CL course using Dutch. In: EACL 99 Postconference
Workshop “Computer and Internet supported Education in Language and Speech
Technology”, June 12 1999, Bergblorway.

Gosse Bouma, A Finite State and Data-Oriented Method for Grapheme to Phoneme
Conversion. In: 1st Meeting of the North American Chapter of the Association for
Computational Linguistics, 303-310 Seaf[200.

Gosse Bouma, A modern Computational Linguistic Course using Dutch. In: Frank van
Eynde and Ineke Schuurman, editors, CLIN 1998, Papers from the ninth CLIN Meeting,
Amsterdam, 1999. Rodopiress.

Dale Gerdemann and Gertjan van Noord. Transducers from Rewrite Rules with
Backreferences. EACL 19%kergen.

George Anton Kiraz, Multi-Tiered Nonlinear Morphology Using Multi-Tape Finite
Automata: A case study on Syriac and Arabic. In: Computational Linguistics, 26 (1)
2000.

e Edwin Kuipers, lll-formed Input and Finite-state Devices. MA Thesis, Rijksuniversiteit
Groningen,1997.

® Gertjan van Noord, FSA Utilities: Manipulation of Finite-state Automata implemented in
Prolog, in: Proceedings of the First International Workshop on Implementing Automata.
London Ontario Canada996.

® Gertjan van Noord. FSA Utilities: A Toolbox to Manipulate Finite-state Automata. In:
Raymond, Woord, Yu (editors), Automata Implementation. Lecture Notes in Computer
Science 1260. Spring Verld®97.

® Gertjan van Noord. The Treatment of Epsilon Moves in Subset Construction. In:
Computational Linguistics 26 (2000.

® Gertjan van Noord and Dale Gerdemann. An Extendible Regular Expression Compiler
for Finite-state Approaches in Natural Language Processing.189A4.

® Markus Walther, Finite-State Reduplication in One-Level Prosodic Morphology. In: 1st
Meeting of the North American Chapter of the Association for Computational
Linguistics, 296-302 Seatt000.

® Markus Walther, One-Level Prosodic Morphology. Marburger Arbeiten zur Linguistic 1,
University of Marburg. 64p.

1.7Links

® Up-to-date information on the program can be obtained via
[http: //ww. | et.rug. nl /~vannoor d/ Fsa/| The latest version of the program
should be available theteo.

e For information on the daVinci program, we refer to its homepage
[t t p: // www. i nfornati k. uni -brenen. de/ ~i nforniforschung/ daVi nci /|

e For information on dot/GraphViz, we refer to
[htt p://wwv. research. att.com 80/ sw t ool s/ graphvi z/|

® For information on the VCG program:
[htt p: // www. cs. uni - sb. de/ RW user s/ sander/ html / gsvcgl. ht ni |

® There is lots of interesting material at MLTT Xerox Grenoble:
[htt p://ww. rxrc. xerox. comiresearch/mtt/fst/| Be sure to read the
documentation, including a number of nedamples.

® AT&T's FSM toolset for weighted finite-state automata is available from

[htt p: //www. research. att. coni sw tool s/fsm

http://www.research.att.com/sw/tools/fsm
http://www.rxrc.xerox.com/research/mltt/fst/
http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html
http://www.research.att.com:80/sw/tools/graphviz/
http://www.informatik.uni-bremen.de/~inform/forschung/daVinci/
http://www.let.rug.nl/~vannoord/Fsa/

For a web interface to FSA, refer to
[htt p://wwv. | et.rug. nl/~vannoord/fsadeno/|

For a web interface to FSA3, c.f..
[http://112wwv. i ra. uka. de/ Vi sual i si erung. endl i cher. Aut onat en/|

A tutorial for FSA by Gosse Bouma, in Dutch:
[http://ww.let.rug.nl/~gosse/tt/fsa.htnl|

An even simpler tutorial for FSA (in Dutch as well) used for highschool kids (!) is
available as
[http://ww. | et.rug. nl/~vannoord/ f sadeno/ f sadeno/ kl as. ht ni |

Electronic versions of some of the papers mentioned above are available through the
cmp-lg archive dht t p: // xxx. | anl . gov: 80/ cnp-1 g/}

A list of related projects at University of Western Ontario by Darrell Raymond is
[htt p: // www. csd. uwo. ca/staff/drraynon/.grail/links. htm| You

can also obtain a copy of Ted Leslie’s thesis from that site, which includes the algorithm
to generate random automata, and which discusses density of automata related to
determinization.

Finite state Utilities by Jan Daciuk at
[htt p: // www. pg. gda. pl / ~] andac/ fsa. ht M| Useful tools for dictionary
construction and spell checking. Also readdigsertation.

More finite-state software at Ribbit Software,
[http: //ww. Ri bbitSoft.confist/variants.htm] mostly by Bruce
Watson.

SICStus Prolog home pagiett p: // ww. si cs. se/isl/sicstus. htnl]

Collection of links on Prolog and Regular Expressions:
[http://ww. | et.rug. nl / ~vannoor d/ pr ol og-r x/ Pr ol ogAndRegex. ht nl |

FILFLA Malta: Relic: Regular Languages Interactive Classroom
[http://ww. cs. um edu. nt/ ~gpace/reli c ww/ |

Wiese’s Little Automata Builder at
[http://ww+ti.informtik. uni-tuebi ngen. de/ ~wi ese/ Aut onat on/ |

Another Java applet for finite automata at
[ht t p: / / ww. cs. duke. edu/ ~r odger/tool s/jfl ap/i ndex. ht m |

Interesting papers on Gene Myers’ Home Page
[http: // www. cs. ari zona. edu/ peopl e/ gene|

10

http://www.cs.arizona.edu/people/gene
http://www.cs.duke.edu/~rodger/tools/jflap/index.html
http://www-ti.informatik.uni-tuebingen.de/~wiese/Automaton/
http://www.cs.um.edu.mt/~gpace/relic_www/
http://www.let.rug.nl/~vannoord/prolog-rx/PrologAndRegex.html
http://www.sics.se/isl/sicstus.html
http://www.RibbitSoft.com/ist/variants.html
http://www.pg.gda.pl/~jandac/fsa.html
http://www.csd.uwo.ca/staff/drraymon/.grail/links.html
http://xxx.lanl.gov:80/cmp-lg/
http://www.let.rug.nl/~vannoord/fsademo/fsademo/klas.html
http://www.let.rug.nl/~gosse/tt/fsa.html
http://i12www.ira.uka.de/Visualisierung.endlicher.Automaten/
http://www.let.rug.nl/~vannoord/fsademo/

1.8 Copyright

Copyright ¢ 1995 - 1999 by Gertjan van Noord. This program is distributed under Gnu
General Public License (cf. the file COPYINGdistribution).

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2 of the
License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for cietaés.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139,USA.

1.9 Acknowledgements

Helpful suggestions, feedback, etc., from a variety of people, too many to list here. Gosse
Bouma and Dale Gerdemann were exceptionaflyential.

1.10Author

Gertjan van Noordyai | t o: vannoord@ et . r ug. nl

2. The CommandInterpreter

The FSA command interpreter provides line-based interaction with the FSA functionality.
The command interpreter provides a history mechanism, escape to the operating system,
escape to Prolog and on-line help information. All startup options for fsa are also available as
commands in the commaiterpreter.

2.1.Syntax

A command is typed in by the user as one line of text; it's tokenized as a sequence of ‘words’,
where spaces and tabs are treated as separators. Each word is treated as an atomic (Prolog
atom or Prolog integer), unless it is written within { and }. In the latter case the ‘word’ is
parsed as a Prolog term (in the latter case spaces and tabs are not interpegiachass).

|: flag janjan(a,b,c)

is equivalent to the Prolagpal

11

?-fsa_globals:fsa_global_set(jan,’jan(a,b,c)’)
wherease
|: flag jan{jan(a,b,c)}
is equivalent to the Prolagpal
?-fsa_globals:fsa_global_set(jan,jan(a,b,c))

Variables occuring in such terms have scope over thedalimand-line!

2.2.Alias and History

The command-interpreter has an alias mechanism which subsumes a history mechanism as
well. All occurences of $word are replaced by the definition of the alias word. The alias
command itself can be used to defaliases:

19 |: alias hallo ! cdtallo
20 |:$hallo

so command number 20 will have the same effettmsg
33 |: ! cathallo

and if this command had indeed been typed as command number 3thgn
35 |:$33

gives also the same result. The special meaning of $ can be turned off by prefixing it with
another $ge.g.:

|: cd$$HOME

Moreover, if no alias has been defined, then it will apply the last command that started with
the name of thalias:

66 |: parse john kissesary
67 |:$parse

will have the same meaning (in this order) if the macro parse tefioed.

2.3.Prolog goals

It is also possible to issue Prolog commands; however some restragiolys

12

39 |: p{member(X,[X|T])}

Note that this may succeed, but 'yes’ or 'no’ and variable bindings will NQaribted.

2.4.Starting and Stopping the commandnterpreter

If no action option is provided, then the system runs in interactive mode. If the variable
interpreter is set to *on*, then fsa runs in interactive mode after the action indicated by the
action option has been performed. If the flatgractive has been set to *cmdint*, then fsa

runs the FSA command interpreter. The command interpreter can be started any time from the
Prolog prompt using the commari@:

| ?-r.
*** \Welcome to the FSA Command Interpreter (type ? for h&tp)
5]

You can stop the command interpreter usingptiemmand:

5|p
*** execution interrupted**

yes
| 2-

You can quit FSA entirely using tlggiit command. Note that you can also use the command
interpreter together with the graphical usgerface.

2.5.p[rolog]

Stops the commarnidterpreter.

2.6.% Words

ignores Words (comment). Note that there needs to be a spad#.after

2.7.fc Files

fcompiles(Files).

2.8.um Files

use_module(Files).

13

2.9.el Files

ensure_loaded(Files).

2.10.c Files

compile(Files).

2.11.rc Files

reconsult(Files).

2.12.1d Files

load(Files).

2.13.libum Files

for each Filepuse_module(library(File)).

2.14 librc Files

for each Filereconsult(library(File)).

2.15.libc Files

for each Filecompile(library(File)).

2.16.libel Files

for each Filegnsure_loaded(library(File)).

2.17.libld Files

for each FileJoad(library(File)).

2.18.version

displays versioimnformation.

14

2.19.quit

quitsFSA.

2.20.b

break; enters Prolog prompt at next brkalel.

2.21.d

debug/0.

2.22.nd

nodebug/O0.

2.23.p [Goal]

without Goal: quits command interpreter -- falls back to Prolog prompt with Goal: calls Goal.
Normally you will need {} around the Goal. Fexample:

4 |: p { member(X,[a,b,c]), write(X), i}

2.24.! Command

Command is executed by the shell. Note that the space between ! and Commquited.

2.25.alias [Namel[Val]]

No args: lists all aliases; one arg: displays alias Name; two args: defines an alias Name with
meaningval.

2.26.help [Module [Class[Key]]]

displays help on Module-Class-Key; use ? to get help on commoahds

2.27.7[Cmd]

displays help on Cmd; without Cmd prints listooimmands.

15

2.28.spy [Module] Pred

set spypoint on Module:Pred; Pred can either be FéiiofAr.

2.29.cd [Dir]

change working directory to Dir; without argument cd to haiinectory.

2.30.pwd

print workingdirectory.

2.31.Is

listing of directorycontents

2.32.<any FSA startup option>

Any valid option you can give to the fsa command is a valid command for the command
interpreter. Fomstance:

|: -d a.nca.d
|: -ma.da.m
|: -auxFile

|: -tk

|: -r[[a,b]+,c]+

3. The Graphical Userinterface

This section provides the graphical user interface for FSA. It's mostly extremely obvious. So
this is a kind of ‘If you click on the help button, a help text will be displagggdlanation.

MENU

The menu consists of a number of menu buttons. Really. The actions associated with the
menu buttonsire:

o File

[Load]: Loads a file that is assumed to contairmatomaton.

16

[LoadAux]: Loads a file that is assumed to contain auxiliary regular expression macro’s and
operators.

[ReconsultAux]: Reconsults a file that is assumed to contain auxiliary regular expression
macro’s and operators. This allows tracing of yoadte.

[SaveAs]: Saves the automaton and the associated geometry information in a file. Such a file
can be read-in using the Load button, or as the startup file. Various formats are available
under various [SaveAsXjuttons.

[Revert] Redraws the current automaton without the current layout; a new layout will be
computed.

[Redraw] Redraws the current automaton with the cutagout.
[Close] Halts the graphical user interface, but FE®Atinues.
[Quit] Halts.
® SettingsA number of global variables can be set via this menu. Help is avaiabiee.

® Operations A number of unary operations on the current regular expression can be fired
through this menu. The operations are a subset of those allowed in seguitssions.

® Produce Produces a number of example strings (pairs of strings) accepted by the current
finite automaton.

e Visualization Interface to a number of external visualization tools. These only work if
you have the tools installed (really!), and the appropriate commands are in your PATH
(yes, no magic hereither).

® Help Well. What do youhink this menubutton wouldo?
Now let’s consider some of the other widgets maintained by the graphicattestce:
® Regex

If a regular expression is typed in the field, then after hitting <CR> the corresponding
automaton will be visualised on thanvas.

The [Expand User Macro’s] and [Expand All Macro’s] can be used to expand all the macro’s
of the current regulagxpression.

® String

If a sequence of symbols (separated by whatever the symbol_separator flag requires) is typed
in this field, then (after hitting <CR>, or after pushing the ‘Submit’ button) the systesn

the current automaton on the input you provided. The actual way in which the automaton is
run depends on the value displayed in the radio-button available to the right of the ‘Submit’

17

button.
® Canvas

The large canvas contains a picture of the current regular expression (or automaton read-in
from a file). Note that you can drag states to alter the layout interactively. If you point your
mouse to a label of an edge, then the corresponding edge will become red temporarily (this is
useful for large labels). Also note that for states P and Q all edges from P to Q are combined
in a single edge. Start states are green, final states are red and have a sunken relief. If a state is
both a start state and a final state, then it is green with a stallefn

® ToolBar
The tool bar at the bottom consists of the following jsailts:

[EdgeAngle]: Text field should contain a real. Does a redraw using the current (typically) new
angle variable upon <CR>. Does not require re-computatidayafut.

[Xdistance]: Text field should contain an integer. Re-computes and re-draws using the current
(typically new) distance of statparameter.

[Quality]: Re-computes and re-draws using the current (typically pavémeters.

[DisplaySigma]: Displays internal representation of alphabet and symbols list of current
automaton.

[DisplayFa]: Displays internal representation of curgartbmaton.
[CountFa]: Provides numerical information of currantomaton.
[ClearCache]: Clears the cache of the regular expreseiopiler.
[ZoomiIn]: This does the opposite BbomOut.

[ZoomOut]: This does the oppositedomin.

Finally, the [Interp] button can be used to get the name of the current Tcl/Tc interpreter. This
is of interest only for developmewbrk.

® TkConsol (experimental)

As an experimental feature, you can include a widget displaying standard input and standard
output. If you want to try out this new feature, you have to set the global vakebiesol to
on. E.Q.:

fsa tkconsol=ontk

18

Note that this is currently not vergbust.

The following global variables are relevant for timedule:
e tkconsol
® v_angle
® v _xdist

® no_display_beyond

3.1.tk_fsa_file(+File)

Starts a Tcl/Tk widget for the automaton read fiféika

3.2.tk_fsa(+Fa)

Starts a Tcl/Tk widget for the automatea

3.3.tk_regex(+Atom)

Atom is an atom, converted to regular expression and compiled into automaton. A Tcl/Tk
widget is started for thautomaton.

3.4.tk_rx(+Expr)

Atom is a regular expression and compiled into automaton. A Tcl/Tk widget is started for that
automaton.

4. Global Variables

This section lists the global variables and documents their effect. Global variables can be set
from the command line and the command interpreter using Var=Val. You can also set
variables using the Settings menu of the graphicalintssface.

