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1. General overview & purpose of this document 
Since this is the first laboratory of the course, it would be useful to set out the structure that all 
the laboratories will follow.  Our basic approach to understanding natural language processing 
will be to divide the subject matter into two parts: what knowledge of language is – its 
representation – and how that knowledge is put to use – its computation.  Roughly, one can 
think of this in the usual computer science terms as the distinction between data structures and 
algorithms, though the distinction is not hard and fast.  For example, given the sentence “the 
dogs like ice-cream,” linguists have uncovered many different kinds of representations that 
seem to be involved.  To take just two, we know that ‘dogs’ has the plural marker ‘s’ following 
‘dog’ and not the reverse, ‘sdog’.  Further, in English we have to abide by the order ‘the dogs’ 
and not ‘dogs the’, and ‘the dogs’ forms a kind of unit in its own right. We know this because 
of sentences like the following, where “the dogs” evidently gets carried around en masse: “The 
dogs, John never liked” ;  I liked the cats, and Mary, the dogs. (For more on levels of 
representation in linguistics and computation, refer to the first notes installment on the course 
web site, and to the references at the end of this document; a classic source is N. Chomsky, 
Logical Structure of Linguistic Theory, 1955).   
 
Given this distinction, our approach will be to carve up all laboratory assignments into three 
components: first, the linguistic representations and the computational methods used – the 
what and the how; second, a warm-up component that introduces you to the computational 
tools; and third, a more extensive and creative component that will exercise your skill in 
tackling a problem in the particular area addressed – perhaps a novel language, or an extension 
of an existing system.   You may find that components 2 and 3 are a lot like learning a new 
programming language: first, basic syntax and simple programs, and then, writing a more 
original program on your own.  You may also find that you have to learn new terminology, 
like the keywords or schemas of a programming language – oftentimes, unfamiliar linguistic 
terms like morpheme or X-bar theory.  There is no need to be alarmed.  Learning this new 
vocabulary will be no different from, say, physics or any other science.  All the vocabulary 
will be introduced along the way. (And if you don’t understand some piece of terminology, by 
all means please just ask.)   You should, however, beware of one common pitfall: beginning 
students quite naturally carry into this domain – their baggage from elementary grammar 
school.  Everyday notions like grammar and what’s a ‘grammatical’ sentence don’t carry their 
usual everyday meanings. ‘Grammatical’ doesn’t mean what your teacher told you was proper 
English (or Hindi, or Chinese).  For the most part, you’ll have to check this conceptual 
baggage at the door, just as you have to abandon your notions about Newtonian mechanics to 
get to relativity theory (or abandon naïve physics to get to Newtonian mechanics). 
 
This, document then, is the first of three written components that make up laboratory 1.  It 
serves as computational and linguistic background and guidance to the laboratory itself. Its 
purpose is to familiarize you with the formal computational machinery for ‘parsing’ words, 
and introduce you to the basic computational engines used today for this – namely, finite-state 
transducers. This is the ‘how’ of word parsing, also loosely called stemming.  Additionally, we 
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provide a brief introduction to the ‘what’ of word parsing – what linguists call morphological 
analysis, morphotactics, or morphophonology.  Both computational and linguistic aspects of 
morphological analysis have a large literature; for additional readings on all the matters 
discussed here, please see the reference pointers at the end of this document.  (If you are 
already comfortable with the linguistic terminology for talking about words, as well as the 
technology for finite-state machines, you might want to skip ahead to section 4 of this 
document, which describes the particular implementation for word parsing that we shall use, 
Kimmo,  but I would suggest you not to.)  
 
So much for general introduction. Here’s a roadmap to the remainder of this document.  First, 
we’ll see what representations and computational machinery we need to chop words into parts, 
so as to look them up in a dictionary while adjusting for spelling changes, a method applicable 
to many (but not all) languages.   Here we’ll introduce finite-transition networks and finite-
state transducers as the computational engines of choice, along with the formal operations on 
networks/transducers of use in language modeling, such as composition and concatenation.  
Second, we shall see how to use this technology to build rule systems that can model the 
mapping between the word forms we see in text, such as cats, and their corresponding 
underlying, internal forms, of more use to a computer, such as cat + Plural.  Third, we’ll show 
how to account for spelling changes, as when y changes to i before an e, as in tries.  Finally, 
we describe the computational implementation we shall use, Kimmo. By the time you’ve 
finished, you should be well prepared for the introductory exercises in lab component II. 
 
2. Introduction: Why Word Parsing? 
 
We begin our study of natural language processing with what might at first blush seem like the 
most mundane and innocent of all topics: words.  We all ‘know’ what words are. So did 
Hamlet (Polonius: What do you read, my lord? Hamlet: Words. Words. Words. Hamlet, Act II, 
Scene ii).  All human languages use words – lots of them (By recent count, as of 2001, there 
were 76,598,718,000 English words on the whole of the Web – many repetitive repetitive, of 
course!)  In truth, all human languages we know of have the potential to have an indefinitely 
large numbers of words (just think of a simple example such as, missile, antimissile, anti-anti-
missile,…).  Yet as we shall see, this seemingly innocuous notion of a ‘word’ highlights all the 
key issues of natural language processing.  So that is one important reason we start here. 
 