4.1.tkconsol

Boolean flag which determines whethiarary(tkconsol) is used for standard output. Note
that support for tkconsol is very experimental. Current value is off. Default value is off.
Typical values argon,off]

19

4.2.tk_fsa_add help_menu

Boolean flag which determines whether on-line help information is added to the menu. Since
this takes quite a bit of band-width, you might want to turn it off for slow internet
connections. Current value is on. Default value is on. Typical valu¢sraodf]

4.3.fsa_tcl_directory

Path to the directory in which the FSA tcl scripts are installed Current value is none. Default
value is none. Typical values die

4.4.pred_module

Default module for interpreting predicates on symbols. Current value is fsa_preds. Default
value is fsa_preds. Typical values fsa_preds,fsa frozen]

4.5.regex

Used internally Current value is []. Default value is []. Typical valueg]are

4.6.fa

Used internally Current value is []. Default value is []. Typical valueg]are

4.7.hash_size

Default size for hashes (refer to librdsa_arraysfor detail). Current value is 65025. Default
value is 65025. Typical values are
[500,1000,5000,10000,50000,100000,250000,500000,1000000]

4.8.interactive

This flag can be used to indicate that you want to run FSA interactively, even if you provide a
command-line argument which would normally cause non-interactive usage. The value
cmdint also implies interactivity but in addition the command interpreter is started. Current
value is off. Default value is off. Typical values §oa,off,cmdint]

4.9.pstricks_style

Determines what kind of pstricks picture is contructed; at the mofaeay and plain are
equivalent except thdancy implies that colors are used. Current value is plain. Default value
is plain. Typical values alfgancy,plain]

20

4.10.v_algorithm

One ofdot or *tree*. The first uses AT&T'slot program (from the GraphViz package) to
compute geometry of states. The latter uses a built-in method which works reasonable for
small graphs. Current value is tree. Default value is tree. Typical valugeardot]

4.11.v_tree_depth

Is used by the tree algorithm for visualisation. Its effect has been forgotten by the author.
Current value is off. Default value is off. Typical values[areoff]

4.12.v_angle

Angle of edges in visualization of automata on Tk Canvas, as well as for postscript and latex
output. A value of 0 implies straight lines between nodes. For larger values the lines that are
drawn between nodes will move further away from the straight line. Current value is 0.15.
Default value is 0.15. Typical values @el1,0.15,0.2,0.3,0.4,0.5,1.0]

4.13.v_xdist

Horizontal distance of states in visualization of automata on Tk Canvas, as well as for
postscript and latex output. Current value is 120. Default value is 120. Typical values are
[40,60,80,100,120,150,200]

4.14.v_ycoord

Used internally by thé&ee algorithm for visualization. | don’t think it matters. Current value
is 200. Default value is 200. Typical values fre

4.15.display_unused_states

This boolean variable determines whether states should be visualized which have no outgoing
or incoming transitions, and which are neither a start state. Current value is on. Default value
is on. Typical values afen,off]

4.16.symbol_separator

This flags determines which character is used to separate sequences of symbols that are
accepted/transduced. For instance, if the value is 32 (for space) then yppecan

a b abb maa

to indicate the sequence of six symbols a, b, a, bb, b, and aaa. If the value is 44 (for comma)
the same sequence is written/read

21

a,b,a,bb,b,aaa

As a special case, a value of 0 indicates that a sequence is written without a separator; every
single letter is assumed to be a symbol.ifstance,

ababba
represents the sequence of symbols a, b, a, b, & and

Current value is 0. Default value is 0. Typical valued@&2,43,44,45]

4.17.symbol_separator_out

As global variable *symbol_separator*, but only for output. If this variable is undefined, then
the value of the global variableymbol_separator is used instead. Current value is
undefined. Default value is undefined. Typical valueqamdefined,0,32,43,44,45]

4.18.symbol_separator_in

As global variable *symbol_separator*, but only for input. If this variable is undefined, then
the value of the global variableymbol_separator is used instead. Current value is
undefined. Default value is undefined. Typical valueqamdefined,0,32,43,44,45]

4.19.nr_sol_max

For the produce and thetransduce options this global variable determines how many
transductions for each input string should be given at most. Current value is 25. Default value
is 25. Typical values af¢,5,10,25,50,100,1000,10000]

4.20.length_max

For the produce options this global variable determines the maximum length of strings that
should be produced. In the case of transducer the variable determines maximum length of left
string. A value of 0 indicates no restriction (in that case strings are not produced in order of
length). Current value is 30. Default value is 30. Typical values are
[0,5,10,25,50,100,1000,10000]

4.21.interpreter

This boolean flag indicates whether input automatafdar interpreter are compiled (by
fsa_compiler_to_prolog) or interpreted. Current value is on. Default value is on. Typical
values argon,off]

22

4.22.debug

A value 0 indicates no continuation messages at all. A value of 1 will give cputime of
operation. A level of 2 will give cputime of all intermediate operations too. Finally, level 3 is
used for detailed continuation messages Current value is 0. Default value is 0. Typical values
are[0,1,2,3,4]

4.23.regex_cache

This global variable determines whether regular expression compilations are cached or not. If
the valueselectiveis used, then only those operators are cachedHizh

bb_get(fsa_regex_cache:Fun)

succeeds. Current value is selective. Default value is selective. Typical values are
[on,off,selective]

4.24.set_random

This boolean global variable indicates whether the random generator should start with a new
seed or not. [bff the sequence of randomly generated automata will be the same for different
FSA incarnations. Current value is off. Default value is off. Typical valug®ayeff]

4.25.w_determinizer_minimum

This flag determines whether the determinizer applied to transducers using the
fsa_weightssemiring should only consider paths with lowest scores. Current value is on.
Default value is on. Typical values dom,off]

4.26.read

This global variable determines the format of input automata. The formats are explained in
module(fsa_io). Current value is normal. Default value is normal. Typical values are
[normal,old,fast,compact,compact_old,fsm]

4.27.write

This global variable determines the format of output automata. The formats are explained in
module(fsa_io). Current value is normal. Default value is normal. Typical values are
[normal,old,fast,compact,postscript,vcg,davinci,dot,pstricks,latex,prolog,c,t_c,w_c,count,fsm]

23

4.28.count

This global variable determines if results are displayed in long or short format foouhe
output format, thecount option and the fsa_count predicate. Current value is long. Default
value is long. Typical values ajghort,long]

4.29.postscript_res

This variable determines which version of postscript output is I®&ces is better used for
conversion to pngspormal is better used for printing postscript Current value is normal.
Default value is normal. Typical values gnermal,lowres]

4.30.no_display beyond

Integer which determines a maximum number of states for automata that are displayed by any
of the visualization tools. Automata with more states are not displayed; in such cases a small
automaton is displayed indicating that the maximum was reached. Current value is 50.
Default value is 50. Typical values 488€,40,50,100,1000]

4.31.c_with_main

This variable has effect for compilation of automata to C. If *on*, then the resulting C
program will contain a main procedureoff no such main procedure will be created. Current
value is on. Default value is on. Typical values[areoff]

4.32.java_with_main

This variable has effect for compilation of automata to JAVA. If *on*, then the resulting
JAVA program will contain a main procedure off no such main procedure will be created.
Current value is on. Default value is on. Typical valuegar®ff]

4.33.to_c_conversion

Boolean variable which has effect for compilation of automata to C, cf the
fsa_compiler_to_cmodule for details. If on, the automaton is converted first; otherwise it's
assumed the input is already converted. Current value is on. Default value is on. Typical
values argon,off]

4.34.t0_java_conversion
Boolean variable which has effect for compilation of automata to JAVA, cfsthgava

module for details. If on, the automaton is converted first; otherwise it's assumed the input is
already converted. Current value is on. Default value is on. Typical valufs]

24

5. Regular Expressions

This section discusses the regular expressions of FSA as well as each of the built-in regular
expressioroperators.

The following global variables are important for reg@apressions:
® regex_cache

® pred_module

5.1.Regular expressiomnsyntax

Regular expressions are defined as Prolog terms, and therefore Prolog syntax applies. For
detailed information on this, cf. the Prolog manual. The brackets () can always be used to
express the desired grouping. The order of precedence of operatdia|mass

o
:i.‘ * N
& -
0 XXX
I #
Operators with the same precedence are interpreted left-to-right. For examelgréssion
a.z*-b*&c..d*
is interpreteds:
(((@..2)*) - (b%)) & ((c..d)*)

Syntaxrestrictions

These are all due to the use of Prolog syntax. The benefit of using Prolog syntax is that | don’t
need to implement a parser, and you have flexibility (by using your own operator definitions).
However, a few limitations are inherited as well. Here are a few rutbsioib:

Capitals can be used in regular expression in the Tk entry field, by putting them between
quotes:

‘A7

At the Regex prompt (after fsa -r) you aazse:

25

,A’__’Z,
At the command-interpreter you case:
2| -rALZ

As part of Expr in the fsa -r Expr command, use (this depends on the shell you are using. This
example works for bourne sh, csh, d@agh):

fsa -r'"A’..Z™

Use space between operators. Use space before and after a question mark (?). Don’t use the
dot '’ or the vertical bar ’|" as (part of) a new operator. Similarly, avoid using the comma ’;’,

the ’;’, and '->" as (part of a) regular expression operator. It's neither a good idea to use ’:-'.
Operators can be escaped using (), but hardly ever have to (e.g. the following works, even if o
is the binary compositioaperator!).

fsa -r 'o 0o’
Brackets can be used for groupingass|:

fsa-r'oooo (0 m)

5.2.Spy Points on Regulaexpressions

The regular expression compiler provides detailed information on the computation time and
the size of the resulting automata for certain regular expression operators, namely for those
operators Op for which tharedicate

bb_get(fsa_rx_spy:Op,on).
succeeds. So you can set a spy-point to operator concat diyettia/e:
?-bb_put(fsa_rx_spy:concat,on).

The special operator spy(Expr) is equivalent to Expr except that it has an associated
spy-point.

5.3.Extending the regular expressiomotation

Using the -aux[file] command line option, or the AuxFile button of the TK Widget, you can
load auxiliary regular expression operators. The file should be a Prolog source file (either .pl
or .gl). It will be loaded into module *fsa_regex_aux*. The syntax of regular expressions can
be used in this file (in fact imust be used, beware if the file also contains ordinary Prolog
code!).

26

Two relations are important: 1. macro/222

The first relation is usually defined by unit clauses. It simply states that the regular expression
in the first argument is an abbreviation for the regular expression in the second argument. For
example:

macro(vowels,{a,e,i,u,0}).
Such macro’s can be parameterized using Prolog variates;
macro(brz(Expr),determinize(reverse(determinize(reverse(Expr))).

The relation rx/2 can be used for more complicated operations (operations that are
cumbersome or impossible to define in terms of simpler regular expression operators). It
defines a relation between the regular expression in the first argument and the finite
automaton in the second argument. It is often useful to be able to call the regular expression
compiler recursively. This should be done through the predicate fsa_regex:rx/2. The
following is equivalent to the first example of macralibve:

rx(vowels, Fa})-
fsa_regex:rx({a,e,i,u,0fa).

Consult the Examples directory, for instance in the MohriSproat96, Karttunen95,
Karttunen96, Karttunen98, GerdemannVannoord, Queens directories, for some extensive
illustrations.

5.4.Combining several auxiliary regular expression operator
files

Suppose you want to use the definition of a replace operator in somepfaee.plin your
analysis of Dutch phonology. In the latter file you can include the definitions from replace.pl
by including somewhere at the top of your file the followangctives:

.- ensure_loaded(replace). %% loagjslace.pl

- multifile macro/2.
- multifile rx/2.

This only works, if the multifile declarations are also present in the file you are importing. I.e.
in this example the file replace.pl should also havaliteetives

- multifile macro/2.
- multifile rx/2.

27

5.5.7

The set of one-symbol strings over the universal alphabet, ie. ? can be read as ‘any symbol
whatsoever'. It uses the true/l predicate_declaration from the current predicate module. If that
declaration is not defined then no compilation for this operator is possible, and an error

occurs.

5.6. Expr# m[inimize](Expr) mh(Expr) mb(Expr)

Applies minimization to the result of compiling Expr. There are a number of related
expressions depending on which minimization algorithm is tasked.

mb uses the algorithm due to Brzozowskih uses the algorithm by Hopcroft (as described
in Aho, Hopcroft and Ullman974).

If Expr is a transducer then it is temporarily treated as a recognizer over pairs of symbols
(using the fsa_frozen predicateodule).

5.7.A! determinize(A) determinize(A,Algorithm)

Set of strings denoted by A, but moreover the subset construction determinization algorithm
is applied to ensure that the automaton is deterministic. The algorithm can be specified as the
second argument. There are several variants of the algorithm, which are different with respect
to the treatment of epsildransitions:

® per_graph: first construct efree automaton (jumps taken into account on target side of
transitions and on stastates)

® per_inverted_graph: first construct efree automaton (jumps taken into account on source
side of transitions and and firgthates)

® per_reachable_graph: as per_inverted_graph, but maiatessibility
® per_co_reachable_graph: as per_graph, but mairdatascessibility

® per_subset: compute transitive closure of jumps on the fly forsadudet
® per_state: compute transitive closure of jumps on the fly for gaté

These variants and some interesting experimental observations are described in a paper |
presented at the FSMNLP 98 workshop in Ankara. The paper is available from
[http: //www. | et. rug. nl /~vannoor d/ paper s/] An improved version of the paper

will be published in Computationainguistics.

By default the algorithm is chosen by a simple heuristic based on the number of states and
number of jumps of the input automaton. If A is a transducer then it is temporarily treated as a
recognizer over pairs afymbols.

28

http://www.let.rug.nl/~vannoord/papers/

5.8.efree(E) reachable efree(E¢o reachable efree(E)

Constructs epsilon-free automaton for the automaton created for E. The first variant is faster,

the second and third algorithms yield smaller automata by only taking into account states

reachable from the start state, resp. from which a final state is reachable. If E is a transducer
then it is temporarily treated as a recognizer over pasgrabols.

5.9.~E complement(E)

The complement of the language denoted by E. E mustdmognizer.

5.10.A-B difference(A,B)

Set of strings denoted by A minus those given by B. A and B mustbgnizers.

5.11.$E containment(E)

The language consisting of all strings that have an instance of E as a sub-string: [? *, E, ? *].
Note that the result is a minimal automaton. Since the definition of this operator depends on
the ?/0 operator it is only defined if the current predicate module provides a definition of
true/l. E can be both a recognizer trassducer.

5.12.t_determinize(E)

The set of pairs denoted by E, but moreover the determinization algorithm for transducers by
Mohri, cf. also Roche and Schabes, is applied to E. NB: this is only guaranteed to terminate if
in fact E can be determinized in the appropriate sense. The implementation currently does not
check for this. Refer to the Examples/RocheSchabes97 directory for an experimental
implementation of that check and various related algorithms. Also note that the outputs
associated with final states that result from the construction are represented by new transitions
with epsilon input. A is (coerced into)i@nsducer.

representationof sequentiatransducers

Note that in FSA subsequential transducers are represented as ordinary transducers. This
implies in particular that instead of output symbols associated with final states, we have a
separate transition over epsilon input and final output to a new final state. Similarly, automata
which require an initial output to be associated with the start state will give rise to an extra
transition from a new start state with epsilon input and the requiredstait.

typesof transducers

The predicates all take a flag which indicate the type of transducer. This flag is passed on to a
number of predicates in the transducer module. For each type of transducer, the transducer
module must define tharedicates:

29

® zero(Type,Val).

® plus(Type,ValO,Vvall,Sum).

® minus(Type,Val0,Vall,Diff).

® minimum(Type,Val0,Vall,MinVal).

® minimum_only(Type,YesNo).

Refer to the transducer module for an overview of the types of transducer clsuppidyted.

The treatment of identity constraints over predicate pairs is especially tricky. This is mostly
hidden in the predicate module declaration of determinize/2 preds. Funny things tdonatch

® certain non-functional automata becomeéeterministic:
t_minimize([a xclass([b,d]),d*])
whereas FSA5 would loapver
t_minimize([a x {b,d},d*])
This is actually quiteiseful.

® delayed identity constraints: predicates apply on the input side before the transition
containing the target of the identity constraint is encounterecexaonple:

t minimize({[a:b,?,?,?,?,?,b],[a:c,?,?,?,2,?,C]})
This is especially nasty if the number of question marks do not mptch
t_minimize({[a:b,?,?,?,?,?,b],[a:c,?,?,?,c]})

® the opposite occurs as well: sometimes we have to output symbols satisfying a certain
predicate which must be identical to an input symbol which is yet to be encountered!
This currently works. Try fonstance:

t_minimize([a:b,class(a..f)])

| think this is quitespectacular.

5.13.t_minimize(E)

The set of pairs denoted by E, but moreover the minimization algorithm for transducers by
Morhi is applied to E. NB: this is only guaranteed to terminate if in fact E can be

determinized in the appropriate sense. The implementation currently does not check for this.
Refer to the Examples/RocheSchabes97 directory for an experimental implementation of that
check and various related algorithms. Also note that the outputs associated with initial and

30

final states that result from the construction are represented by new transitions with epsilon
input. E is (coerced into) teansducer.

5.14.w_determinize(E)

The set of pairs denoted by E, but moreover the determinization algorithm for string to weight
transducers by Mohri is applied to E. Thus, E must denote a string-to-weight transducer, i.e.,
all output symbols must be numbers. NB: this is only guaranteed to terminate if in fact E can
be determinized in the appropriate sense. E is a transducer where all output symbols are
numbers.

5.15.w_minimize(E)

The set of pairs denoted by E, but moreover the minimization algorithm for string to weight
transducers by Mohri is applied to E. Thus, E must denote a string-to-weight transducer, i.e.,
all output symbols must be numbers. NB: this is only guaranteed to terminate if in fact E can
be determinized in the appropriate sense. E is a transducer where all output symbols are
numbers.

5.16.perfect_hash(ListOfAtoms)

Creates perfect hash of minimal size for the words found in ListOfAtoms. This uses an
inefficient algorithm, intended for didactic purposes only. More efficent algorithms are
implemented in modul&sa_dict but are not available as regular expressiperators.

5.17.dict(ListOfAtoms)
Creates perfect hash for the words found in ListOfAtoms (you would normally apply the
w_minimize operator to the result). This uses an inefficient algorithm, intended for didactic

purposes only. More efficent algorithms are implemented in mddaledict but are not
available as regular expressioperators.

5.18.A:B pair(A,B)

A and B are symbols; is a transducer mapping an ABo a

5.19.A x B cross_product(A,B)

The set of pairs (A0,BO) such that AO is in A and BO is in B. Both A and B must describe
recognizers.

31

5.20.A xx B sl_cross_product(A,B)

The set of pairs (A0,BO) such that AO is in A and BO is in B, moreover the strings AO and BO
are to be of the same length. Both A and B musebegnizers.

5.21.escape(Sym)

Sym is a symbol. This denotes the language consisting of that symbol. Can be used to
overwrite special meaning of some symbols. For instance, escape(?) can be used to denote a
literal question mark. Sym should be ground Prolog term, and it is passed through the
predicateegex_notation_to_predicateof the current predicat@odule.

5.22.S..T

S and T are one-character atoms or integers. In the first case, denotes the set of symbols from
S up to T in ASCII coding. For instance a..e is equivalent to {a,b,c,d,e}. If S and T are
integers, represents the set of integers in that interval: for instance 8..11 is equivalent to
{8,9,10,11}.

5.23.class(Expr)

Identical to set(Expr), except that Expr musebe
® a list of symbols and intervals symbols
® an interval olsymbols
® asymbol

After expansion of the intervals, the resulting list of atomics is passed through
PredModule:class_to_pred, typically ensuring that the resulting set of transitions is smaller.
This operator is similar to the character classes found in UNIX-style regular expressions. For
instance:

class([a..z,0..9])

5.24.negated_class(Expr)

Similar to class/1, except that in this case toenplement of the symbols defined by
class(Expr) is used. Similar to the negated character classes found in UNIX-style regular
expressions, such as ["aeiou]. Eaample:

negated_class(['<1’,’<2’,’1>",'2>"]).