Secondly, handling words is an engineering necessity in its own right: the words are outside 
the computer, and we have to get information about them inside. For example, we need to label 
words as nouns and verbs, and know that both cat and cats come from the same root, if only to 
build the most trivial kind of web search engine.  Likewise, if the computer is to answer, we 
will have to get the words out again, so word parsing is an integral part of nearly all NLP 
systems.  However, we must mention one big caveat. In this course we shall put to one side the 
fascinating and important question of the usual input/output modality involved in human 
language: speech (and its modality-specific relatives such as signing).  Computer speech 
recognition (and generation) is a very challenging problem in its own right.  But we shall side-
step it, and instead make the (perhaps improper) idealization that some other method has 
provided us with a textual, or orthographic input representation, noting where this idealization 
might lead us astray, or how to accommodate certain aspects of speech, such as intonation or 
stress.  In these laboratories, for the most part we’ll be doing natural language text processing. 
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Even with this idealization we’ve still got to map from the external form of words on paper, 
Ascii, Unicode, or whatever into an internal format that a computer can manipulate for further 
language processing.  In so doing, we underscore our two central issues of ‘what’ and ‘how’: 
what should the external and internal formats look like, and how do we carry out this mapping, 
in the best case, efficiently? (And finally, for those with a cognitive science bent, we can ask 
whether these procedures connect in any way to what people actually do.) 
 
In particular, the information gleaned from the words captured in an internal representation is 
used further down the natural language processing pipeline – for example, a system must 
figure out that ‘dogs’ is a Noun, with a plural marker on the end, if only to look up in its 
internal dictionary some representation of the meaning of ‘dog.’ So word parsing implements a 
particular kind of divide-and-conquer approach to the whole problem of language processing.  
But why do we call it parsing? 
 
We call the problem of mapping from an external language representation to an internal one 
(or the reverse) the problem of parsing.   That is why we call this laboratory ‘word parsing.’ 
Note that while people often think of parsing as ‘chunking’ just sentences or expressions of a 
human or computer language into parts, we shall apply this notion in an extended way, to any 
external-internal form mapping.  Note further that since parsing is a mapping, in general one 
internal (or external) form might map to more than one internal form.  We call this situation 
ambiguity and it is a very important part of all natural languages, which embrace ambiguity, as 
opposed to formal or artificial languages, which try to avoid it. For example, the word ‘flies’ is 
either the plural form of the noun ‘fly’ (more than one of them), or it is a present tense of the 
verb ‘fly’ – in isolation, we don’t know which. How we deal with ambiguity will prove to be a 
central computational issue in natural language processing. 
 
So what should we take as the external and internal representations of words?  For the external 
representation, we have already assumed a string of characters, e.g., ‘dogs’ is ‘d o g s’.  What 
about ‘the dogs’?  Ah, we’ve already uncovered a hidden assumption: does ‘the dogs’ get fed 
in as ‘t h e d o g s’ or as ‘t h e B d o g s #’, where B is a special ‘blank’ character and # an end-
of-word marker?  That’s the familiar task of tokenization as computer scientists (and linguists) 
call it.  Again, for now we shall defer this problem, and for the purposes of this laboratory 
assume that words come to us delimited by some end-of-word marker #, and that word strings 
come separated by one or more blank spaces, and that contractions like ‘we’ll’ are expanded 
into their full forms ‘we will.’  (We’ll not brush the blanks under the rug forever – the 
laboratory tools have special procedures for tokenization, a challenge in its own right.  After 
all, Latin was neverwrittenwithanyspaces, possibly to save valuable parchment area. If you 
want, you can use Google to search for ‘tokenization’ and you’ll discover many programs, 
from Perl to C, do to this job.) 
 
2.1 The first step: breaking down words into parts 
 
OK, so far we’ve just been dodging data.  Time to wrestle with some.  What is word parsing 
about?   We shall approach this by first figuring out what parts words can be chopped into, and 
then how those parts can be put together – in short, building a dictionary for words and their 
components.  We should  remark that this is not the only possible approach, nor even the 
fastest when implemented.  It is, however, the most principled and broadly applicable. Another 
well-known strategy works without a dictionary, using language-particular rules to break 
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words down.  (One of the best-known methods here is called the Porter algorithm, after its 
author (1980). It is a purely algorithmic approach to stripping the endings off of words, and 
then patching these in certain cases with simple repairs.  For example, this method will take the 
word hoped and strip off the ed, yielding ‘hop’. If a word is too short, it adds an ‘e’, which 
applies in this case, to give the correct result, ‘hope.’  A typical mistake is to take wander and 
chop off the er, leaving the (incorrect) wand. Since it does not use a dictionary, it can be fast; 
but also, as just shown can make mistakes. We’ll discuss this below. See your text and  
http://www.tartarus.org/~martin/PorterStemmer for more description.) We shall take a more 
basic approach, one that is more widely applicable across all languages; there are engineering 
trade-offs. 
 
What are a language’s possible word forms?  It is pretty easy to see that words can be broken 
down into indivisible parts – like atoms because these parts cannot be further divided ‘by 
ordinary chemical means’ – in this case, without destroying their meaning. Linguists call these 
minimal units of meaning morphemes. For example, in the word form ‘cats’, ‘cat’ is a 
morpheme, and so is the plural marker ‘s’ – it doesn’t make any sense to chop a cat up further 
into ‘ca’ because that no longer means cat; nor can ‘s’ be further taken apart, at least from the 
standpoint of meaning (both can of course be taken apart in some other sense, say their 
sounds).  Linguists call this the analysis morphology, after the Greek morphos, shape, form; 
and logos, word – the study of word forms.  For those unfamiliar with this terminology, an 
excellent one-page summary can be found at the following site, and we urge you to consult 
that now. 
 

http://pandora.cii.wwu.edu/vajda/ling201/test1materials/Morphologyoverhead.htm 
 
Further, the morphemes in a language can be arranged together in certain linear orders but not 
others.  Consider for example: 

• Fruit, Fruitless, fruitlessness; great, greatness   but not: 
• *Fruitnessless, *Greatless, *Fruitness 
• Cool, cooler, coolest but not: fruit, *fruiter, *fruitest 
 

Such examples demonstrate that not only must the morphemes less and ness appear in a certain 
order, but also that they can follow only certain other morphemes and not others.  Other 
combinations are ill-formed. We shall by convention mark with an asterisk (*) such ill-formed 
combinations.  Note again that this mark does not carry any ‘prescriptive’ weight – it does not 
mean ‘good’ or ‘bad.’  Later on we shall see how to accommodate such things as dialectical 
variation.  (You say potato, and I say pohtahto.) 
 
How does one figure out what the morphemes in a language are? How does one determine 
which morphemes can get glued together with others?  There’s no way but to look at the data – 
studying sequences like ‘fruit’ above.  By examining which groups of morphemes can appear 
in the same places as others (i.e. are substitutable for one another), we can in fact formally 
define equivalence classes of morphemes. For instance, if er can appear after an English word 
whenever est can appear, then er would be in the same morpheme class as est (is it?).  (In Box 
2 we sketch one way to formally compute these equivalence classes.)  Determining a 
language’s morpheme classes and their possible arrangements is the study of morphosyntax, 
from morphos and the Greek syntaxis, σψνταξισ,  ‘to arrange together’.   So we see that just 
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as the words in a sentence have their own possible arrangements, their syntax, so do the 
morphemes.  
 
Traditionally, a linguist might write the morphemic decomposition of ‘cooler’ as cool+er, 
where the plus sign denotes concatenation.  The ‘cool’ part that can stand alone as a word form 
is dubbed the root or stem. The ‘er’ ending, which cannot appear in isolation unless it’s glued 
in some way to a stem, is called an affix.  (Well, er, maybe not).  A prefix appears at the 
beginning of a word (unclear); a suffix at the end (hardly); and an infix somewhere word 
internally (Tagalog: um+hinigi → humingi, ‘to borrow’ – hmm, can you think of any familiar 
infixes in English?).  Finally, to round out our terminology, consider the plural morpheme ‘s’ 
that appears after ‘cat’ as in ‘cats’, forming the plural.  But what about ‘sheep’? Where’s the 
beef? ‘s’ now? (Note that sheep is ambiguously singular or plural.) Examples like sheep 
prompt linguists to posit for the sake of regularity a zero morpheme – an unpronounced 
element on the surface, but one that carries plural information just like the ‘s’ that does appear 
in cats.  More accurately, a linguist would say that ‘cats’ decomposes as ‘cat’+Pl, where ‘Pl’ 
stands for a plural morpheme which in English surfaces as ‘s’ in some contexts, but nothing at 
all in others, and z in still others (as in ‘dogs’) – but this is getting a bit ahead of our story. 
We’ll go into depth about the different alternations of morphemes below. 
 
Summarizing so far then, we have a system that will pair an ‘external’ word form, such as 
‘flies’ – let us call this a surface form – with one or more corresponding ‘internal’ or 
underlying decompositions – let us call these the corresponding lexical forms.   Thus, what we 
really are doing with word parsing is computing pairs of (lexical, surface) word forms.  
 
We can now see that one way to factor apart the possible words in a language is to describe, 
separately, the language of roots and the language of suffixes, and then simply concatenate 
these two languages together, as shown below.  Now we can walk the walk and talk the talk.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note how this factoring approach trades off memory for time: it can generate the crossproduct 
of the root and suffix languages, but at a cost of two lookups instead of one. This is a point to 
which we’ll return below: if there are n1 root forms and n2 suffix forms, under free combination 
we can produce n1 x n2 word forms using only n1  + n2  space, a great space savings for 
reasonably sized n1  and n2 .    
 

work  talk  walk

Root Language

0  ing  ed  s

Suffix Language

work working worked works 
talk talking talked talks 
walk walking walked walks

The concatenation of the Suffix Language after the Root Language.
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Summarizing so far, at least two kinds of knowledge seem to be required word parsing, and 
are, to a first approximation, all that we have to know: 
 

• The root forms, because we simply can’t take a surface form like duckling and strip of 
the ing.  We know this because duckl is not a root 

• The ordering relations, namely that only certain morphemes can be concatenated 
together, because we can’t simply take a surface form like beer and strip off the er (as 
in ‘doer’) – that would take all the fizz out of beer 

 
All this tells us what we must represent.  How should we represent and use that knowledge 
computationally? Since what we have to represent is (1) equivalence classes and  (2) whether 
one class can precede or follow another, then a minimal model would capture just this 
knowledge and nothing more.   That is, we have a linear string of a finite number of classes.  
The most direct and simplest model for this is a finite-state automaton – which is itself just a 
linear concatenation of a finite number of states, with a distinguished start state and one or 
more final states.  We expect that you have already encountered the basic definitions of 
terminology of finite-state automata (fsa’s) and their mere mention should bring some kind of 
Pavlovian response to mind; if not, and you’re not salivating, please do refer to the definition 
below. 
 