32

5.25.incomplete(A)

Ensures that all states in the automaton for A are co-accessible, i.e. for each state there is path
to a finalstate.

5.26.coaccessible(A)

Ensures that all states in the automaton for A are co-accessible, i.e. for each state there is path
to a finalstate.

5.27.reachable(A)

This operator ensures that for each state s in the automaton of A there is a path from a start
state tos.

5.28.accessible(A)

This operator ensures that for each state s in the automaton of A there is a path from a start
state tcs.

5.29.complete(A)

Adds transitions and a sink state such that the transition table is total, i.e. there is a transition
for every symbol from every state. If A is a transducer then it is temporarily treated as a

recognizer over pairs of symbols. If A is a transducer then it is temporarily treated as a

recognizer.

5.30.ignore(A,B)

Strings from A interspersed with substrings from B. For instance, ignore([a,a,a],c) contains all
strings over the alphabet {a,c} which contain exactly three a’s. Both A and B must be
recognizers.

5.31.0}

{} denotes the emptianguage.

5.32.{E1,E2,..,.En} union(E1,E2)set([E1,E2,..,.EN])

Union of the languages denoted by E1,..,En. As a special case, '{} is the empty language, i.e.
a language without any strings. Note that the result is a minimal automaton. E1 .. En can be
both transducers or recognizers. If one of them is a transducer, then all of the others are
coerced into transducers\asll.

33

5.33.]]

[] denotes the empty string (or equivalently the language solely consisting of the empty
string).

5.34.[E1,E2,...En],concat(E1,E2)

The concatenation of the languages denoted by E1, E2, .. En. As a special case, [] is the
language solely containing of the empty string. Note that the result is a minimal automaton.
E1l .. En can be both recognizers and transducers. If one of them is a transducer then all of the
others are coerced into transducers/ak.

5.35.E* kleene_star(E)

Kleene closure (zero or more concatenations) of the language denoted by E. Note that the
result is a minimal automaton. E can be both a recognizetransducer.

5.36.E+ [kleene_]plus(E)

Kleene plus (one or more concatentations) of the language denoted by E. Note that the result
is a minimal automaton. E can be both a recognizetranaducer.

5.37.option(E) E®

Union of E with the empty string, i.e. a string from E occurs optionally. The result is a
minimal automaton. E can be both a recognizertoaressducer.

5.38.intersect[ion](A,B) A & B

The intersection of the languages denoted by A and B. Produces a minimal automaton. A and
B must berecognizers.

5.39.E0 o Elcompose(EO,E1)

The set of pairs (A,C) such that (A,B) is in EO and (B,C) is in E1. Both EO and E1 are
(coerced into) transducers. Note that the result is a migiotamaton.

Note that in case both EO and E1 are not same-length transducers, then often the resulting
transducer will give rise to ‘spurious’ results in the sense that for a given input the same
output is produced several times. See the paper by Pereira and Riley, 1996, for some
suggestions to repair this. Obviously, in cases where you can determinize the transducer (with
t determinize) the spurious ambiguities will disappeavels

34

5.40.sigma(Set,Expr)sigma(DomSet,RanSet,Expr)

Binary form is equivalent to Set* & Expr; ternary form is equivalent to DomSet* o Expr o
RanSet*. You are advised to use the class/1 operator for the specification of Set, but this is
not required. For example, the following two expressions define the same language, but the
latter expression typically results in a smaller automaton (this depends eventually on the
predicalemodule):

sigma(a..z,Expr)
sigma(class(a..z),Expr)

Set and Expr must both descriteeognizers.

5.41.domain_sigma(Set,Expr)

Is equivalent to Set* o Expr. You are advised to use the class/1 operator for the specification
of Set, but this is not required. Set must be recognizer; Expr is (coercedtiatagducer.

5.42.range_sigma(Set,Expr)

Is equivalent to Expr o Set*. You are advised to use the class/1 operator for the specification
of Set, but this is not required. Set must be recognizer; Expr is (coercedtmatodaucer.

5.43.reverse(E)

set of strings F such that the reversal of F &.in

5.44.inversion(E) inverse(E)invert(E)

The set of pairs B:A such that A:B is in E. If E is a recognizer, then it is converted to its
identity transducer.

5.45.id(E) identity(E)

The set of pairs A:A such that A iskh

5.46.domain(E)

The set of strings A such A:B is i

35

5.47.range(E)

The set of strings B such A:B is

5.48.cleanup(E)

The cleanup operator attempts to pack several transitions into one. For instance, assume there
are two transitions from state p to g over the predicates pl and p2 respectively. If p3 is a
predicate which is true just in case either pl or p2 is true, then we replace the two transitions
by one transition over predicgt8.

5.49.subs(E)

E is supposed to be a transducer. The result will be all pairs allowed by E and furthermore all
pairs (x,y) such that (x',y) is in E and x’ can be formed by substituting one symhol in

5.50.del(E)

E is supposed to be a transducer. The result will be all pairs allowed by E and furthermore all
pairs (x,y) such that (x',y) is in E and x’ can be formed by deleting one symkol in

5.51.ins(E)

E is supposed to be a transducer. The result will be all pairs allowed by E and furthermore all
pairs (x,y) such that (x',y) is in E and x’ can be formed by deleting one symbol in

5.52.word(Atom)

Denotes the string Atom, as a concatenation of its individual characters. For instance
word(regular) is equivalent {o,e,g,u,l,a,r].

5.53.convert_pred _module(NewModule,Expr)
convert_pred_module(NewDomainMod,NewRangeMod,Expr)

Converts the automaton defined by Expr into an automaton using the pred_module
declarations found in NewModule. Note that this is possible only in case the newer module is
at least as expressive as the old one. For instance, you can convert an automaton with the
fsa_frozenpredicate module into an automaton with féee_predspredicate module, but not

vice versa. The binary operator is for recognizers, the ternary operator foirgetseiucers.

36

5.54 fa(Fa)

Fa is already a finite automaton in appropriatenat.

5.55.file(X)

This denotes the finite-automaton read from Xile

5.56.spy(Expr)

Equivalent to Expr, but sets spy-point on compilation of Expr. This implies that for debug
level 1 or higher the CPU-time is reported required to compile Expr, as well as the size of the
resultingautomaton.

5.57.cache(Expr)

Equivalent to Expr, but caches result of compiling Expr, if the fgex_cacheis set to
selective. If that flag has valueff then there is no caching. If the valueors then the
regular expression compiler caches esery-computation.

5.58.random(NrStates,NrSymbols,Den,JDens)

A random automaton is constructed consisting of the number of states specified in the first
argument, number of symbols in the second argument. The desired density of the automaton
is given in the third argument, whereas the final argument is the jump density. E.g.
random(20,10,0.1,0.1) will be an automaton with 20 states, 10 symbols, approximately 400
transitions and 4fumps.

6. Command-line Arguments
Usage: fsa [Flag=Val]* [ActionOptior{Flag=Val]*

The fsa program can be started with command-line arguments (options). A command-line
consists of a number of global variable assignments, following by (at mostaonhe)

option, followed by more global variable assignments. If no action option is provided, then
the system runs in interactive mode. If the variafierpreter is set to *on*, then fsa runs in
interactive mode after the action indicated by the action option has been performed. If the flag
interactive has been set to *cmdint*, then fsa runs the FSA command interpreter. Otherwise,
you get the ordinary SICStus Prolpgpmpt.

Typical actions that can be performed through the use of an action aggion

® regular expression operations such as kleene closure, complementation for given
automata

37

determinization and minimization atitomata
construction of automaton on the basis of regetgression
visualization of giverautomaton

apply automaton to a string or setstrings

6.1.-aux Aux

Aux is a file containing auxiliary regular expression operator definitions. It is loaded into
module fsa_regex_aux, and will be used for compiling reg@xpressions.

Note that your file with definitions of regular expression operators is consulted with the
special Prolog-syntax operators for regular expression notation loaded. Thus you can use * ..
& etc. in your definitions. Drawback is that you cannot use operator notation for e.g. the is/2
predicate.

A typical auxiliary definition willbe:

macro(vowel,{a,e,i,o,u}).

A slightly more interestingne:

macro(free(Expr), ~ &xpr).

You can also explicitly construct an automaton yoursef.:

rx(my_operator(Expr),Fa}
fsa_regex:rx(Expr,Fa0),
my_operator_definition(Fa0,Fa).

so you can call fsa_regex:rx/2 for furttemmpilations.

There can be multiple -awptions.

6.2.-pm File

File is supposed to contain the definition of a predicate module. The file is loaded and
moreover the global variablgred_module is set to the name of the module defined in that
file. There can be multiple -poptions

6.3.-1 File

The File is loaded, using use_module/1. There can be multipi¢iehs.

38

6.4.-cmd Goal

evaluates Prolog Goal; Goal is parsed as Prolog texample:
fsa -cmdlisting(library_directory),halt’).

There can be multiple -cnaptions

6.5.-cmdint

Run interactively with the FSA6 commaimderpreter.

6.6.-a[ccepts] [In] String

This option can be used to test a given string for acceptance by an automaton read from In (or
standard input). Fsa prints ‘yes’ or ‘no’ to standard eEgample:

% fsa -r 'a+’ | fsa -@maa

Prints‘yes’.

6.7.-approx [In] String

This option can be used to get all best matches for a given string and an automaton read from
In (or standard input). In must containatomaton.

% fsa -r ’[a,a]+’ | fsa -approaaa
Prints:

aa
aaaa

6.8.-approx [In] String

This option can be used to get the transductions for all best matches for a given string and an
automaton read from In (or standard input). In must contain an string-toisamsglucer.

% fsa -r '[a,a:b]+’ | fsa -t_approxaa
Prints:

ab
abab

39

6.9.-w_approx [In] String

This option can be used to get the transductions for all best matches for a given string and an
automaton read from In (or standard input). In must contain a string-to-wigbtlucer.

% fsa -r ’[a:2,a:1]+' | fsa -w_appr@aa
Prints:

3
6

6.10.-fsa2fsm In Syms Aut | -fsa2fsm [IHOut]]

If three file names are given, then the automaton read from the first file is converted to an
automaton in AT&T’sfsm software format. That automaton is written into Aut; Syms will
contain a mapping from the integers used in Aut to the actual symbols. If less than three file
names are given, then it is assumed that the actual symbols can be ignored and no Syms is
written.

6.11.-fsm2fsa [In [Out]]

Converts an automaton in AT&Tfsm software format into fsa5 format. Note that a separate
symbol definition file is currently nsupported.

6.12.-c[ompile] [In [Out]]

For a given automaton (recognizer) in In a Prolog program definiting the corresponding
accepts/2 relation is written to Out. For details, see the méstuleompiler.

6.13.-t_c[ompile] [In [Out]]

For a given automaton (string to string transducer) in In a Prolog program definiting the
corresponding t_accepts/2 relation is written to Out. For details, see the risadalempiler.

6.14.-w_c[ompile] [In [Out]]
For a given automaton (string to weight transducer) in In a Prolog program definiting the

corresponding w_accepts/2 relation is written to Out. For details, see the module
fsa_compiler.

40

6.15.-c[ompile_to_]c [In [Out]]

For a given recognizer read from In a C program is written to Out which will read strings
from standard input and report for each string whether it is described by that recognizer. For
details, see modulsompiler_to_c.

6.16.-t_c[ompile_to]c [In [Out]]

For a given string-to-string transducer read from In a C program is written to Out which will
read strings from standard input and transduce each string according to that transducer. For
details, see modulsompiler_to_c.

6.17.-w_c[ompile_to_]c [In[Out]]

For a given string-to-weight transducer read from In a C program is written to Out which will
read strings from standard input and transduce each string according to that transducer. For
details, see modulsompiler_to_c.

6.18.-java [In] Out

For a given recognizer read from In, a JAVA program is written to Out which will read
strings from standard input and report for each string whether it is accepted by that
recognizer. For details, see modida_java.

6.19.-t_java [In] Out

For a given transducer read from In, a JAVA program is written to Out which will read
strings from standard input and report for each string the transduction to standard output. For
details, see modulsa_java.

6.20.-w_java [In] Out

For a given string-weight-transducer read from In, a JAVA program is written to Out which
will read strings from standard input and report for each string the transduction to standard
output. For details, see modisa_java.

6.21.-compose A BOut]

The transducers read from A and B are composed, and the result is written to Out. Equivalent
to

fsa -r ‘compose(file(A),file(B))>Out

41

6.22.-complement [In[Out]]

The complementation operator is applied to the automaton read from In, and the result is
written toOut.

6.23.-count [In [Out]]

For the automaton read from In the number of transitions and symbols and some other
properties is written to Out. Hshort is specified, then the output is given as a single line
consisting of the number of states, start states, final states, transitions, jumps, and symbols
respectively. Otherwise a more elaborate message is printed meant fordwnsamption.

6.24.-density [In [Out]]

For the automaton read from In various densities are reported to Out. Deterministic density is
the number of transition divided by the number of states times the number of symbols;
absolute density is the number of transitions dividided by the number of states squared times
the number of symbols. Jump density is the number of jumps dividied by the squared number
of states. Deterministic density can be used to characterize the difficulty of determinization.
For deterministic densities of around 2, exponential blow-up of the output (and hence
processing time) can be expected (Leslie 1995). Jump density can be used to estimate the
most efficient subset construction algorithm (van Nd®€8).

6.25.-davinci [In [Out]]

For the automaton read from In a corresponding DaVinci term is written to Out. This can be
used to visualize the automaton In usidaVinci:

fsa -davinci a.nd @a.davinci
daVincia.davinci

6.26.-vcg [In [Out]]

For the automaton read from In a corresponding vcg term is written to Out. This can be used
to visualize the automaton In usi¢gvcg:

fsa -vcg a.nd | xvcg

6.27.-dot [In [Out]]

For the automaton read from In a corresponding dot term is written to Out. This can be used
to visualize the automaton In using dodotty:

42

fsa -dot a.nd | dotty
fsa -dot a.nd | dot -Tps | gv
fsa -dot a.nd | dot -Tgif | xv

6.28. -d[eterminize] [In [Out]] | -dgraph [In [Out]] -drgraph
[In [Out]] -dsubset [In [Out]] | -dstate [In [Out]]

The automaton read from In is determinized and written to Out. FSA6 supports four variants
of the determinization algorithm. In the first form, a heuristic is used (based on the jump
density) to select the variant of the determinization variant. The other forms indicate the
particular variant that is to be used. For details, refer tésthaleterminizermodule.

6.29.-efree [In [Out]]

For the automaton read from In an equivalent automaton without any epsilon transitions
(jumps) is written taDut.

6.30.-ignore A B [Out]

Equivalentto:

fsa -r "ignore(file(A),file(B))’ >Out

6.31.-diffference] A B [Out]

Equivalentto:

fsa -r 'difference(file(A),file(B))’ >Out

6.32.-transduce [In] String

The transducer read from In is applied to String; the resulting strprgnied.

6.33.-transduce [In] String

The transducer read from In is applied to String; the resulting strprgnied.

6.34.-aa In | -accept_all In | -raaRegex

The program checks each string read from standard input for acceptance by the recognizer
read from In. If the string is accepted then ‘yes’ is printed to standard error; otherwise ‘no’. In
the third form the recognizer is specified by regular expression Regex rather than by an
automaton.

43

6.35.-ta In | -transduce_all In | -rta Regex

The program transduces each string read from standard input according to the transducer read
from In. The actual transductions are written to standard output; for each input string a
message is written to standard error indicating the number of outputs for that string. In the
third form the recognizer is specified by regular expression Regex rather than by an
automaton.

6.36.-wa In | -w_transduce_all In | -rwaRegex

The program transduces each string read from standard input according to the
string-to-weight transducer read from In. The actual transductions are written to standard
output; for each input string a message is written to standard error indicating the number of
outputs for that string. In the third form the recognizer is specified by regular expression
Regex rather than by automaton.

6.37.-prolog Goal
Evaluates Prolog godtxample:

fsa -prologlisting(user:file_search_path).’

6.38.-generate States Syms DendDens]

This option is used to generate random finite automata, using the algorithm of Leslie 1995.
States is the number of states, Syms is the number of symbols, Dens is absolute density, and
JDens is the jumgensity.

6.39.-intersect A B[Out]

Equivalentto:

fsa -r 'intersect(file(A),file(B))’ >Out

6.40.-kleene_star [In[Out]]

Equivalentto:

fsa -r ‘file(In)* > Out

6.41.-w_minimum_path [In]

Writes the path with the minimum weigth of the string-to-weight transducer readrfrom

44

6.42.-kleene_plus [In[Out]]

Equivalentto:

fsa -r "file(In)+' > Out

6.43.-reverse [In[Out]]

Equivalentto:

fsa -r 'reverse(file(In))’ >Out

6.44.-inverse [In [Out]]

Equivalentto:

fsa -r 'inverse(file(In))’ >Out

6.45.-domain [In [Out]]

Equivalentto:

fsa -r '"domain(file(In))’ >Out

6.46.-range [In [Out]]

Equivalentto:

fsa -r 'range(file(In))’ >Out

6.47.-cleanup [In [Out]]

Equivalentto:

fsa -r ‘cleanup(file(In))’ >Out

6.48.-identity [In [Out]]

Equivalentto:

fsa -r 'identity(file(In))’ > Out

45

6.49.-option [In [Out]]
Equivalentto:

fsa -r 'option(file(In))’ >Out

6.50.-union A B [Out]]

Equivalentto:

fsa -r 'union(file(A),file(B))’ > Out

6.51.-concat A B[Out]]

Equivalentto:
fsa -r ‘concat(file(A),file(B))’ >Out
6.52.-m[inimize] [In [Out]] | -mb [In [Out]] | -mh [In [Out]]
Minimizes the automaton read from In. The first version uses the default minimization
algorithm (by Brzozwski). The other options explicitly require the algorithms by,

respectively, Brzozowski or Hopcroft. Refer to the fsa_regex module and the fsa_minimizer
module fordetails.