We will first need some basic terminology for talking about strings of symbols. 
An alphabet Σ, is a (nonempty finite) set of atomic symbols, denoted Σ.  
A string s is a (finite or infinite) concatenation of alphabet elements, perhaps null (the empty 
string) 
The epsilon or null character ε denotes the empty string, of zero length. (Also called λ in the 
literature) 
The asterisk * denotes 0 or more occurrences of a symbol, e.g., a*={ε, a, aa, aaa, …} 
A language, L, is the set of all possible strings over an alphabet, denoted  Σ∗ 

A relation R is a set of ordered pairs (x, y) over strings of some language L. 
 
Definition A finite-state automaton  (FSA) is a quintuple (Q,Σ, δ, q0, F) where 

• Q is a (nonempty) finite set of states or equivalence classes, the states; 
• Σ is a  (nonempty) finite set of symbols, the alphabet.  We will allow the existence of 

the empty symbol, ε, as a possible alphabet symbol. 
• q0    ⊆ Q is a distinguished start state 
• F  ⊆ Q is the set of final states 
• δ ⊆ Q  x Σ x Q is a mapping from Q xΣ  → 2Q, the transition mapping that takes the 

fsa from a state and a symbol to some set of next states, a subset of Q. If δ is 
a function, then there is always just one possible next state and the fsa is 
deterministic, otherwise, nondeterministic.  We denote by δ(w) the 
operation of δ on some alphabet symbol w, the next state relation. 

 
Note that we have defined FSA’s so that every transition is labeled with an alphabet symbol.  
This lets us define an equivalent version of FSA’s in the form of finite-transition networks 
(FTNs), directed graphs where the nodes are FSA states, there is a distinguished start state 
marked by an entering arrow that comes from no preceding state; the final states are double 
circles; and there is a directed edge labeled with the alphabet symbol w, between two nodes 
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(states) qi  and qj  iff δ(w)= qj.  Informally, as we trace out paths from start state to final 
state(s), the sequence of graph edge labels spell out the possible strings that the fsa recognizes 
(accepts, generates).  The FTN formulation was first proposed by Claude Shannon and Warren 
Weaver in  The Mathematical Theory of Communication (1949). 
 
Given this formalism, we can state precisely several notions we will use later on in natural 
language processing. Let G be an FTN. The set of all such strings G recognizes is called the 
language recognized (generated) by G (or its equivalent FSA), denoted L(G).  The language 
defined by the class of FTNs is known as the regular languages. Given some string 
(‘sentence’) s, the path through an FTN G from start to finish is called a parse of s with respect 
to G.    A string (sentence) s is ambiguous with respect to an FTN G if there exists more than 
one distinct path through G such that s is recognized by G, i.e., is in L(G).  An FTN is 
ambiguous if at least one of its sentences is ambiguous. 
 
Note that parsing and the notion of a parse are always defined with respect to a particular 
machine (grammar), as is ambiguity. The intuition is that each distinct accepting path (parse) 
of a string s, running from start state to a final state provides a different ‘meaning’ of s under 
some sense of ‘meaning’. For example, if we have an FTN to parse the word ‘flies’ then there 
is one path that would correspond to ‘fly+Plural’ (fly as a noun), and another distinct path 
corresponding to ‘fly+present -ense’ (fly as a verb). You will see this for yourself in the first 
laboratory. 
 
The FTN graph representation provides a rather obvious, direct picture of the valid sequence of 
morpheme classes (the states in the automaton or network), concatenated in a linear way.   
Here for example is a finite-state network for the simple walk-the-walk root language given 
earlier: 
  
 

 

 

 

 
 
And a finite-state network for the simple suffix language class described earlier:  
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Of course, we could have written other FTNs that would recognize exactly the same strings.  
Here’s one – the following FTN also recognizes the ‘walk’ language: 
 
 
 
 
 
 
 
 
 
You’ll note that we have deliberately ‘compressed’ our original FTNs by turning them into 
prefix tree acceptors  - ‘alk’, ‘ork’, ‘k’ have a common prefixes, so we combine these into one 
edge. You can see how this saves on duplicate nodes and edges.  We shall commonly use this 
prefix tree form for FTNs since it provides a compact (and efficient) representation for spelling 
possibilities.  
 
The FTN format is particularly vivid for demonstrating set operations in an intuitive way. 
Using our original root and affix networks, we can concatenate them together by overlaying 
the double-circle ‘final’ state of the root network on top of the start state of the affix network  
as follows, to form a new network that spells out roots plus possible endings:  
 
 
 
 
 
 
 
 
 
 
 
The picture should make clear that the concatenation of any two (or more) FTNs is also an 
FTN, and so FTNs are closed under concatenation. We leave the demonstration for a very 
bored reader. (What about other set operations on FTNs, such as union, intersection, or 
complementation?  A picture tells a story…) 
 
Let’s recap.  To build a root plus affix FTN to model words, we: 

1. Figure out what the roots are & write them as a prefix tree FTN; 
2. Determine the possible morpheme classes, corresponding to the states of an FTN, and 

which classes follows which other classes or roots, and write them as prefix tree FTNs; 
3. We concatenate the two FTNs to form an FTN that can spell out all the root-plus-affix 

forms.  (Question: What about prefixes, like ‘un’ in ‘unhappy’? What would the 
network look like?) 