6.53.-t_ml[inimize] [In [Out]]

Applies the minimization algorithm for transducers (by Mohri) to the transducer read from In.
Refer to the fsa_t_determinizer module details.

6.54.-produce [In [Out]]

For the recognizer read from In strings accepted by In are writteatto

6.55.-t_produce [In [Out]]

For the string-to-string transducer read from In pairs of strings are writ@utto

6.56.-w_produce [In [Out]]

For the string-to-weight transducer read from In pairs of string and weights are wriiah to

46

6.57.-rlegex] [Regex][Out]

The automaton described by regular expression Regex are written to Out. If Regex is not
specified, it is read from standargput.

6.58.-tk [File] | -tk [-r Regex]

Starts the graphical user interface on the automaton in File, or the automaton defined by the
regular expressioRegex.

6.59.-postscript [In [Out]]

Produces postscript version of the automaton read linom

6.60.dict2ph [In [Out]]

A minimal string-to-weight transducer will be written to Out, transducing each of the lines
read from In into its rank in alphabetic ordering; in other words, the transducer computes a
perfect hash for the keys read from In. For more info, see mtidaledict*.

6.61.dict2m [In [Out]]

A minimal recognizer will be written to Out, recognizing each of the lines readlfrom

6.62.-pstricks_tex [In [Out]] | -pstricks_picture [In [Out]]

Produces LaTeX code using PsTricks macro’s for the automaton read from In. In the first
variant a self-contained LaTeX document is produced; in the second variant a LaTeX picture
is produced to be included in anotideccument.

6.63.-copy [In [Out]]

Copies the automaton from In to Out. Useful to convert between different formats using the
read andwrite globalvariables:

fsa read=fast write=normal -copy a.nahd

6.64.-t_d[eterminize] [In [Out]]

The determinization algorithm for transducers (by Mohri) is applied to string-to-string
transducer In and yields Out. For details, refer to moduleterminizer.

47

6.65.-w_d[eterminize] [In [Out]]

The determinization algorithm for transducers (by Mohri) is applied to string-to-weight
transducer In and yields Out. For details, refer to modualeterminizer.

6.66.-w_ml[inimize] [In [Out]]

The minimization algorithm for transducers (by Mohri) is applied to string-to-weight
transducer In and yields Out. For details, refer to moduleterminizer.

7. Predicates onSymbols

In standard regular expressions, the atomic symbols are normally treated ‘as is’: these
symbols represent themselves. In FSA6 the possibility exists to have these atomic symbols
stand for arbitrary (user-defined) predicates instead. In order to use this possibility, a
collection of declarations must be provided in a module. Such declarations define, for
instance, what the conjunction is of two predicates. In a regular expression such as pl & p2,
where pl and p2 are predicates, the resulting automaton is equivalent to p3 where p3 is the
conjunction of p1 ang2.

The global variablgored_module defines the name of a module which is the module that is
used (by default) to obtain the definitions of these declarations. Recognizers are associated
with the name of such a module as well. Transducers have two such predicate module names:
one for the domain and one for ttange.

Two standard predicate moduka®:

fsa_preds
fsa_frozen

The use of thefsa preds module leads to functionality which is equivalent to the
functionality of FSA5 (in particular it provides a way to treat the ?/0 any symbol operator). In
fsa_preds each predicate is a set of symbols or the complement of a set of symbols. The
fsa_frozenmodule can be used for cases in which you want to treat symbols ‘as is’. If this
module is used, you cannot use the ?/0 any syogssiator.

If automata are combined using regular expression operators, then their corresponding
modules must be identical. For instance, union of two recognizers implies that both
recognizers have the same predicate module. Composition of two transducers imply that the
predicate module of the output side of the first transducer is identical to the predicate module
of the input side of the second transducer; the resulting transducer will take for its input side
the input module of the first transducer, and as its output module it uses the output module of
the secondransducer.

48

This section lists the predicates that should be provided by a predicate module. An interesting
example is provided by the fsa_preds module. A boring example is provided by the
fsa_frozen module. In the Examples directory you will find a sub-directory PredModules
which contains various other examples of predicate mathdiarations.

7.1.true(?Pred)

Pred is a predicate which is true for all symbols. This declaration is used to provide a
translation for the ‘any symbol’ operator ?/0. Predicate modules which do not define true/l
cannot employ this operator, and as a consequence cannot use operators which are defined in
terms of ?/0. The predicate should succeed at amust.

7.2.regex_atom_to pred(+Atomic,-Pred)

This predicate translates the regular epxression notation into a predicate. This allows internal
and external form of predicates; cf. display_predicate to translate from internal to an external
form. Note: ?/0 is treated by the regular expression compiler itself, and uses true/l. The
predicate should succeed exacthce.

7.3.evaluate predicate(+Pred,?Symbol)

This predicate should succeed if Pred is true of Symbol, anctifiaifwise.

7.4.conjunction(+P0,+P1,?P)

Predicate P is a predicate that is equivalent to the conjunction of PO and P1. If the conjunction
of PO and P1 is inconsistent, then conjunction/3 should fail. The predicate should succeed at
mostonce.

7.5.display_predicate(+Pred,-Term)

This predicate is used by the various visualization tools. It allows for the possibility to have
an external format of a predicate. The predicate should succeed exmetly

7.6.prepare_complement_of set(+Fa,-Term)

Cf. complement_of_set/3. This predicate is used in the complete/1 operator. It computes any
information from the finite automaton Fa that is useful later in complement_of_set/3. This
computation is then only performed once for each complete/1 operator. Term is an arbitrary
term that is passed on to complement_of_set/3. The predicate should succeedesactly

49

7.7.complement_of set(+SetOfPreds,+Term,-Complements)

Complements is a list of predicates such that the disjunction of that set is equivalent to the
complement of the disjunction of SetOfPredicates. Set is some datastructure computed in
preparation phase. This definition is used in the complete/1 operator. The predicate should
succeed exactlgnce.

7.8.determinize_preds(+KeyListO,-KeyList)

This code is required during the construction of deterministic automata, (the subset
construction algorithm). Refer to the fsa_determinizer module for more details. In that
module you can also find a definition of this predicate provided your predicate module has
definitions for negation/2. In that case you can singatfine:

determinize_preds(U0,U):-
fsa_determinizer:determinize_preds(UO,U,YourPredModule).

This declaration is used in determinize/1 The predicate should succeed eraetly

7.9.t_determinize_preds(+KeyListO,-KeyList)

This code is required during the construction of deterministic transducers, (the subset
construction algorithm for transducers). Refer to the fsa_ t determinizer module for more
details. In that module you can also find a definition of this predicate provided your predicate
module has definitions for negation/2. In that case you can suhefilye:

t determinize_preds(UOQ,U):-
fsa_t_determinizer:t_determinize_preds(UO,U,YourPredModule).

This declaration is used in t_determinize/1 The predicate should succeed exeetly

7.10.identity(+Pred0,-Pred)

If PredO is a predicate that is true of more than a single symbol, then Pred should be bound to
" $@ (Pred0). If, on the other hand, PredO is true only of a single symbol, then Pred should be
bound to PredO. This is used in the computation of the regular operator identity/1. Predicate
should succeed exactbnce.

7.11.class_to_pred(+ListO,-List)

ListO is a list of atomic symbols as used in a regular expression. List is a list of predicates
which, taken together as a disjunction, is true of exactly the symbols in ListO. This declaration

is used to have a simple translation of the class/1 regular expression operator. Should succeed
exactlyonce.

50

7.12.negated _class_to_pred(+ListO,-List)

ListO is a list of atomic symbols as used in a regular expression. List is a list of predicates
which, taken together as a disjunction, is true of all symbols not in List0. This declaration is
used to have a simple translation of the negated_class/1 regular expression operator. Should
succeed exactlgnce.

7.13.cleanup(+ListO,-List)

Used in cleanup/1 operator. ListO is a list of predicates (interpreted as disjunction). List is an

equivalent (but shorter) list of predicates (interpreted as disjunction). This predicate is used to
translate sets of transitions into smaller sets of transitions. The predicate should succeed
exactlyonce.

8. Types oftransducers

The determinization, minimization and minimum path algorithms for transducers are
implemented in a fully general way, i.e., for various types of transd(isersirings’).

For each supported type, a number of predicates must be defined in a corresponding module
(these are called ‘semirirggeclarations’):

e zero(Val).
® plus(ValO,vall,Sum).
e minus(ValO,Vall,Diff).
e minimum(Val0,Vall,MinVal).
e minimum_only(YesNo).
Currently, the following types of transducers su@ported:
® fsa_strings (ordinary string-to-stritigansducers)
® fsa_weights (string-to-weight transducers a.k.a weighteéptors)

The examples directory SemiringModules might contain additional sendieicigrations.

8.1.zero(?Val).

The identity element for addition. For strings, this is the empty string; for weight it is

51

8.2.plus(+Val0,+Vall,?Sum).

Addition. For weights this is number addition, for strings thisoiscatenation.

8.3.minus(+Val0,+Vall,?Diff).

Inverse of the additionperator.

8.4.minimum(+Val0,+Vall,?Min).

Minimum value of two given values. For weights this is the minumum of two numbers, for
strings this is the longest commprefix.

8.5.minimum_only(+YesNo).
YesNo is one of thatoms

® yes

® no

indicating whether we are intested in all outputs associated with a path or only in the minimal
output. For weights this is ‘yes’, for strings thisns’.

9. fsa_array: Non-updatable Arrays (127+32rees)

This module provides a non-updatable array data-structure. Accessing individual items in the
array is very efficient. The arrays are implemented using O’Keefe’'s N+K trees, with N=127
andK=32.

NB. Array indices start at 0: so O refers to the first element cirtlag.
Here’s an overview of the predicaj@®vided:
e fsa_array _new/[1,2] create a new non-updataidsy
e fsa_array_access/[3,4] access a value in a non-updatetyle
e fsa_array_get/3 get a value in a non-updateidy
e fsa_array to_list/2 conversion of arrayist

The N+K tree data-structure is described in The Craft of Prolog, by Richard A. O’Keefe, MIT
Press, 1990, chapters 4.5. @n@.

52

9.1.List of Predicates

This section lists the predicates defined by mhaglule.

9.1.1.fsa_array_new(-FsaArray[,?Size])

Initializes FsaArray as a new array. In this implementation of arrays the optional second
argument is notised.

9.1.2.fsa_array_access(+Index,?Val[,?Default],+FsaArray)

Val is unified with the Index’'th entry of FsaArray. This predicate thus subsumes setting and
reading of a value in the array. Remember that you can’t change values of an array (except by
further instantiation). For the 4-ary form, if the Index’th entry was not yet defined, then Val is
unified with Default (and not with the Index'@ntry).

9.1.3.fsa_array_get(+Index,?Val,+FsaArray)

Val is unified with the Index’th entry of FsaArray. That entry must not be variable. This
predicate is different from fsa_array_access/3 in that ifathn

10.fsa_compiler: Prolog CodeGeneration

This module provides predicates to create Prolog code on the basis of a finite automaton.
Various tricks are employed to make the resulting code efficient (rather than readable), but
functionality has an ever higher priority. The functionality is the same as that provided by the
fsa_interpreter module, only faster. For pure speed, you should consider using the
fsa_compiler_to_enodule.

10.1.List of Predicates

This section lists the predicates defined by mhaglule.

10.1.1.fsa_compile_to prolog(+Fa)
fsa_compile_to_prolog(+Fileln,+FileOut)

In the first variant, a Prolog program is written to standard output for the automaton Fa. The
Prolog program defines the predicate accepts(?List) which succeeds if Fa accepts the list of
symbols List. In the second variant, the Prolog program is written to FileOut on the basis of
the automaton read in froRileln.

accepts(?String) can be used both to recognize a given string or to produce a string according
to Fa. This is why dif/2 is used in the implementation. We prefer functionality over efficiency
here. If you didn’'t know: dif/2 is the SICStus built-in for inequality which delays until
arguments are sufficientipstantiated.

53

Since input can be non-deterministic we check for epsilon-cycles by keeping track of a list of
states visited after last consumption of input). There are cases where it would make more
sense to pre-compute efree automata first. We provateyway.

10.1.2.fsa_compile_to prolog_t(+Fa)
fsa_compile_to_prolog_t(+Fileln,+FileOut)

In the first variant, a Prolog program is written to standard output for the transducer Fa. The
Prolog program defines the predicate t_accepts(+In,?List) which succeeds if In x List is a
transduction defined by Fa. In the second variant, the Prolog program is written to FileOut on
the basis of the automaton read in fréieln.

t _accepts(+In,?0ut) can be used to transduce a given string or to produce pairs of strings, if
the length of the input list is known. This is why we (possibly) use dif/2 in the
implementation. We prefer functionality over efficiency here. If you didn’t know: dif/2 is the
SICStus built-in for inequality which delays until arguments are suffici@mshantiated.

Since input can be non-deterministic we check for epsilon-cycles by keeping track of a list of
states visited after last consumptiorirgdut).

Uses special meta-notation |N+| for ‘output’ loops, to indicate that last N characters can be
repeated any number ines.

Supports unknown symbols, including occurrences of delayed identity constraints (using a
queue; trick was explained to me by Lauri Karttunen, Xerox Grenoble. | have never seen it
described in the literature). E.g. try regexnimize({[a:b,?,c],[a,?,d]}).

10.1.3.fsa_compile_to prolog w(+Fa)
fsa_compile_to_prolog_w(+Fileln,+FileOut)

In the first variant, a Prolog program is written to standard output for the
string-to-weight-transducer Fa. The Prolog program defines the predicate
w_accepts(+In,?List) which succeeds if In x List is a transduction defined by Fa. In the
second variant, the Prolog program is written to FileOut on the basis of the automaton read in
from Fileln.

w_accepts(+String,?Weight) can be used to transduce a given String to the corresponding
Weight. In case of output loops only the minimum weiglpreduced.

Since input can be non-deterministic we check for epsilon-cycles by keeping track of a list of
states visited after last consumptiorirgdut.

54

11.fsa_compiler_to_c: C Codéseneration

This module provides predicates to create C code on the basis of a finite automaton. There are
certain restrictions to the input automaton. The automatonlmeust

® deterministic (forinput)
® each symbol is a one-lettatom

® input predicates are automatically expanded to each of the symbols with character
number 1-255, except for number 10 (new-line), since new-line is used as a separator in
the finalprogram.

® Note that meta-symbol expansion only works for recognizers and letter transducers. In
particular, it doesiot work for transducers which are the result of t_determinization or
t_minimization. Therefore in such cases you need to appy
t determinization/t_minimization to the result of applying an appropriate
domain_sigma/dperation.

The compiler performs the following operation to ensure that the above contibidns
recognizers: m(expand_predicates(SigfagFa0)))
string to string transducers: t_minimize(expand_predicates(Sa(Fa0)))
string to weight transducers: w_minimize(expand_predicates(Sa(fa0))
where Sig is equivalent to the union of all one-letter atoms, and Fa0 is thaumhpuiaton.
The C program will contain definitions of the followifignctions:

® recognizers:

int accepts(chatin)

® string-string-transducers:

int t_accepts(char *in,ché&out)

® string-weight-transducers:

int w_accepts(char *in,irtout)

In each case, the functions return 1 if the stimgs accepted. Otherwise they return 0. For
transducers the resulting string or weight is availabteut*.

55

If the global variablec_with_main is set to *on*, then the resulting C program will also
contain a main function. This function is defined in such a way that it reads lines from
standard input and applies the corresponding accept functions for each line. For recognizers,
eitheryesor no is printed to standard error. For transducers, the transduction is written to
standard output; if the input string is not in the domain of the transducendhsmwritten to
standarcerror.

The representation of the finite-automaton in C is similar to the technique explained on page
43 (table 4.2) of Jan Daciuk’s dissertation ‘Incremental Construction of Finite-State Automata
and Transducers and their use in the Natural Language Processing’. Politechnika Gdanska,
1998.

11.1.List of Predicates

This section lists the predicates defined by mhiglule.

11.1.1.fsa_compile_to c(+FajJjsa_compile_to c(+Fileln,+FileOut)

In the first variant, a C program is written to standard output for the automaton Fa. The C
program will read lines from standard input and report for each line whether it is a string
accepted by Fa. In the second variant, the C program is written to FileOut on the basis of the
automaton read in froffileln.

11.1.2.fsa_compile_to c_t(+Fajsa compile_to_c_t(+Fileln,+FileOut)

In the first variant, a C program is written to standard output for the transducer Fa. The C
program will read lines from standard input and print for each line its transduction according

to Fa. In the second variant, the C program is written to FileOut on the basis of the automaton
read in from FileIn. Remember that Fa must be deterministiapaoit.

11.1.3.fsa_compile_to _c w(+Fa)
fsa_compile_to _c_w(+Fileln,+FileOut)

In the first variant, a C program is written to standard output for the string to weight
transducer Fa. The C program will read lines from standard input and print for each line its
transduction according to Fa. In the second variant, the C program is written to FileOut on the
basis of the automaton read in from Fileln. Remember that Fa must be determinispatfor

11.1.4.fsa_compile_to c fa(+Fa,+FileOut)

A C program is written to FileOut for the automaton Fa. The C program will read lines from
standard input and report for each line whether it is a string accepked by

56

11.1.5.fsa_compile to c t fa(+Fa,+FileOut)

A C program is written to FileOut for the transducer Fa. The C program will read lines from
standard input and print for each line its transduction accordiRg.to

11.1.6.fsa_compile to c_w_fa(+Fa,+FileOut)

A C program is written to FileOut for the string to weight transducer Fa. The C program will
read lines from standard input and print for each line its transduction accoréhiag to

12.fsa_data: Internal Format of Finite Automata

This module provides a consistent interface to the internal format of finite automata. A finite
automaton is &&rm

fa(Symbols,States, Starts,Finals, Transs,Jumps)

Symbols is a term r(Sig) (for recognizers) or t(SigD,SigR) for transducers. Here Sig, SigD,
SigR are the predicataodules.