 
Where do the morpheme classes and their order come from?  We mentioned earlier that we 
could induce this information from a corpus of data via the relation of substitutability. Here we 
shall say just a bit more about this method, leaving formal details for later notes.  Informally, 
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note that the set of words {walk, talk, work} can all be followed by the string ‘s’ – walks, talks, 
works. However, words like happy, sad, glad, etc. cannot.  In other words,  {walk, talk, work} 
are intersubstitutable in the context ___s, where the underscore ___ indicates the place where 
we substitute our test strings: if ‘walks’ is in the language, then so is ‘talks’. The 
substitutability relation in fact defines an equivalence class (why? If w is in the substitutability 
relation, and so is t, then we say that w and t are in the same equivalence class. Check that this 
does in fact define an equivalence class.) So, {work, talk, work} all get tossed into the same 
bucket, at least with respect to the suffix morpheme ‘s’.    
 
If we continue this approach with many other words, we’ll find that ‘ness’ has to follow ‘less’, 
as we announced at the very beginning of this document.  If there turn out to be a finite number 
of classes, this method yields both classes (corresponding to the states of an FTN) and linear 
ordering (corresponding to the transition arcs of an FTN).  Indeed, this approach, dubbed 
distributional analysis and pioneered by the structural linguists of the 1940s, finds succinct 
statement in a passage by one of their scholars, Rulon Wells of Yale: 
 

“[Words] are assigned to classes on the basis of the environments in which they occur. Each 
environment determines one and only one class, namely the class of all [words] occurring in 
that environment… A word A belongs to the class determined by the environment ____X if X 
is either an utterance or occurs as part of some utterance.” Wells, 1947, pp. 81-82.  

 
Sound familiar? What Wells did not know – because the technology had not been invented – 
was that his definition amounts to no more and no less than the definition of an FTN – that is, 
if his method works, then it determines an FTN. (This is easy to prove, via the Myhill-Nerode 
theorem for characterizing finite-state automata (1956) – see Hopcroft & Ullman (1976).  If 
you are eager to learn more about this induction method, which is learning procedure that must 
work from complete data, i.e., all the examples in the language must be fairly presented, we 
can refer you to Berwick & Pilato, J. Machine Learning, 1985, who implemented this method 
to automatically induce FTNs from linguistic data, in another context.  Do you think that this is 
the way that children might learn this part of language?  Think about what the time complexity 
of this approach might be in terms of the # of equivalence classes that are ‘learned’ – what do 
you think it is?  Why?) 
 
Before proceeding, it is important to recall that not all languages can be described by FTNs – 
not even all human words (language root and affix systems).  Of course, FTNs can recognize 
arbitrarily long words like anti-anti…missile quite easily – that is, they can generate infinite 
languages, simply by using a loop in their state network.  This example also depicts a 
nondeterministic FTN, since in the start state there are two possible next states on the transition 
anti: 
 
 
 
 
 
 
 
However, human languages can be more complex than this, and form patterns that are not 
describable by any FTN.  Consider Bambarra, an African language spoken in Mali (example 
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anti

anti missle

anti
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6.863/9.611J Natural Language Processing, Laboratory 1, Component 1 10

from Culy, 1986). In Bambarra, words can be in the form Noun+o+Noun, as in wulu o wulu 
(‘whichever dog’), and where there can be any Noun duplicate on the left and the right .  Also, 
we find Noun forms such as wulu+nyini+la=‘dog searcher’, which can also be arbitrarily 
extended to the right (sort of the reverse of ‘antimissile’, as in: 

wulunyinila= ‘dog searcher’ 
wulunyinina+nyini+la = ‘one who searches for dog searchers’ 
wulunyininanyinila+nyini+la = ‘one who searches for one who searches for dog searchers’ 

… (and so on…dogged search, no less) 
 
The coup de grace  for FTNs comes from combining these ever-longer Nouns with the  Noun o 
Noun form, yielding possible Bambarra words such as: 
 
wulunyininanyinila+o+wulunyininanyinila = ‘whichever one who searches for dog searchers’ 
wulunyininanyinilanyinila o wulunyininanyinilanyinila,  
etc. 
 
Such a language is in the form wow, where w is a string that is arbitrarily long, a copy on both 
sides of the o.  It is easy to see that such languages cannot be recognized by any FTN. We use 
the pigeonhole principle, and the fact that an FTN has a finite number of states (equivalence 
classes for strings), and so must ‘bin’ every string into one of a finite number of bins – such 
strings are intersubstitutable.  The intuition is that to recognize such strings, a machine must 
‘remember’ the number of nyinini copies the left of the o, and then check that the number 
matches up with the sequence after the o. But this must mean that the machine must have an 
arbitrarily large number of states, one to separately ‘remember’ each possible such sequence.  
Since an FTN does not have an arbitrarily large number of states, it must fail on some case 
where it places two different length copies of nyinini in the same equivalence class.  
 
(Sketch. To firm up this argument, assume that we have such an FTN, FTN  that correctly 
recognizes this language, call it L(copy).  Note that the correct strings are in the form an o an,  
where an denotes the number of copies of nyini. This number must match up on the left and the 
right. Call the language the FTN accepts L(FTN). We assume that L(FTN)=L(copy), and derive 
a contradiction.   Since any FTN has a finite number of states, say m, and since n can be 
arbitrarily large, by the pigeonhole principle there must exist  k,l, with k ≠ l, such that ak and al 
are in the same equivalence class. But then ak o al ∈L(FTN) iff ako ak∈L(FTN), a 
contradiction.) 
 
Putting to one side such examples for the moment,  a language’s morpheme classes and their 
possible linear arrangements as an FTN is one kind of knowledge that we must represent for 
word parsing.1 But does this make sense from an engineering point of view?  Surely we can 
just store all the legitimate possibilities!  Surely yes, given today’s cheap memory (or even a 
person’s).  But this brute-force approach fails on at least three grounds. First: the sheer number 
of word forms can boggle even large memory stores. While we have given only the simplest 
examples above, some human languages (like Inukituit above, or Turkish) have very rich and 

                                                 
1 You might ask how a child can figure out the morpheme classes just by exposure to their 
language.  An excellent question; you might think about whether children would have to go 
through a kind of equivalence class computation – and what its problems might be. See C. 
deMarcken (1995) for one approach. 
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complex concatenative affix systems (they are called ‘agglutinative’ languages).  For example, 
it is estimated that the number of Turkish word forms easily exceeds 600 billion.  Or similarly, 
in a language like Inukititut; see the figure below. Worse still, as we saw above, the number of 
words in a language actually grows without bound, and this is neither uncommon nor 
unnatural.  And impractical: in point of fact, as far as I know nearly every hand-held thesaurus 
(e.g., “Franklin Ace” incorporates a version of the lookup methods we shall study in this 
laboratory). Second, simply listing all the words completely misses the open-ended, generative 
aspect of the system.  Listing does not make explicit that ‘cooler’ and ‘coolest’ are closely 
related – in a list, there is no logical implication between such forms.   Third: explicit lists 
don’t reflect what people seem to do. Psychological tests indicate that we really do decompose 
words into their parts as sugested above.  The classic experiment, by Berko (1958) is known as 
the wug test.  Individuals given pseudowords to recognize react slower when the word form 
has a seemingly legitmate decomposition, a possible suffix, presumably the effects of lookup 
and processing – e.g., juvenate is rejected more slowly than pretoire. (Good experimentalists 
should note that we’ve omitted much proper detail here about controls.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, before moving on, we should try our hand at a very small case study, to illustrate 
how one builds up an FTN for parsing words into root and morpheme classes.  Suppose we 
wanted to build an FTN to parse the following English adjectives into their proper chunks.  
We’ll see how to successively approximate this data. (By the way – how would you find this 
data to begin with?) 

• Big, bigger, biggest 
• Cool, cooler, coolest, coolly 
• Red, redder, reddest 
• Clear, clearer, clearest, clearly, unclear, unclearer, unclearest, unclearly 
• Happy, happier, happiest, happily 
• Unhappy, unhappier, unhappiest, unhappily 
• Real, unreal, silly, sillier, silliest 

 
OK, at first glance it seems that there’s a class of adjectives like big, cool, red, clear, silly that 
can take the comparative endings, er, est;  these also take ly  - no wait, silly does not.  So we 
could construct the following FTN: 
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Now, what about taking care of the prefix un?   We could simply place this in front of the roots 
It can appear before happy, but there are no such English words as unsilly, nor unred.  You 
should try to carry out some surgery on our network above to see if you can come up with an 
FTN that accepts all and only the valid sequences we have given above, and none of the 
invalid ones (i.e., ones not listed).  Note that simply adding ‘un’ to the front of the network 
won’t work (since that would allow unsilly). The important lesson here is that the FTN states 
are used to distinguish different possible morpheme sequences. 
 
So, by modeling possible morpheme strings, are we done? Not quite!   In our haste we seem to 
have forgotten entirely about surface and lexical representations.  Recall that if we have an 
input like ‘cats’, we really want to pair it with a lexical (underlying) form ‘cat + Pl’, and vice-
versa. So we need some way to have our FTNs cough up output.   
 
This is easy to do.  We extend FTNs by adding an output for every transition. As the FTN 
traverses an edge from one state to another, it emits an output symbol.  To do this, we must add 
an output alphabet to our definition of a finite-state machine. This yields a finite-state 
transducer (FST): a six-tuple (Q, Σ1 , Σ2, δ, q0 F), where δ is now extended from a map Q x Σ x 
Q to a map  Q x Σ x Σ x Q .  In other words: the transition mapping goes from a state and a 
pair of symbols to some possible next states. It’s easier to draw than say: we simply put pairs 
of symbols x:y on each arc, one denoting the input character, the other the output character.  
(Another convention that is commonly used is to list one element of the pair above the 
transition arc and the other below it.)  For example, now we can redesign our root and suffix 
machine to return the lexical form with features attached: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prestense:0

Prestense:s

0:e
0:n Prg:g0:i

T:t A:a

W:w

O:o R:r

A:a L:l K:k +Verb:0

Pasttense:d

Prestense:0

Prestense:s

0:e
0:n Prg:g0:i

T:t A:a

W:w

O:o R:r

A:a L:l K:k +Verb:0

Pasttense:d

{er,est,ly}

{big, cool,
red, clear, 

happy…}

{er,est}
{silly,

…}

{er,est,ly}

{big, cool,
red, clear, 

happy…}

{er,est}
{silly,

…}
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So as to make the distinction between the two alphabet pairs clear, we have taken the liberty to 
write the ‘surface’ symbols in lowercase, and the lexical or underlying symbols beginning in 
Uppercase.  Note that ‘+Verb’ is all one atomic symbol, as is ‘Prestense’, etc.  Obviously, 
these are arbitrary (but meaningful) labels supplied by the linguist, to be later manipulated by 
computer. 
 