States is an integer indicating the number of states iautoenaton.
Starts is an ordered list of integers indicating the start states aditiv@aton.
Finals is an ordered list of integers indicating the final states @futoenaton.

Transs is an ordered list of triples trans(A,B,C) where A and C are integers indicating source
and target state, and B is a symbol (recognizers) or a symbol pair InSym/OutSym
(transducers). InSym is a symbol or the empty list. OutSym is a symbol or a (possibly empty)
list of symbols.

Jumps is an ordered list of pairs jump(A,B) where A and B are integers indicating source and
target state. This implies there is an epsilon transition fromBA to

12.1.List of Predicates
This section lists the predicates defined by mhaglule.

12.1.1fsa_states number(?Fa,?Integer)

The number of states in Faligeger.

57

12.1.2 fsa_states set(+Fa,?States)

States is an ordered list of integers: all staté<ain
12.1.3.fsa_state(+Fa,?State)

State is a state iRa.
12.1.4fsa_start_states(?Fa,?StartStates)
StartStates is the ordered list of start staté¢saof
12.1.5fsa_start_state(+Fa,?StartState)
StartState is a start statesraf.
12.1.6.fsa_final_states(?Fa,?FinalStates)
FinalStates is the ordered list of final stateEaf
12.1.7 fsa_final_state(+Fa,?FinalState)
FinalState is a final states I6&.
12.1.8.fsa_transitions(?Fa,?Trans)

Trans is the ordered list of transitionsHaf.
12.1.9.fsa_transition(+Fa,?P,?Sym,?Q)

In Fa there is a transition from P to Q with symbol(p&yin.
12.1.10fsa_jumps(?Fa,?Jumps)

Jumps is the ordered list of jumpska.

12.1.11fsa_jump(+Fa,?P,?Q)

In Fa there is a jump from P @.

12.1.12.
fsa_construct([[+Symbols,]+NumberStates, |+ Starts,+Finals,+ Trans,+Jumps,-Fa)

Predicate to construct a finite automaton on the basis of lists of start states, final states,
transitions and jumps. These lists need not be ordered. It's somewhat more efficient to specify
the number of states, if known. It's even more efficient if you also know the symbols
data-structure you want féia.

58

12.1.13.
fsa_components(?Symbols,?Length,?Starts,?Finals,?Trans,?Jumps,?Fa)

Predicate to construct an automaton on the basis of its components, or to query the
components of a given automaton. The difference with fsa_construct/7 is that Starts, Finals,
Trans and Jumps must be soradeady.

12.1.14.
fsa_construct_rename_states([+Symbols,]+Starts,+Finals,+Trans,+Jumps,-Fa)

Predicate to construct a finite automaton on the basis of lists of start states, final states,
transitions and jumps. These lists need not be ordered. Moreover, state names can be arbitrary
Prolog terms. These state names will be renamed to integers. Symbol list is computed on the
basis of Trans. Sigma is determined by the current default predicate module (i.e. by flag
pred_module).. It's more efficient if you also know the symbols data-structure you want for
Fa. Some checking on these symbols is performeedrtheless.

12.1.15fsa_copy_except(+Key,?Fa0,?Fal,?Part0,?Partl)

This predicate unifies Fa0 and Fal except for the part specified by Key. Part must be one of
the atoms symbols, states, start_states, final_states, transitions, jumps. PartO and Partl are the
corresponding parts in Fa0 aRdl.

12.1.16fsa_type(+Fa,?Type)

Type is the type of the automaton Fa, where type is one of recognizer, transducer(letter),
transducer(sequence)

13.fsa_dict: Dictionaries and PerfectHashes

This module provides predicates to create (acyclic) finite automata on the basis of a set of
strings. This can be used to implement word lists and pdrésttes.

A perfect hash is a hash in which each key is associated with a unique hash code: the rank of
the key in the alphabetic ordering of the set of keys. This is possible by providing an
enumeration of all keys in advance. For instance, if you providestrings:

® voordeur
® achterdeur
® Voor

® achter

59

then a string-to-weight transducer will be constructed which aelper to 0,achterdeur to
1, voor to 2, andvoordeur to 3.

13.1.List of Predicates

This section lists the predicates defined by mhiglule.

13.1.1.fsa_dict_to_perfect_hash(+ListOfStrings,-Fa)

A string-to-weight transducer Fa will be constructed implementing the perfect hash for the
ListOfStrings; i.e. the transducer maps each string to its rank (in alphabetic order), and does
not accept any string not listed in ListOfStrings. The transdudger igninimal.

13.1.2.fsa_dict_to_perfect_hash_file(+Fileln,+FileOut)

FileIn is assumed to contain a set of strings: each line is a string. A string-to-weight
transducer will be written to FileOut implementing the perfect hash for the set of strings read
from Fileln: i.e. the transducer maps each string to its rank (in alphabetic order), and does not
accept any string not listed in Fileln. The transducéwvigminimal.

13.1.3.fsa_dict_to_fsa(+ListOfStrings,-Fa)

A minimal recognizer Fa will be constructed recognizing exactly the strifgst@fStrings

13.1.4.fsa_dict_to fsa file(+Fileln,+FileOut)

Fileln is assumed to contain a set of strings: each line is a string. A minimal automaton
recognizing exactly those strings is writterFiteOut

14.fsa_frozen: Predicates on symboldsa frozen

This module is one of the standard ‘predicate’ modules. It provides a consistent set of
predicate_declarations. This predicate module is the module of choice if yonotre
interested in predicates on symbols, and you don’t need the ?/0 any syetaibr.

The module only has a restricted set of predicate_declarations; most notably it lacks
definitions for true/1 and therefore the use of the any symbol ?/0 operator is not allowed (and
neither the corresponding complement epérator).

This predicate module is used internally for treating transducers temporarily as recognizers;
e.g. if you want to determinize a transducer as if it were a recognizer by viewing each
transition pair as an atomumit.

60

15.fsa_globals: Globalvariables

This section lists the predicates of the fsa_globals module. This module maintains a number
of global variables for FSA. These variables are maintained using the blackboard primitives
of SICStus; all variables live in tHsa module.

15.1.List of Predicates

This section lists the predicates defined by mhiglule.

15.1.1.fsa_global_set(+Key,?Val)

Predicate to set the global variable with ndfeg to *Val*.

15.1.2.fsa_global get(+Key,?Val)

Predicate to query the value of the global variable with name *Key*. If the value is undefined
thenVal is unified to a default value. These default values are available as the third argument
of thefsa_global decbredicate.

15.1.3.fsa_global_decl(?Key,?Help,?Default,?Typical,Val*Goal)

Key is a global variable with default value *Default*. Some typical values are given in the list
Typical. Help is a string explaining the variable. Val*Goal can be used to check that Val is
an appropriate value for thilag.

15.1.4.fsa_global_list[-List]

List will be unified with a keylist of all the global variables with their associated values. If no
argument is given, then this list is written to standargbut

15.1.5.fsa_version

FSA version information is displayed on standard error. Note that the version information is
available through thisa_versionglobalvariable.

15.1.6.fsa_host_prolog(?Atom)

Atom is an atom indicating the current Prolog system. At the moment Atom is one of
sicstus, *yap*, or*swi*.

61

16.fsa_hash: Non-updatable Hashes (N+iees)
This module provides a non-updatable hash datastructure, on top of the fsancatudsy.
Here’s an overview of the predicaj@®vided:

e fsa_hash_new/[1,2] create a new non-updalteisle

® fsa_hash_access/[3,4] access a value in a non-updsdable

e fsa_hash_get/3 get a value in a non-upddtable

The hash function is taken from library(terms). The default size of the hashes is determined
by the global variablghash_size*.

16.1.List of Predicates

This section lists the predicates defined by mhiglule.

16.1.1.fsa_hash_new(-FsaHash[,Size])

Initializes a new FsaHash with size Size; or default size if there is no second argument. The
default size is given by the global variabtash_size*.

16.1.2.fsa_hash_access(+Key,?Val[,?Default],+FsaHash)

Unifies Val with the value associated with Key in FsaHash. Note that keys must be ground
Prolog terms. For the 4-ary form, if Key had no associated value, then Default is unified with
Val (and Key is not added to thable).

16.1.3.fsa_hash_to_keylist(+HashedFsaArray,-Keylist)

Keylist is a list of all the Key-Value pairs klashedFsaArray.

17.fsa_interpreter: Applying Finite Automata

The fsa_interpreter contains various predicates to interpret finite automata. The following
global variables influence the fsa_interpreterdule:

® interpreter
® |ength_max

® symbol_separator

62

® symbol_separator_in
® symbol_separator_out

® nr_sol_max

17.1.List of Predicates

This section lists the predicates defined by mhiglule.

17.1.1.fsa_regex_accepts(+Atom,+String)
Succeeds if String is accepted by the regular expression in Atorex&ople:

fsa_regex_accepts('[{a,b}*,b,a,b,{a,b}*],"abbbbabababa").
17.1.2.fsa_regex_transduces(+Atom,+String0,?String)
String is a transduction of String0 according to the regular expression in Bxample:
fsa_regex_transduces('a:b’,"a",L).
L =1[98]?
17.1.3.fsa_regex_transduces_w(+Atom,+String0,?Weight)
String is a transduction of String0 according to the regular expression in Bxample:
fsa_regex_transduces_w(’[a:3,b:1*]',"abbb",L).
L=67
17.1.4.fsa_accepts(+String,+Fa)

This predicate can be used both to recognize a given string or to produce a string according to
Fa. This is why we use dif/2 below. We prefer functionality over efficiency here; note that the
compiler-to-prolog implements the saf@ctionality.

Making this code faster could be done for instance by indexing on source state and symbol.
For deterministic automata, use the compiler-to-c for a fast and corepaghizer.

Since input can be non-deterministic we check for epsilon-cycles (the fifth argument of
accepts/6 is a list of states visited after last consumption of input). Again, there are cases
where it would make more sense to pre-compute efree automata first. But if that’s the case
you could do itright?

63

17.1.5.fsa_transduces(+Stringin,?StringOut,+Fa)
StringOut is a transduction of Stringln according to transdeaer

This predicate employs a meta-notation in cases where loop-checking encounters a cycle. In
that case thaotation

IN+|

is written into the output string indicating that the previous N symbols could be repeated here
as many times as desired. For example, consider the simple regular expression mapping an a
to one or mor®'’s:

a:(b+)
If a transduction is request for input string a, then the following outjmats:

b
bb|1+|

In the second output string the meta-notation indicates that the second b could be repeated
multiple times.

Many of the same remarks wrt fsa_accepts/2 apply here: works for non-instantiated input
(lists with variable elements work OK, but variable length lists typically don’t). Also takes
care of identity constraints in the transducer, including delayed identity constraints and too
early identity constraints, by using a non-proper implementation of queues which allow
dequeue-ing before enqueue-ing! Examples to try, using the fsa_preds pradidale:

t_minimize([a:b,class(a..f)])

t minimize({[a:b,?,?,?,?,?,b],[a:c,?,?,?,?,?,c]})
| think this isneat.
17.1.6.fsa_transduces_w(+String,?Weight,+Fa)
Weight is the weight assigned to StringHxy.

Similar to fsa_accepts/2 and fsa_transduces/3 above. However, we assume that there are no
identity constraints. Loop-checking for [] input, but no meta-notation in output: we simply
produce the minimum in such cases. That seems to be appropriate in most app(i@ations

64

17.1.7 fsa_regex_approx_accepts(+String,+Regex,-Recipe)

String is a Prolog string, and Regex is an atom that will be parsed as a regular expression. The
system will match String approximately to that regular expression, returning each of the
matches which require a minimal number of substitutions, insertions, deletions, and
transpositions. A match is given by a recipe which is a list of Prolog terfoloaes:

P:d deletion at positidn

P:i(Pred) insertion of symbol for which Pred is trueR at
P:s(Pred) substitution of symbol for which Pred is tru®, at
P:t transposition at positiéh

where P refers to the position in the sequence of symbols extracted from String where the
corresponding edit operation tak#ace.

17.1.8.fsa_approx_accepts(+String,+Fa,-Recipe)

String is a Prolog string, and Fa is a finite automaton. The system will match String
approximately to this Fa, returning each of the matches which require a minimal number of
substitutions, insertions, deletions, and transpositions. A match is given by a recipe which is a
list of Prolog terms afllows:

P:d deletion at positidn

P:i(Pred) insertion of symbol for which Pred is trueR at
P:s(Pred) substitution of symbol for which Pred is tru®, at
P:t transposition at positiéh

where P refers to the position in the sequence of symbols extracted from String where the
corresponding edit operation tak#ace.

17.1.9.fsa_regex_approx_transduces(+String0,+Regex,+String)

String0 and String is a Prolog string, Regex is an atom that will be parsed as a regular
expression denoting a string to string transducer. The system will match String0
approximately to the domain of the regular expression, and return each of the transductions of
these approximatmatches.

17.1.10fsa_approx_transduces(+String0,+Fa,+String)
String0 and String is a Prolog string, Fa a string to string transducer. The system will match

String0 approximately to the domain of Fa, and return each of the transductions of these
approximatematches.

65

17.1.11fsa_regex_approx_transduces w(+String0,+Regex,+String)

String0 and String is a Prolog string, Regex is an atom that will be parsed as a regular
expression denoting a string-to-weight transducer. The system will match StringO
approximately to the domain of the regular expression, and return each of the transductions of
these approximatmatches.

17.1.12fsa_approx_transduces_ w(+String0,+Fa,+String)

String0 and String is a Prolog string, Fa a string to weight transducer. The system will match
String0 approximately to the domain of Fa, and return each of the transductions of these
approximatemnatches.

18.fsa_io: Reading and Writing Finite StateAutomata

This module provides predicates to read and write finite automata in a variety of formats. The
defaul format for reading is determined by the global variable *read*. The default format for
writing is determined by the global variabilerite*.

The following formats are available both for reading amiting:

e fast. Binary format of theormal format. Uses library(fastrw). Much faster reading and
writing of automata. Drawback: binafijes.

e normal. Internal representation (single Praiegm).

e old. Prolog program defining clauses start/1, final/2, trans/3, jump/2. A variant of this
was used by FSA2 and FSAS3, but it is still useful, for instance, if you want to input
automata directly, rather than by means of regetaressions.

e fsm. Format of automata as used in AT&T’s fisonary.

® compact. text format, fairly compact. Slow (especiallydiotput).
For writing, the following additional formats aagailable:

® ps(PostScript)

® vcg (input to the Xvcg graph visualizatitwol)

® davinci (input to the DaVinci graph visualizatitool)

® tk (starts a interactive tcl/tkidget)

® dot (input for the GraphViz visualization tools dot atutty)

66

® pstricks (LaTeX code to be included in a document; requires psnakso’s)
® |atex (LaTeX document; requires pstrickacro’s).
® prolog (Prolog program; interface to fsa_compitexdule).

® c,t c, w_c (C program; interface to fsa_compiler_to_c module), resp. for recognizers,
string-string-transducers and string-weigiansducers.

® java, t java, w_java (JAVA program; interface to fsa java module), resp. for
recognizers, string-string-transducers and string-weighsducers.

e fsm. Format of automata as used in AT&T’s fsm libr&yperimental.

The normal format is the internal format used in FSA6. The modsé data provides a
consistent interface to thisrmat.

Here is a table indicating the relative speed of the standard input andfoutpats:
format compact fast normal
writing 20 1 4
reading 5 1 4

Here is a table indicating the relative size of the standard input and output formats (measured
in bytes):

compact fast normal
1 18 1.6

18.1.Description of 1/0 formats

This section describes the various f@mats.

18.1.1.The normal format
In thenormal format, a finite automaton is a single Protegnm
fa(Symbols,States,Starts,Finals, Transs,Jumps).

Symbols is a term r(Sig) (for recognizers) or t(SigD,SigR) for transducers. Here *Sig*,
SigD, SigR are the predicatmodules.

Statesis an integer indicating the number of states iratitematon.

Starts is an ordered list of integers indicating the start states @futoenaton.

67

Finals is an ordered list of integers indicating the final states chgib@maton.

Transsis an ordered list of triples trans(A,B,C) whé&eandC are integers indicating source
and target state, an8 is a symbol (recognizers) or a symbol pair InSym/OutSym
(transducers)InSym is a symbol or the empty lisOutSym is a symbol or a (possibly
empty) list ofsymbols.

Jumpsis an ordered list of pairs jump(A,B) whekeandB are integers indicating source and
target state. This implies there is an epsilon transition &kdm*B*.

18.1.2.The old format

In theold format a finite automaton is given as a Prolog program. The automaton is defined
by clauses for thpredicates:

® start(State)

e final(State)

e trans(State0,Sym,State)
® jump(State0,State)

Note that in this format states can be are arbitrary ground Prolog terms (these will be
converted to integers). In the case of transducers, Sym is a pair Left/Right. The empty list [] is
used to indicate the empty string. In the case of sequential transducers, Right must be a list of
symbols.

18.1.3.The compactformat

The compactformat fairly closely follows th@ormal format. See the documentation on the
normal format in thefsa data module for more information. In this format a file is an
ordinary text file. The format is intended to be used for machines only, and is not very helpful
for humanconsumption.

® The first line of the file is the string "fsa6". This is used to differentiate the file from the
pre-fsa6 compact formats (which can stillrbad-in).

® The second line is the lettefor recognizers or for transducers.
® For recognizers, the third line is the name of the predinatiule.

® For transducers, there are two such lines. The first line defines the domain predicate
module, the second line the range predicatelule.

® The next line is an integer indicating the numbestates

68

® The next line is an ordered sequence of integers, separated by tabs, indicating the start
states

® The next line is an ordered sequence of integers, separated by tabs, indicating the final
states

® The next lines each represent a transition, until an empty line is encountered. The
transitions are ordered. Each transition is a triple State Symbol State. Seperator is the tab
again. States are integers. Symbols are readable as Prolog terms (recognizers) or pairs of
In/Out, where In is a term and Out is either a single term or a list of terms. If the source
state is identical to the source state of the previous line, it can be left out. If the symbol is
identical as well, then it can be left outvesll.

® The next lines are jumps. Jumps are ordered. Each line consists of two states separated
by a tab. If the source state is identical to the source state of the previous line, it can be
left out. If the symbol is identical as well, then it can be left outelbk

Example:
fsa write=compact -fclass(a..f),{g,h}]’

fsab
r
fsa_preds

in([a,b,c,d,e,f]) 2

g 1
h 1

NOPRFPOW

18.1.4.The fast format

The fast format uses the same Prolog term representation a®thel format, except that
library(fastrw) is used to read and write the Prolog term. This implies that reading and writing
of automata in this format is very fast; the disadvantage isfabaits a binary format and
therefore cannot be (easily) treated by offiregrams.

18.2.List of Predicates

This section lists the predicates defined by mhiglule.

69

18.2.1.copy_fa(+File0,+Filel).

The automaton in FileO is copied to Filel. Useful to convert between different formats, by
setting theead andwrite globalvariables.

18.2.2.fsa_read_file([+Format,]+File,?Fa)

Fa is read from File. If Format is unspecified the value of the global variedudas taken as
the inputformat.

18.2.3.fsa_write_file([+Format,]+File,+Fa)

Fa is written to File. If Format is unspecified the value of the global vanaiike is taken as
the inputformat.

19.fsa_java: JAVA CodeGeneration

This module provides predicates to create JAVA code on the basis of a finite automaton.
There are certain restrictions to the input automaton. The automatobeanust

® deterministic (folinput)
® each symbol is a one-lettatom

® predicates are automatically expanded to each of the symbols with character number
1-255, except for number 10 (new-line), since new-line is used as a separator in the final
program.

® Note that meta-symbol expansion only works for recognizers and letter transducers. In
particular, it doesiot work for transducers which are the result of t_determinization or
t_minimization. Therefore in such cases you need to appy
t _determinization/t_minimization to the result of applying an appropriate sigma/3
operation.

The compiler performs the following operation to ensure that the above contiidns
recognizers: m(expand_predicates(SigfagFa0)))

string to string transducers: t_minimize(expand_predicates(Sig* o fa(ISa@))p
string to weight transducers: w_minimize(expand_predicates(Sa(Fa0))

where Sig is equivalent to the union of all one-letter atoms, and Fa0 is thautquiaton.

The JAVA program will define a class (named in accordance with the given output file name)
which inherits from Applet. The class defines thethod:

70

static void main(Stringurgv(])

The instance itself is an applet in which you can write strings which are checked against the
automaton.

either starts a graphical user interface in which you can input strings (if the option -w is the
single option), or reads lines from standard input and writes the result of applying the
automaton to standaalitput.

public voidgui();
starts a graphical user interface in which you can isfurgs.
public DFAautomaton();

returns the automaton part of the applet. This DFA class in turn defines the following
methods:

public boolearRecognizer();
public booleanTransducer();
public booleartWeightedRecognizer();
public booleartWeightedTransducer();

As well as:
public void filter()

reads lines from standard input and displays the result of running each line through the
automaton to standaalitput.

public boolean accepts (String)in
public String transduces (String)in
public Integer weighs (String in

The ‘main’ method is provided only if the global variajalea_with_main is set toon.

The representation of a finite-automaton in JAVA is similar to the technique explained on
page 43 (table 4.2) of Jan Daciuk’s dissertation ‘Incremental Construction of Finite-State
Automata and Transducers and their use in the Natural Language Processing’. Politechnika
Gdanska, 1998, except that instead of the number of transitions we have a boolean flag
indicating for each line whether that line is the last transition for the ctagnt

19.1.List of Predicates

This section lists the predicates defined by mhiglule.

71

19.1.1.fsa_java(+Fileln,+FileOut)

A JAVA program is written to FileOut for the recognizer read from Fileln. The JAVA
program will read lines from standard input and report for each line whether the string is
accepted onot.

19.1.2.fsa_java_t(+Fileln,+FileOut)

A JAVA program is written to FileOut for the string-to-string transducer read from Fileln.
The JAVA program will read lines from standard input and report for each line the
transduction.

19.1.3.fsa_java_w(+Fileln,+FileOut)

A JAVA program is written to FileOut for the string-to-weight transducer read from Fileln.
The JAVA program will read lines from standard input and report for each line the
transduction.

20.fsa_m_array: Mutable Arrays

This module provides a mutable array datastructure. The arrays are implemented using
O’Keefe’s N+K trees, with N=127 arik=32.

NB. Array indices start at 0: so O refers to the first element cirtlag.
Here’s an overview of the predicaj@®vided:
MutableFsaArray:

e fsa_m_array new/[1,2] create a new mutabiay

e fsa_m_array get/3 lookup a value from a muitaioéey

e fsa_m_array put/[3,5] update a value in a mutatvkey

The N+K tree data-structure is described in The Craft of Prolog, by Richard A. O’'Keefe, MIT
Press, 1990, chapters 4.5. @n@.

20.1.List of Predicates

This section lists the predicates defined by mhaglule.

72

20.1.1.fsa_m_array new(-MutableFsaArray,[+Size])

Initializes MutableFsaArray as a new mutabteay.

20.1.2fsa_m_array_get(+Index,?Val[,?Default],+MutableFsaArray)

Val is unified with the Index’'th entry in MutableFsaArray. The predicateceedsf that
entry has not yet been set, without binding Val (first form); or it binds Val to Default (second
form).

20.1.3.fsa_m_array put(+Index,?Val,+MutableFsaArray)
fsa_m_array_put(+Index,?ValOld,?ValDefault,?Val,+MutableFsaArray)

The Index'th entry in MutableFsaArray is updated to Val (using the SICStus built-in
update_mutable/create_mutable). ValOIld will be bound to the old value, or to ValDefault if
no valueexisted.

21.fsa_m_hash: MutableHashes
This module provides a mutable hash datastructure on top of the fsaakesthucture.

Here’s an overview of the predicaj@®vided:

® fsa_m_hash_new/[1,2] create a new mutadéin
e fsa_m_hash_get/3 lookup a value from a mutesb
e fsa_m_hash_put/[3,5] update a value in a mutesh

21.1.List of Predicates

This section lists the predicates defined by mhiglule.

21.1.1.fsa_m_hash_new(-MutableFsaHash[,Size])

Initializes a new MutableFsaHash with size Size; or default size if there is no second
argument. The default is determined by the global vartdiaeh_size*.

21.1.2 fsa_m_hash_get(+Key,?Val,+MutableFsaHash)
fsa_m_hash_get(+Key,?Val,?Default,+MutableFsaHash)

Val is unified with the value associated with Key in MutableFsaHash. If no such key exists in
MutableFsaHash already, then the predisateceedswvithout binding Val (in the first form)
or unifies Val and Default (secoffiorm).

73

21.1.3.fsa_m_hash_put(+Key,?Val,+MutableFsaHash)
fsa_m_hash_put(+Key,?0OldVal,?Default,?Val,+MutableFsaHash)

The value associated with Key in MutableFsaHash is updated to Val (using the SICStus
built-in update_mutable). OldVal is unified with the old value (it it existed) or with Default (if
it didn’t exist).

22.fsa_minimum_path: Minimum Weight Path in
Transducers

This module implements a generalization of Dijkstra’s algorithm to find the minimum weight
path in a given transducer. The algorithm for transducers are implemented in a fully general
way, i.e., for various types of transducers (cf. the various senmraatyles).

The implementation is more general than the predicates provided by the SICStus libraries for
graphs. Andnuch more efficient, even though the agenda is not maintained as a heap (the
latter decision was caused by the fact that it would be hard to implement such a heap
efficiently for the various types of transducers with their corresponding ‘minimum’
definitions).

22.1.List of Predicates

This section lists the predicates defined by mhaglule.

22.1.1fsa_minimum_path_file(+Flag,+InFile)

Reports on standard output the minimum weight path in the transducer read from InFile. Flag
is an atom indicating the type wansducer.

22.1.2.fsa_minimum_path(+Fa[,-Path],+Flag)

Reports on standard output (if Path is not present) or instantiates Path to the minimum weight
path in the transducer Fa. Flag is an atom indicating the tyipenstducer.

22.1.3.fsa_minimum_path_array(+Fa,-Array,+Flag)

Array will be instantiated to an UpdatableFsaArray (cf. module fsa_arrays) indicating for
each state in the transducer Fa the minimum cost from that state to a final state. Flag is an
atom indicating the type ¢fansducer.

74

23.fsa_preds: Predicates on symboldsa preds

This module is one of the standard ‘predicate’ modules. It provides a consistent set of
predicate_declarations.

In this predicate module, it is assumed that labels in a finite automaton are associated with
sets of symbols (represented with in(List) and with negated sets of symbols, represented with
not_in(List). Singleton sets in([El]) are represented \kith

The negated sets are useful to provide a treatment of the any symbol ?/0 operator, in a way
which is functionally equivalent to the treatment of ?/0 in FSAS. For instance, the expression
? - a will result in an automaton with a transition avetr_in([a]).

The module has a full set of predicate_declarations and can be used as a model for new,
user-defined task-specific predicatedules.

24.fsa_regex: Regular ExpressioitCompiler

This module provides the regular expression compiler. Its public predicates arbdisted

24.1.List of Predicates

This section lists the predicates defined by mhaglule.

24.1.1.fsa_load _aux_file(+File)

File is assumed to contain auxiliary regular expression operators. It is loaded in module
fsa_regex_aux and will be used for compiling regaigressions.

Note that your file with definitions of regular expression operators is compiled with the
special Prolog-syntax operators for regular expression notation loaded. Thus you can use * ..
& etc. in your definitions. Drawback is that you cannot use operator notation for e.g. the is/2
predicate.

A typical auxiliary definition willbe:
macro(vowel,{a,e,i,o,u}).

A slightly more interestingne:
macro(free(Expr), ~ &xpr).

You can also explicitly construct an automaton yoursetf,:

75

rx(my_operator(Expr),Fa}
fsa_regex:rx(Expr,Fa0),
my_operator_definition(Fa0,Fa).

so you can call fsa_regex:rx/2 for furtieampilations.

24.1.2 fsa_reconsult_aux_file(+File)

File is assumed to contain auxiliary regular expression operators. It is reconsulted in module
fsa_regex_aux and will be used for compiling regular expressions. Normally you want to use
fsa_load_aux_file instead. Use this predicate if you need to debug your Prolog definitions in
File.

24.1.3fsa_regex_atom_compile_file(+RegexAtom,+File)

RegexAtom is parsed as a regular expression. This expression is compiled to a finite
automaton which is written téile.

24.1.4fsa_regex_atom_compile(+RegexAtom,+Fa)

RegexAtom is parsed as a regular expression. This expression is compiled to a finite
automatorfa.

24.1.5.fsa_regex_read_compile_file(File)

A regular expression is read-in from standard input. The expression is compiled and the
resulting automaton is saved in fitde.

24.1.6.fsa_regex_read _compile(-Fa)

A regular expression is read-in from standard input. The expression is compiled into an
automatorfa.

24.1.7 fsa_regex_compile_file(+Expr,+File)

The regular expression Expr (ground Prolog term) is compiled into an automaton. The
automaton is saved infele.

24.1.8.fsa_regex_compile(+Term,-Fajx(+Term,-Fa)

Term is a regular expression. It is compiled into the automaton Fa. The first form is typically
used for a new regular expression compilation, whereas the second form is used for embedded
compilations (called from user definitions). The only difference is that during debugging the
depth of recursion is set to zero for the fiosn.

76

25.fsa_strings: Types of Transducerfsa_strings

The determinization, minimization and minimum path algorithms for transducers are
implemented in a fully general way, i.e., for various types of transducers. For each supported
type, a number of predicates must be defined in a special semiring module *Type*. This
module supplies the definitions for thiga_strings semiring, which is used for ‘ordinary’
string to stringransducers.

26.fsa_u_array: Updatable Arrays (15+16rees)

This module provides an updatable array datastructure. The arrays are implemented using
O’Keefe’s N+K trees, with N=15 arig=16.

NB. Array indices start at 0: so O refers to the first element cirtlag.
Here’s an overview of the predicaj@®vided:
e fsa u_array new/[1,2] create a new updatatvbey
e fsa u_array get/[3,4] lookup a value from an updataibésy
e fsa u_array put/[4,5] update a value in an updasaldg

The N+K tree data-structure is described in The Craft of Prolog, by Richard A. O’'Keefe, MIT
Press, 1990, chapters 4.5. @n@.

26.1.List of Predicates

This section lists the predicates defined by mhaglule.

26.1.1.fsa_u_array new(-UpdatableFsaArray[,?Size])

Initializes UpdatableFsaArray as a new mutable array. In this implementation the optional
Size argument is nafsed.

26.1.2.fsa_u_array_get(+Index,?Val[,?Default,]+UpdatableFsaArray)

Val is unified with the Index’th entry ibpdatableFsaArray.

26.1.3.
fsa_u_array_put(+Index[,?0OldVal],?Val,+UpdatableFsaArray0,?UpdatableFsaArray)

The Index’th entry in UpdatableFsaArrayO is updated to Val, UpdatableFsaArray is the
resulting new array. OldVal is unified with the old valudrafex.

77

27.fsa_u_hash: UpdatableHashes

This module provides an updatable hash data-structure on top of the updatable array
datastructure.

Here’s an overview of the predicaj@®vided:
e fsa_u_hash_new/[1,2] create a new updatedsh
® fsa_u_hash_get/3 lookup a value from an upddtable
e fsa_u_hash_put/[4,6] update a value in an upddtable

The hash function is taken from library(terms). The default size of the hashes is determined
by the global variablghash_size*.

27.1.List of Predicates

This section lists the predicates defined by mhiglule.

27.1.1fsa _u_hash_new(-UpdatableFsaHash[,Size])

Initializes a new UpdatableFsaHash with size Size; or default size if there is no second
argument. The default size is determined by the global variahtd_size*.

27.1.2fsa_u_hash_get(+Key,?Val,+UpdatableFsaHash)

Val is unified with the value associated with Key in UpdatableFsaHash. If no such key exists
in UpdatableFsaHash already, then the prediedse

27.1.3.

fsa_u_hash_put(+Key,?Val,+UpdatableFsaHashO,?UpdatableFsaHash)
fsa_u_hash_put(+Key,?0OldVal,?Default,?Val,+UpdatableFsaHash0,?UpdatableFsaHash)

The value associated with Key in UpdatableFsaHashO is updated to Val, resulting in the new
hash UpdatableFsaHash. OldVal is unified with the old value (it it existed) or with Default (if
it didn’t exist).

28.fsa_visualization: Visualization of FiniteAutomata

This module provides various predicates to visualize finite automata. Visualization is
provided through interfaces with generic graph visualization tools (GraphViz, VCG,
DaVinci), but there is also a built-in graph visualization algorithm with output in LaTeX or
Postscript. The following global variables influenasualization:

78

display_unused_states

no_display_beyond

v_algorithm

v_tree_depth

v_ycoord

v_xdist

pstricks_style
® v_angle

® postscript_res

28.1.List of Predicates

This section lists the predicates defined by mhiglule.

28.1.1.fsa_davinci(+File0,+File)fsa_davinci(+Fa)

In the first variant, a representation accepted by the daVinci graph visualization program is
written to File on the basis of the automaton read from FileO. In the second form, the
representation for Fa is written to standaundput.

28.1.2 fsa_dot(+File0,+File)fsa_dot(+Fa)

In the first variant, a representation accepted by the dot / GraphViz graph visualization
program is written to File on the basis of the automaton read from FileO. In the second form,
the representation for Fa is written to standargput.

28.1.3.fsa_vcg(+File0,+File¥sa vcg(+Fa)

In the first variant, a representation accepted by the vcg graph visualization program is written
to File on the basis of the automaton read from FileO. In the second form, the representation
for Fa is written to standaltput.

28.1.4.fsa_pstricks_picture(+File0,+File)

A piece of LaTeX code with pstricks macro’s which produces a picture of the automaton read
from FileO is written to File. This LaTeX code is supposed to be included in a full LaTeX
document. The global variable pstricks_style influencesabelt.

79

28.1.5.fsa_pstricks_tex(+File0,+File)

A standalone LaTeX document with pstricks macro’s which produces a picture of the
automaton read from FileO is written to File. The global variable pstricks_style influences the
result.

28.1.6.fsa_postscript(+File0,+File)

Postscript code which produces visualization of automaton read from FileO is written to File.
The Postscript macro’s are due to Peter Kleiweg. The global variable postscript_res can be set
to indicate whether output is meant to be displayed on the scrggmted.

28.1.7 fsa_visualization(+Format,+Fa)

Starts an external visualization program visualizing Fa. Format indicates what program is to
be used and must be ook

® vcg

dot_ghostview (dot -Tps | gv

pstricks_ghostview (latex ; dvipgy)

dotty

davinci

29.fsa_weights: Types of Transducerfsa_weights

The determinization, minimization and minimum path algorithms for transducers are
implemented in a fully general way, i.e., for various types of transducers. For each supported
type, a number of predicates must be defined in a special semiring module *Type*. This
module supplies the definitions for tliga_weights semiring, which is used for string to
weight transducers, i.e. weighteztognizers.

30. help: The Help System

The help module provides support to create both on-line and off-line documentation on
Prolog programs. Documentation must be defined by the hook predicate help _info/4.
Documentation on a per module basis is provided if a
help_info(module,Module,TitleString,DescriptionString) definition is given for Module. In
that case the system also checks for Module:help_intfefiaitions.

The module supports production of the help information on standard output, (which can be
converted into html format), and there also is an interface to a graphical user interface based
on library(tcltk).

80

30.1.List of Hook Predicates

This section lists the hook predicates which an application can define for thadukife.