Now for instance, given a surface form ‘talk’, we can trace the path through the network 
following the second symbol of each colon pair, and noting the output at each transition. This 
will yield the output form ‘TALK+VerbPrestense’ – i.e., a verb in the present tense.  To get 
this far, our network illustrates one other notational change that is conventional: we have 
replaced the empty symbol (string) ε with the symbol 0, and so allow a transition from the state 
following K:k via the pair +Verb:0  - that is, with nothing matching in the input string. Empty 
symbols – ‘zeroes’ are similarly used in the rest of the suffix, both on the left and the right.  As 
we shall see, this will introduce computational complexity into the resulting system, often in 
subtle ways.   Still, it all works:  ‘walking’ will yield ‘WALK+Verb+Prg’ – i.e., a verb in the 
progressive tense.  
 
It is also very important to note that the transducer works both ways – for either the surface or 
the lexical form can be output. We can we take the lexical form ‘WALK+VerbPasttense’ and 
trace this through our machine. That will yield the pairing with the lexical form for the output 
‘worked’.  Pay attention to how the zeroes are consumed here – we could say that the output 
was ‘work0ed’ (Remember our notion of a zero morpheme.) In short, for every pair of strings 
x,y over the two alphabets, that is, for two languages, an FST defines a relation (x,y) where x,y 
are related just in case x can be paired with y by running it through an FST. Neither member of 
the pair has ‘priority’ – the machine runs both ways. So, we can think of the FST as either 
‘recognizing’ (or parsing) a surface form, recovering its lexical form; or we can think of the 
FST as ‘generating’ or producing a surface form from an underlying lexical (dictionary) form.  
That is very convenient, and is what our computational machine will do. 
 
Because the underlying FST is finite-state, we call this a regular relation.  Intuitively, we may 
think of the direction from ‘surface’ form to dictionary or lexical form as ‘recognition’ and the 
direction from lexical to surface form as ‘generation’, but the machine really is neutral between 
the two. Since finite-state transducers may have loops, we see that they can relate two infinite 
(regular/finite-state) languages.  
 
Transducers and the relations they determine have some subtly different properties from the 
more familiar finite-state networks, and so deserve further mention.  In particular, whereas the 
intersection of two finite-state transition networks is always another finite-state transition 
network (that is, FTNs are closed under intersection; this simple result is easily verified by 
considering the intersection machine defined by the cross product of the states of the two 
initial finite-state machines and a joint transition mapping – see Hopcroft and Ullman, 1979 if 
you are not sure.) The same is not true for FSTs.  To see this, note that we can easily define an 
FST M1 that maps an→bnc* and vice-versa, and a second FST M2 that maps an→b*cn.  The 
intersection of the two transducers, M1 ∩ M2 is the mapping an→bncn, and this cannot be 
described by an FTN, by the same argument as in our Bambarra example.  This negative result 
will become important is when we try to define several transduction constraints operating in 
parallel, so that they all apply simultaneously.  
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A second major difference between FTNs and FSTs is that while any nondeterministic FTN 
can be converted into a deterministic FTN that recognizes the same language as before, the 
same is not true for FTNs.  For FSTs, the conversion trick is to see that the transition mapping 
is defined as δ: q→2Q.   That is, it maps to some subset of next states, the power set of Q.  We 
can make this mapping a function, so that each transition on a particular symbol from a state 
can only have one output, by constructing a new FTN whose states denote possible subsets of 
the original machine. Intuitively, if a transition on symbol a takes a nondeterministic machine 
to more than one next-state, say state 1 or state 2, then the corresponding deterministic 
machine can be in a ‘superstate’ that represents the state of being in either ‘state 1 or state 2’ – 
that is, both.   So for example,  if we take the nondeterministic antimissile FTN from above, we 
see that on encountering anti the FTN can go to either state 1 or state 2.  One way to write this 
is to say that the transition mapping takes the machine from state 1 to the union of states 1 and 
2, i.e., 1→ {1, 2}, that is, after processing anti the machine could be in either state 1 or state 2.  
That is certainly an expression of nondeterminism.  If the machine is an FTN, then we can 
convert this into a deterministic machine by creating a new superstate q’={q1,}∪,{q2 }. 
 
However, with FSTs we are not so lucky.  There are certain FSTs that are inherently 
nondeterministic – they cannot be turned into equivalent deterministic machines.  Intuitively, 
since the machine is spitting out symbols as it goes along, it cannot ‘take them back’ once they 
have been output.  Similarly, if we try the subset construction trick, and the transition to one 
state requires us to spit out an a, and another a b, we cannot output both at the same time.  For 
example, the following FTN, from Barton, Berwick, and Ristad (1987) cannot be made 
deterministic: 
 
 
What is the implication? We don’t have the same guarantees.  
 