30.1.1.help_info(Class,Key,Usage,Expl)

Provides help information for Class and Key (both must be atoms). Usage and Expl are
Prolog strings. Typically the Usage string is a short summary, and Expl is a longer
explanation. Class is typically pred, hook, flag, command, option, etc. Note that each module
can have its own help_info predicates. You can also define user:help_info/4 declarations on
the special class module. In that case, if a full documentation on a module is requested the
Usage string is used as the title and the Expl string as an introduction to the module. There
can also be Module:help_info/4 declarations on the special class ‘class’. If a full listing on a
class in Module is requested, then Usage and Expl are used as the title and introduction to that
section.

30.2.List of Predicates

This section lists the predicates defined by the heddule.

30.2.1.help_listing

Lists all helpinformation.

30.2.2.help/help(Module)/help(Module,Class)

Use help/0 to see for which modules help is available. Use help/1 for an overview which
classes are available for a given module. Use help(Module,Class) to see for which keys help
is available.

30.2.3.help_module[(M)]

Use help_module(M) for a full listing of the help information available on module M.
Without M uses modulaser.

30.2.4.help_class(C[,M])

Use help_class(C,M) for a full listing of the help information available for class C in module
M. Without M module user iassumed.

30.2.5.help_key(K[,C[,M]])

Use help_key(K,C,M) for a full listing of the help information available for key K in class C
in module M. If C (and M) are not given, then use variable for C &nd

81

30.2.6.help_add_to_menu(Menu,Interp)

Interface of the help system and a graphical user interface based on library(tcltk). Menu must
be a menu already existing for Tcl/Tk interpreter Interp. The various help messages are added
as cascaded menu entries in Menu. Cf. also the help/1 predicate and the help_info/4 hook
predicate.

31.map_bbbtree: Balanced Binary TreesMaps

This module implements maps using bounded balanced binary trees. It is adapted from
set_bbbtree, which itself is adapted from the Mercury version. The original of that version is
available fronfht t p: / / ww. ¢cS. nmu. 0z. au/ r esear ch/ ner cur y/| That

implementation is based on ‘Functional Pearls: Efficient sets -a balancing act’ by Stephen
Adams, J. Functional Programming 3 (4): 553-561,X983.

A map is a set of key/value pairs, such that each key is associated with at most one value.
Keys are required to be ground. The typical operations on maps such as lookup the value of a
given key are O(log n) where n is the number of pairs in the map. A potentially more efficient
implementation of maps is provided by the *fsa hasisg_m_hash and fsa_u_hash
modules.

31.1.List of Predicates

This section lists the predicates defined by mhaglule.

31.1.1.map_bbbtree _init(?Bbbtree)

InitializesBbbtree as an emptynap.

31.1.2.map_bbbtree _empty(?Bbbtree)

Bbbtree is an emptynap.

31.1.3.map _bbbtree _size(+Bbbtree,?Size)

Sizeis the number of pairs in mé&Bbbtree*.

31.1.4.map_bbbtree get(+Key,?Val,+Bbbtree)

Val is the value associated witey in the map *Bbbtree*. This predicate fail&iéy is not a
key of*Bbbtree*.

82

http://www.cs.mu.oz.au/research/mercury/

31.1.5.map_bbbtree least(+Bbbtree,?Least,?Val)

Key is the least key irBbbtree (using the standard order ordering of terms. Its value is
Val.

31.1.6.map_bbbtree _largest(+Bbbtree,?Largest,?Val)

Key is the largest key iBbbtree (using the standard order ordering of terms. Its value is
Val.

31.1.7.map_bbbtree put(+Key,?Val,+Bbbtree0,-Bbbtree)

Bbbtree is the same map as *Bbbtree0*, except K&yt is now associated wittVal*.

31.1.8.map_bbbtree put_list(+Bbbtree0,+KeyValList,-Bbbtree

Bbbtree is the same map as *Bbbtree0*, except that each of the key-value pairs in
KeyVallList are in*Bbbtree*.

31.1.9.map_bbbtree _delete(+Bbbtree0,+Key,-Bbbtree)

*Bbbtree is the result of removiri{ey and its associated value from *Bbbtree0*. Succeeds if
Key was not a key dBbbtree0 (cf map_bbbtree___remove).

31.1.10map_bbbtree__ delete_list(+Keys,+Bbbtree0,-Bbbtree)

Bbbtree is the result of deleting all key&eys with associated values from *Bbbtree0O*. These
keys are not required to existBibtree0 (cf map_bbbtree__remove_list).

31.1.11.map_bbbtree_ remove(+Bbbtree0,+Key,-Bbbtree)

*Bbbtree is the result of removiri{ey and its associated value from *Bbbtree0*. Failsa
was not a key oBbbtreeO (cf map_bbbtree__delete).

31.1.12map_bbbtree_remove_list(+Keys,+Bbbtree0,-Bbbtree)

Bbbtree is the result of removing all keyseys with associated values from *Bbbtree0*.
These keys are required to exisBibbtreeO (cf map_bbbtree__delete_list).

31.1.13map_bbbtree__remove_least(+Bbbtree0,?Key,?Val,-Bbbtree)

Key is the least key iBbbtreeO (using standard ordering of terms). Its value is *Value*.
Bbbtree is the same map &bbtree0 except thaKey is removed.

83

31.1.14.
map_bbbtree remove_largest(+Bbbtree0,?Key,?Val,-Bbbtree)

Key is the largest key iBbbtreeO (using standard ordering of terms). Its value is *Value*.
Bbbtree is the same map &bbtree0 except thaKey is removed.

31.1.15map_bbbtree__list to_map(+KeyValList,-Bbbtree)

Bbbtree is the map for the key-value pairs given as a lisKieyValList.

31.1.16.
map_bbbtree sorted_list_ to_map(+SortedKeyValueList,-Bbbtree)

SortedKeyValueList is a sorted list of key value pairs; *Bbbtree is the correspondayy

31.1.17.
map_bbbtree sorted_list to_map_len(+SortedKeyValuelList,-Bbbtree,+Len)

SortedKeyValueList is a sorted list of key value pairs; *Bbbtree is the corresponding map.
Len is the lenth of thést.

31.1.18. map_bbbtree_to_sorted_list(+Bbbtree,?SortedKeyValList)

SortedKeyVallList is a sorted list of the key-value pairs in the rfBpbtree*.

32.set_bbbtree: Balanced Binary TreesSets

This module implements sets using bounded balanced binary trees. It is adapted from the
Mercury version. The original is available from

[htt p: // www. cs. mu. oz. au/ r esear ch/ ner cur y/| That implementation is based on
‘Functional Pearls: Efficient sets -a balancing act’ by Stephen Adams, J. Functional
Programming 3 (4): 553-561, Ot993.

32.1.List of Predicates

This section lists the predicates defined by mhaglule.

32.1.1.set_bbbtree__init(?Bbbtree)

Bbbtree is initialized as an emptet.

84

http://www.cs.mu.oz.au/research/mercury/

32.1.2.set_bbbtree _empty(?Bbbtree)

Succeeds iBbbtree is the emptyset.

32.1.3.set_bbbtree__non_empty(?Bbbtree)

Succeeds iBbbtree is a non-emptget.

32.1.4.set_bbbtree size(+Bbbtree,?Integer)

Integer is the cardinality of the s&Bbbtree*.

32.1.5.set_bbbtree__is_member(+El,+Bbbtree,?Bool)

Bool is the atonyesif El is an element of *Bbbtree*. Otherwise it is the atomo*.

32.1.6.set_bbbtree _member(?El,+Bbbtree)

El is an element of *Bbbtree*. Can be used to enumerate all elemeBishifee*.

32.1.7.set_bbbtree least(+Bbbtree,?El)

El is the least element occurring in *Bbbtree*, using the standard orderiegs.

32.1.8.set_bbbtree largest(+Bbbtree,?El)

El is the largest element occurring in *Bbbtree*, using the standard orde tiegnst

32.1.9.set_bbbtree _singleton_set(?BbbTree,?El)

Bbbtree is a set with single elemettl*.

32.1.10set_bbbtree__equal(+BbbtreeA,+BbbtreeB)

BbbtreeA andBbbtreeB are the samsets.

32.1.11set_bbbtree _insert(+BbbtreeA,+El,-BbbtreeB[,?New])

BbbtreeB is the result of insertingl in *BbbtreeA*. The optional fourth argument is the
atomyesif El is not an element of *BbbtreeA*; otherwise it is the atowr.

32.1.12set_bbbtree__insert_list(+BbbtreeA,+List,-BbbtreeB)

BbbtreeB is the result of inserting each of the elementssh to *BbbtreeA*.

85

32.1.13set_bbbtree__delete(+BbbtreeA,+El,-BbbtreeB

BbbtreeB is the result of removing the elemdiitfrom *BbbtreeA*. The predicatsucceeds
if El is not an element @dbbtreeA (cf. set_bbbtree___remove).

32.1.14set_bbbtree__ delete_list(+List,+BbbtreeA,-BbbtreeB)

*BbbtreeB is the result of deleting each of the elementsistf from *BbbtreeA*. The
elements araot required to be contained BbbtreeA (cf. set_bbbtree___remove_list).

32.1.15set_bbbtree_remove(+BbbtreeA,+El,-BbbtreeB

BbbtreeB is the result of removing the elemdiitfrom *BbbtreeA*. The predicattails if El
is not an element dbbtreeA (cf. set_bbbtree__delete)

32.1.16set_bbbtree _remove_list(+List,+BbbtreeA,-BbbtreeB)

*BbbtreeB is the result of deleting each of the element&istf from *BbbtreeA*. The
elementsare required to be contained BbbtreeA (cf. set_bbbtree__delete_list).

32.1.17set_bbbtree__remove l|east(+BbbtreeA,?Least,-BbbtreeB)

BbbtreeB is the result of removing the least elemiesast from *BbbtreeA*, in the standard
ordering ofterms.

32.1.18set_bbbtree _remove_largest(+BbbtreeA,?Largest,-BbbtreeB)

BbbtreeB is the result of removing the largest elemeatgest from *BbbtreeA*, in the
standard ordering dérms.

32.1.19set_bbbtree__list to_set(+List,-Bbbtree)

Bbbtree is a set containing precisely all elementslast*.

32.1.20set_bbbtree_ sorted_list to set(+SortedList,?Bbbtree)

Bbbtree is the set containing precisely the element<SoirtedList*.

32.1.21.
set bbbtree sorted list to _set len(+SortedList,?Bbbtree,+Len)

Bbbtree is the set containing precisely the elements of *SortedListh is the length of
SortedList.

86

32.1.22set_bbbtree_ to_sorted_list(+Bbbtree,?SortedList)

SortedList is a sorted list of the elements of the*&dibtree*.

32.1.23set_bbbtree__union(+BbbtreeA,+BbbtreeB,-BbbtreeC)

BbbtreeC is the union oBbbtreeA and*BbbtreeB*.

32.1.24 set_bbbtree__power_union(+Bbbtrees,-BbbtreeC)

Bbbtreesis a set of set®8bbtreeC is the union of all of of thessets.

32.1.25set_bbbtree__intersect(+BbbtreeA,+BbbtreeB,-BbbtreeC)

BbbtreeC is the intersection dbbtreeA and*BbbtreeB*.

32.1.26set_bbbtree power _intersect(+Bbbtrees,-BbbtreeC)

Bbbtreesis a set of set8bbtreeC is the set containing the elements which occur in each of
Bbbtrees

32.1.27 set_bbbtree__difference(+BbbtreeA,+BbbtreeB,-BbbtreeC)
BbbtreeC is the seBbbtreeA minus all elements dBbbtreeB*.
32.1.28set_bbbtree_ subset(+BbbtreeA,+BbbtreeB)

BbbtreeA is a subset ofBbbtreeB*.

32.1.29set_bbbtree_ superset(+BbbtreeA,+BbbtreeB)

BbbtreeA is a superset dBbbtreeB*.

87

	1. FSA6: Finite State Automata Utilities Version 6
	1.1 Functionality
	1.1.1 Constructing Finite Automata with Regular Expressions
	1.1.2 Manipulating Finite Automata
	1.1.3 Applying Finite Automata
	1.1.4 Visualizing Finite Automata

	1.2 How to use the toolbox
	1.3 Examples
	1.5 References
	1.6 Papers using FSA
	1.7 Links
	1.8 Copyright
	1.9 Acknowledgements
	1.10 Author

	2. The Command Interpreter
	2.1. Syntax
	2.2. Alias and History
	2.3. Prolog goals
	2.4. Starting and Stopping the command interpreter
	2.5. p[rolog]
	2.6. % Words
	2.7. fc Files
	2.8. um Files
	2.9. el Files
	2.10. c Files
	2.11. rc Files
	2.12. ld Files
	2.13. libum Files
	2.14. librc Files
	2.15. libc Files
	2.16. libel Files
	2.17. libld Files
	2.18. version
	2.19. quit
	2.20. b
	2.21. d
	2.22. nd
	2.23. p [Goal]
	2.24. ! Command
	2.25. alias [Name [Val]]
	2.26. help [Module [Class [Key]]]
	2.27. ? [Cmd]
	2.28. spy [Module] Pred
	2.29. cd [Dir]
	2.30. pwd
	2.31. ls
	2.32. <any FSA startup option>

	3. The Graphical User Interface
	3.1. tk_fsa_file†+File‡
	3.2. tk_fsa†+Fa‡
	3.3. tk_regex†+Atom‡
	3.4. tk_rx†+Expr‡

	4. Global Variables
	4.1. tkconsol
	4.2. tk_fsa_add_help_menu
	4.3. fsa_tcl_directory
	4.4. pred_module
	4.5. regex
	4.6. fa
	4.7. hash_size
	4.8. interactive
	4.9. pstricks_style
	4.10. v_algorithm
	4.11. v_tree_depth
	4.12. v_angle
	4.13. v_xdist
	4.14. v_ycoord
	4.15. display_unused_states
	4.16. symbol_separator
	4.17. symbol_separator_out
	4.18. symbol_separator_in
	4.19. nr_sol_max
	4.20. length_max
	4.21. interpreter
	4.22. debug
	4.23. regex_cache
	4.24. set_random
	4.25. w_determinizer_minimum
	4.26. read
	4.27. write
	4.28. count
	4.29. postscript_res
	4.30. no_display_beyond
	4.31. c_with_main
	4.32. java_with_main
	4.33. to_c_conversion
	4.34. to_java_conversion

	5. Regular Expressions
	5.1. Regular expression syntax
	5.2. Spy Points on Regular expressions
	5.3. Extending the regular expression notation
	5.4. Combining several auxiliary regular expression operator files
	5.5. ?
	5.6. Expr# m[inimize]†Expr‡ mh†Expr‡ mb†Expr‡
	5.7. A! determinize†A‡ determinize†A,Algorithm‡
	5.8. efree†E‡ reachable_efree†E‡ co_reachable_efree†E‡
	5.9. ~E complement†E‡
	5.10. A-B difference†A,B‡
	5.11. $E containment†E‡
	5.12. t_determinize†E‡
	5.13. t_minimize†E‡
	5.14. w_determinize†E‡
	5.15. w_minimize†E‡
	5.16. perfect_hash†ListOfAtoms‡
	5.17. dict†ListOfAtoms‡
	5.18. A:B pair†A,B‡
	5.19. A x B cross_product†A,B‡
	5.20. A xx B sl_cross_product†A,B‡
	5.21. escape†Sym‡
	5.22. S..T
	5.23. class†Expr‡
	5.24. negated_class†Expr‡
	5.25. incomplete†A‡
	5.26. coaccessible†A‡
	5.27. reachable†A‡
	5.28. accessible†A‡
	5.29. complete†A‡
	5.30. ignore†A,B‡
	5.31. {}
	5.32. {E1,E2,..,En} union†E1,E2‡ set†[E1,E2,..,En]‡
	5.33. []
	5.34. [E1,E2,...En], concat†E1,E2‡
	5.35. E* kleene_star†E‡
	5.36. E+ [kleene_]plus†E‡
	5.37. option†E‡ E^
	5.38. intersect[ion]†A,B‡ A & B
	5.39. E0 o E1 compose†E0,E1‡
	5.40. sigma†Set,Expr‡ sigma†DomSet,RanSet,Expr‡
	5.41. domain_sigma†Set,Expr‡
	5.42. range_sigma†Set,Expr‡
	5.43. reverse†E‡
	5.44. inversion†E‡ inverse†E‡ invert†E‡
	5.45. id†E‡ identity†E‡
	5.46. domain†E‡
	5.47. range†E‡
	5.48. cleanup†E‡
	5.49. subs†E‡
	5.50. del†E‡
	5.51. ins†E‡
	5.52. word†Atom‡
	5.53. convert_pred_module†NewModule,Expr‡ convert_pred_module†NewDomainMod,NewRangeMod,Expr‡
	5.54. fa†Fa‡
	5.55. file†X‡
	5.56. spy†Expr‡
	5.57. cache†Expr‡
	5.58. random†NrStates,NrSymbols,Den,JDens‡

	6. Command-line Arguments
	6.1. -aux Aux
	6.2. -pm File
	6.3. -l File
	6.4. -cmd Goal
	6.5. -cmdint
	6.6. -a[ccepts] [In] String
	6.7. -approx [In] String
	6.8. -approx [In] String
	6.9. -w_approx [In] String
	6.10. -fsa2fsm In Syms Aut | -fsa2fsm [In [Out]]
	6.11. -fsm2fsa [In [Out]]
	6.12. -c[ompile] [In [Out]]
	6.13. -t_c[ompile] [In [Out]]
	6.14. -w_c[ompile] [In [Out]]
	6.15. -c[ompile_to_]c [In [Out]]
	6.16. -t_c[ompile_to_]c [In [Out]]
	6.17. -w_c[ompile_to_]c [In [Out]]
	6.18. -java [In] Out
	6.19. -t_java [In] Out
	6.20. -w_java [In] Out
	6.21. -compose A B [Out]
	6.22. -complement [In [Out]]
	6.23. -count [In [Out]]
	6.24. -density [In [Out]]
	6.25. -davinci [In [Out]]
	6.26. -vcg [In [Out]]
	6.27. -dot [In [Out]]
	6.28. -d[eterminize] [In [Out]] | -dgraph [In [Out]] -drgraph [In [Out]] -dsubset [In [Out]] | -dstate [In [Out]]
	6.29. -efree [In [Out]]
	6.30. -ignore A B [Out]
	6.31. -diff[erence] A B [Out]
	6.32. -transduce [In] String
	6.33. -transduce [In] String
	6.34. -aa In | -accept_all In | -raa Regex
	6.35. -ta In | -transduce_all In | -rta Regex
	6.36. -wa In | -w_transduce_all In | -rwa Regex
	6.37. -prolog Goal
	6.38. -generate States Syms Dens [JDens]
	6.39. -intersect A B [Out]
	6.40. -kleene_star [In [Out]]
	6.41. -w_minimum_path [In]
	6.42. -kleene_plus [In [Out]]
	6.43. -reverse [In [Out]]
	6.44. -inverse [In [Out]]
	6.45. -domain [In [Out]]
	6.46. -range [In [Out]]
	6.47. -cleanup [In [Out]]
	6.48. -identity [In [Out]]
	6.49. -option [In [Out]]
	6.50. -union A B [Out]]
	6.51. -concat A B [Out]]
	6.52. -m[inimize] [In [Out]] | -mb [In [Out]] | -mh [In [Out]]
	6.53. -t_m[inimize] [In [Out]]
	6.54. -produce [In [Out]]
	6.55. -t_produce [In [Out]]
	6.56. -w_produce [In [Out]]
	6.57. -r[egex] [Regex] [Out]
	6.58. -tk [File] | -tk [-r Regex]
	6.59. -postscript [In [Out]]
	6.60. dict2ph [In [Out]]
	6.61. dict2m [In [Out]]
	6.62. -pstricks_tex [In [Out]] | -pstricks_picture [In [Out]]
	6.63. -copy [In [Out]]
	6.64. -t_d[eterminize] [In [Out]]
	6.65. -w_d[eterminize] [In [Out]]
	6.66. -w_m[inimize] [In [Out]]

	7. Predicates on Symbols
	7.1. true†?Pred‡
	7.2. regex_atom_to_pred†+Atomic,-Pred‡
	7.3. evaluate_predicate†+Pred,?Symbol‡
	7.4. conjunction†+P0,+P1,?P‡
	7.5. display_predicate†+Pred,-Term‡
	7.6. prepare_complement_of_set†+Fa,-Term‡
	7.7. complement_of_set†+SetOfPreds,+Term,-Complements‡
	7.8. determinize_preds†+KeyList0,-KeyList‡
	7.9. t_determinize_preds†+KeyList0,-KeyList‡
	7.10. identity†+Pred0,-Pred‡
	7.11. class_to_pred†+List0,-List‡
	7.12. negated_class_to_pred†+List0,-List‡
	7.13. cleanup†+List0,-List‡

	8. Types of transducers
	8.1. zero†?Val‡.
	8.2. plus†+Val0,+Val1,?Sum‡.
	8.3. minus†+Val0,+Val1,?Diff‡.
	8.4. minimum†+Val0,+Val1,?Min‡.
	8.5. minimum_only†+YesNo‡.

	9. fsa_array: Non-updatable Arrays †127+32 trees‡
	9.1. List of Predicates
	9.1.1. fsa_array_new†-FsaArray[,?Size]‡
	9.1.2. fsa_array_access†+Index,?Val[,?Default],+FsaArray‡
	9.1.3. fsa_array_get†+Index,?Val,+FsaArray‡

	10. fsa_compiler: Prolog Code Generation
	10.1. List of Predicates
	10.1.1. fsa_compile_to_prolog†+Fa‡ fsa_compile_to_prolog†+FileIn,+FileOut‡
	10.1.2. fsa_compile_to_prolog_t†+Fa‡ fsa_compile_to_prolog_t†+FileIn,+FileOut‡
	10.1.3. fsa_compile_to_prolog_w†+Fa‡ fsa_compile_to_prolog_w†+FileIn,+FileOut‡

	11. fsa_compiler_to_c: C Code Generation
	11.1. List of Predicates
	11.1.1. fsa_compile_to_c†+Fa‡ fsa_compile_to_c†+FileIn,+FileOut‡
	11.1.2. fsa_compile_to_c_t†+Fa‡ fsa_compile_to_c_t†+FileIn,+FileOut‡
	11.1.3. fsa_compile_to_c_w†+Fa‡ fsa_compile_to_c_w†+FileIn,+FileOut‡
	11.1.4. fsa_compile_to_c_fa†+Fa,+FileOut‡
	11.1.5. fsa_compile_to_c_t_fa†+Fa,+FileOut‡
	11.1.6. fsa_compile_to_c_w_fa†+Fa,+FileOut‡

	12. fsa_data: Internal Format of Finite Automata
	12.1. List of Predicates
	12.1.1. fsa_states_number†?Fa,?Integer‡
	12.1.2. fsa_states_set†+Fa,?States‡
	12.1.3. fsa_state†+Fa,?State‡
	12.1.4. fsa_start_states†?Fa,?StartStates‡
	12.1.5. fsa_start_state†+Fa,?StartState‡
	12.1.6. fsa_final_states†?Fa,?FinalStates‡
	12.1.7. fsa_final_state†+Fa,?FinalState‡
	12.1.8. fsa_transitions†?Fa,?Trans‡
	12.1.9. fsa_transition†+Fa,?P,?Sym,?Q‡
	12.1.10. fsa_jumps†?Fa,?Jumps‡
	12.1.11. fsa_jump†+Fa,?P,?Q‡
	12.1.12. fsa_construct†[[+Symbols,]+NumberStates,]+Starts,+Finals,+Trans,+Jumps,-Fa‡
	12.1.13. fsa_components†?Symbols,?Length,?Starts,?Finals,?Trans,?Jumps,?Fa‡
	12.1.14. fsa_construct_rename_states†[+Symbols,]+Starts,+Finals,+Trans,+Jumps,-Fa‡
	12.1.15. fsa_copy_except†+Key,?Fa0,?Fa1,?Part0,?Part1‡
	12.1.16. fsa_type†+Fa,?Type‡

	13. fsa_dict: Dictionaries and Perfect Hashes
	13.1. List of Predicates
	13.1.1. fsa_dict_to_perfect_hash†+ListOfStrings,-Fa‡
	13.1.2. fsa_dict_to_perfect_hash_file†+FileIn,+FileOut‡
	13.1.3. fsa_dict_to_fsa†+ListOfStrings,-Fa‡
	13.1.4. fsa_dict_to_fsa_file†+FileIn,+FileOut‡

	14. fsa_frozen: Predicates on symbols: fsa_frozen
	15. fsa_globals: Global Variables
	15.1. List of Predicates
	15.1.1. fsa_global_set†+Key,?Val‡
	15.1.2. fsa_global_get†+Key,?Val‡
	15.1.3. fsa_global_decl†?Key,?Help,?Default,?Typical,Val^Goal‡
	15.1.4. fsa_global_list[-List]
	15.1.5. fsa_version
	15.1.6. fsa_host_prolog†?Atom‡

	16. fsa_hash: Non-updatable Hashes †N+K trees‡
	16.1. List of Predicates
	16.1.1. fsa_hash_new†-FsaHash[,Size]‡
	16.1.2. fsa_hash_access†+Key,?Val[,?Default],+FsaHash‡
	16.1.3. fsa_hash_to_keylist†+HashedFsaArray,-Keylist‡

	17. fsa_interpreter: Applying Finite Automata
	17.1. List of Predicates
	17.1.1. fsa_regex_accepts†+Atom,+String‡
	17.1.2. fsa_regex_transduces†+Atom,+String0,?String‡
	17.1.3. fsa_regex_transduces_w†+Atom,+String0,?Weight‡
	17.1.4. fsa_accepts†+String,+Fa‡
	17.1.5. fsa_transduces†+StringIn,?StringOut,+Fa‡
	17.1.6. fsa_transduces_w†+String,?Weight,+Fa‡
	17.1.7. fsa_regex_approx_accepts†+String,+Regex,-Recipe‡
	17.1.8. fsa_approx_accepts†+String,+Fa,-Recipe‡
	17.1.9. fsa_regex_approx_transduces†+String0,+Regex,+String‡
	17.1.10. fsa_approx_transduces†+String0,+Fa,+String‡
	17.1.11. fsa_regex_approx_transduces_w†+String0,+Regex,+String‡
	17.1.12. fsa_approx_transduces_w†+String0,+Fa,+String‡

	18. fsa_io: Reading and Writing Finite State Automata
	18.1. Description of I/O formats
	18.1.1. The normal format
	18.1.2. The old format
	18.1.3. The compact format
	18.1.4. The fast format

	18.2. List of Predicates
	18.2.1. copy_fa†+File0,+File1‡.
	18.2.2. fsa_read_file†[+Format,]+File,?Fa‡
	18.2.3. fsa_write_file†[+Format,]+File,+Fa‡

	19. fsa_java: JAVA Code Generation
	19.1. List of Predicates
	19.1.1. fsa_java†+FileIn,+FileOut‡
	19.1.2. fsa_java_t†+FileIn,+FileOut‡
	19.1.3. fsa_java_w†+FileIn,+FileOut‡

	20. fsa_m_array: Mutable Arrays
	20.1. List of Predicates
	20.1.1. fsa_m_array_new†-MutableFsaArray,[+Size]‡
	20.1.2. fsa_m_array_get†+Index,?Val[,?Default],+MutableFsaArray‡
	20.1.3. fsa_m_array_put†+Index,?Val,+MutableFsaArray‡ fsa_m_array_put†+Index,?ValOld,?ValDefault,?Val,+MutableFsaArray‡

	21. fsa_m_hash: Mutable Hashes
	21.1. List of Predicates
	21.1.1. fsa_m_hash_new†-MutableFsaHash[,Size]‡
	21.1.2. fsa_m_hash_get†+Key,?Val,+MutableFsaHash‡ fsa_m_hash_get†+Key,?Val,?Default,+MutableFsaHash‡
	21.1.3. fsa_m_hash_put†+Key,?Val,+MutableFsaHash‡ fsa_m_hash_put†+Key,?OldVal,?Default,?Val,+MutableFsaHash‡

	22. fsa_minimum_path: Minimum Weight Path in Transducers
	22.1. List of Predicates
	22.1.1. fsa_minimum_path_file†+Flag,+InFile‡
	22.1.2. fsa_minimum_path†+Fa[,-Path],+Flag‡
	22.1.3. fsa_minimum_path_array†+Fa,-Array,+Flag‡

	23. fsa_preds: Predicates on symbols: fsa_preds
	24. fsa_regex: Regular Expression Compiler
	24.1. List of Predicates
	24.1.1. fsa_load_aux_file†+File‡
	24.1.2. fsa_reconsult_aux_file†+File‡
	24.1.3. fsa_regex_atom_compile_file†+RegexAtom,+File‡
	24.1.4. fsa_regex_atom_compile†+RegexAtom,+Fa‡
	24.1.5. fsa_regex_read_compile_file†File‡
	24.1.6. fsa_regex_read_compile†-Fa‡
	24.1.7. fsa_regex_compile_file†+Expr,+File‡
	24.1.8. fsa_regex_compile†+Term,-Fa‡ rx†+Term,-Fa‡

	25. fsa_strings: Types of Transducer: fsa_strings
	26. fsa_u_array: Updatable Arrays †15+16 trees‡
	26.1. List of Predicates
	26.1.1. fsa_u_array_new†-UpdatableFsaArray[,?Size]‡
	26.1.2. fsa_u_array_get†+Index,?Val[,?Default,]+UpdatableFsaArray‡
	26.1.3. fsa_u_array_put†+Index[,?OldVal],?Val,+UpdatableFsaArray0,?UpdatableFsaArray‡

	27. fsa_u_hash: Updatable Hashes
	27.1. List of Predicates
	27.1.1. fsa_u_hash_new†-UpdatableFsaHash[,Size]‡
	27.1.2. fsa_u_hash_get†+Key,?Val,+UpdatableFsaHash‡
	27.1.3. fsa_u_hash_put†+Key,?Val,+UpdatableFsaHash0,?UpdatableFsaHash‡ fsa_u_hash_put†+Key,?OldVal,?Default,?Val,+UpdatableFsaHash0,?UpdatableFsaHash‡

	28. fsa_visualization: Visualization of Finite Automata
	28.1. List of Predicates
	28.1.1. fsa_davinci†+File0,+File‡ fsa_davinci†+Fa‡
	28.1.2. fsa_dot†+File0,+File‡ fsa_dot†+Fa‡
	28.1.3. fsa_vcg†+File0,+File‡ fsa_vcg†+Fa‡
	28.1.4. fsa_pstricks_picture†+File0,+File‡
	28.1.5. fsa_pstricks_tex†+File0,+File‡
	28.1.6. fsa_postscript†+File0,+File‡
	28.1.7. fsa_visualization†+Format,+Fa‡

	29. fsa_weights: Types of Transducer: fsa_weights
	30. help: The Help System
	30.1. List of Hook Predicates
	30.1.1. help_info†Class,Key,Usage,Expl‡

	30.2. List of Predicates
	30.2.1. help_listing
	30.2.2. help/help†Module‡/help†Module,Class‡
	30.2.3. help_module[†M‡]
	30.2.4. help_class†C[,M]‡
	30.2.5. help_key†K[,C[,M]]‡
	30.2.6. help_add_to_menu†Menu,Interp‡

	31. map_bbbtree: Balanced Binary Trees: Maps
	31.1. List of Predicates
	31.1.1. map_bbbtree__init†?Bbbtree‡
	31.1.2. map_bbbtree__empty†?Bbbtree‡
	31.1.3. map_bbbtree__size†+Bbbtree,?Size‡
	31.1.4. map_bbbtree__get†+Key,?Val,+Bbbtree‡
	31.1.5. map_bbbtree__least†+Bbbtree,?Least,?Val‡
	31.1.6. map_bbbtree__largest†+Bbbtree,?Largest,?Val‡
	31.1.7. map_bbbtree__put†+Key,?Val,+Bbbtree0,-Bbbtree‡
	31.1.8. map_bbbtree__put_list†+Bbbtree0,+KeyValList,-Bbbtree
	31.1.9. map_bbbtree__delete†+Bbbtree0,+Key,-Bbbtree‡
	31.1.10. map_bbbtree__delete_list†+Keys,+Bbbtree0,-Bbbtree‡
	31.1.11. map_bbbtree__remove†+Bbbtree0,+Key,-Bbbtree‡
	31.1.12. map_bbbtree__remove_list†+Keys,+Bbbtree0,-Bbbtree‡
	31.1.13. map_bbbtree__remove_least†+Bbbtree0,?Key,?Val,-Bbbtree‡
	31.1.14. map_bbbtree__remove_largest†+Bbbtree0,?Key,?Val,-Bbbtree‡
	31.1.15. map_bbbtree__list_to_map†+KeyValList,-Bbbtree‡
	31.1.16. map_bbbtree__sorted_list_to_map†+SortedKeyValueList,-Bbbtree‡
	31.1.17. map_bbbtree__sorted_list_to_map_len†+SortedKeyValueList,-Bbbtree,+Len‡
	31.1.18. map_bbbtree__to_sorted_list†+Bbbtree,?SortedKeyValList‡

	32. set_bbbtree: Balanced Binary Trees: Sets
	32.1. List of Predicates
	32.1.1. set_bbbtree__init†?Bbbtree‡
	32.1.2. set_bbbtree__empty†?Bbbtree‡
	32.1.3. set_bbbtree__non_empty†?Bbbtree‡
	32.1.4. set_bbbtree__size†+Bbbtree,?Integer‡
	32.1.5. set_bbbtree__is_member†+El,+Bbbtree,?Bool‡
	32.1.6. set_bbbtree__member†?El,+Bbbtree‡
	32.1.7. set_bbbtree__least†+Bbbtree,?El‡
	32.1.8. set_bbbtree__largest†+Bbbtree,?El‡
	32.1.9. set_bbbtree__singleton_set†?BbbTree,?El‡
	32.1.10. set_bbbtree__equal†+BbbtreeA,+BbbtreeB‡
	32.1.11. set_bbbtree__insert†+BbbtreeA,+El,-BbbtreeB[,?New]‡
	32.1.12. set_bbbtree__insert_list†+BbbtreeA,+List,-BbbtreeB‡
	32.1.13. set_bbbtree__delete†+BbbtreeA,+El,-BbbtreeB
	32.1.14. set_bbbtree__delete_list†+List,+BbbtreeA,-BbbtreeB‡
	32.1.15. set_bbbtree__remove†+BbbtreeA,+El,-BbbtreeB
	32.1.16. set_bbbtree__remove_list†+List,+BbbtreeA,-BbbtreeB‡
	32.1.17. set_bbbtree__remove_least†+BbbtreeA,?Least,-BbbtreeB‡
	32.1.18. set_bbbtree__remove_largest†+BbbtreeA,?Largest,-BbbtreeB‡
	32.1.19. set_bbbtree__list_to_set†+List,-Bbbtree‡
	32.1.20. set_bbbtree__sorted_list_to_set†+SortedList,?Bbbtree‡
	32.1.21. set_bbbtree__sorted_list_to_set_len†+SortedList,?Bbbtree,+Len‡
	32.1.22. set_bbbtree__to_sorted_list†+Bbbtree,?SortedList‡
	32.1.23. set_bbbtree__union†+BbbtreeA,+BbbtreeB,-BbbtreeC‡
	32.1.24. set_bbbtree__power_union†+Bbbtrees,-BbbtreeC‡
	32.1.25. set_bbbtree__intersect†+BbbtreeA,+BbbtreeB,-BbbtreeC‡
	32.1.26. set_bbbtree__power_intersect†+Bbbtrees,-BbbtreeC‡
	32.1.27. set_bbbtree__difference†+BbbtreeA,+BbbtreeB,-BbbtreeC‡
	32.1.28. set_bbbtree__subset†+BbbtreeA,+BbbtreeB‡
	32.1.29. set_bbbtree__superset†+BbbtreeA,+BbbtreeB‡