3. You say potatoe, I saw pohtatoe. 
OK. We now have our morpheme transducer.  Is there anything else we have to know?  Well, 
yes – there is another complication you may have already noticed.  The way a morpheme 
‘looks’ or is spelled out depends on its context.  This is called morphological alternation. 
Consider adding the plural morpheme ‘s’ to a root.  We get different results, depending on the 
plural morpheme context: 

• We have cat+s→  cats  but: 
• Fox+s→  foxes  (an ‘e’ added in before the ‘x’)  and 
• Quiz+s→  quizzes  (two things – the ‘z’ is doubled, and an ‘e’ added) 

 
What’s going on here?  These spelling changes are the written (orthographic) reflexes of sound 
changes (phonological rules), particular to each language, often occurring at morpheme 
boundaries (like the s that is added here).  The upshot is that we can’t just break surface into 
morpheme chunks and look up each chunk individually in a dictionary.  Instead we’ll have to 
consider the ‘impedance match’ between the underlying or lexical form – quiz+Pl – and the 
surface form we see – quizzes.   
 
We will carry out these spelling change adjustments by means of a second set of finite-state 
rules, represented as finite-state transducers.   We will write one rule for each spelling change, 
each corresponding to a different transducer.  The idea is that each transducer will act as a 
filter on the set of possible lexical:surface pairs, a tollgate that only admits valid pairings. Then 
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to make sure all the rules apply, we run them in parallel against the word string we are given.  
This will allow only possible valid spellings (which might include some impossible words, 
since the rules do not look at any dictionary).  As it happens, in English there are only about 5 
or so spelling change rules that we need.  
 
Here is how the transducer system works.  Let us take a particular example – fox+s→  foxes. 
The insertion of an e in this context is called epthenthesis.  If we study related English 
examples, we see that the examples break down in the following way: 
 

• Cat/cats; miss/misses; fox/foxes; buzz/buzzes; church/churches; fish/fishes.   
• From this we can conclude that one can write the following rule as a constraint: If an e 

appears, then it must be in the following context: the immediately preceding character 
is a morpheme boundary + preceded by a ‘sound’ like s, x, z, ch, sh, and the 
immediately following context is an s followed by a word boundary, #. 

• We see that this constraint includes reference to both surface context (i.e, s, x, ch) and 
lexical context (i.e., morpheme boundary +).  So in fact, we want to write the rule in 
terms of both lexical, surface pairs and specify this via a transducer that can include 
lexical:surface labels on its transitions.  The transducer will be designed so that it 
accepts only the lexical/surface string pairs that obey the constraint.  For example, it 
should rule out the possibility cat+s/cates (instead of cats). 

• To do this, we pair these surface forms with their underlying lexical counterparts. We 
use the empty, null character epsilon, denoted 0, to ‘pad out’ surface and lexical 
strings, always matching a lexical + with a 0 (this keeps the morpheme boundaries 
straight and also solves a certain technical problem that we discuss later): 

 
Lexical: c a t +  s # f o x + 0 s # b u z z + 0  s #  c h u r c h + s  f i s h + s  
Surface: c a t 0  s # f o x 0 e s # b u z z 0 e  s #… etc. 

 
Using the abbreviation Csib for the class of sibilants = {s, x, z}, we can write the pairing for 
the fox, buzz, misses examples as a linear constraint pattern like the following, where a single 
form like Csib means the lexical:surface pair Csib:Csib; the underscore indicates where the 
pairing on the lefthand side of the arrow must appear: 
 
 0:e → Csib:Csib +:0___s:s #:# 
 
We build up our pattern by adding the disjunctions implied by our other examples: 
 0:e → c:c h:h +:0___s:s #:#   
 0:e → s:s h:h+:0___s:s #:# 
To express the disjunctions more compactly, we shall write | as ‘or’ in square brackets and also 
abbreviate X:X as X, for any character X (this pairing comprising an identity relation). Now our 
pattern is: 
 0:e → [Csib| sh |ch] +:0___s # 
 
Now let us build the actual FST that will accept exactly this transduction. The intuition is that 
we want the states of the epenthesis machine to ‘remember’ the left context, then allow a 
transition on the pair e:0 exactly when it is in the state of having remembered the sequence of 
character pairs that comprises the left context; then move to a state from the machine will 
check the right context, again by a sequence of state transitions that admit only the right 
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context character pairs.  We have thus reduced the problem to a familiar one from computer 
science of string matching, which may be implemented efficiently by any number of means. 
Let us always denote the start state of the associated FST by a circle labeled 1.  Then our 
intuition means that we should at least have a straight-line accepting path that consists of the 
following character sequence transitions from state to state: 
 
  Csib:Csib     +:0            0:e   s:s    #:# 
 State 0→         →State 1→  State 2 →State 3→    State 4→        Accept state 
  
Since in general once we have found a valid 0:e pairing we might find another (consider longer 
words), we loop back to the Accept state by making State 1 an accepting state. Further, recall 
that we want to reject any string where 0:e occurs that does not fit this pattern.  That means, 
for example, that at each point along the line after 0:e is found, then if the correct next 
character pair is not found, we should reject the string.  To this end, we must add transitions 
from State 3 to a special failure state, call it State 0, on any pair except s:s.  – that is,  Csib, c, 
h, +:0, 0:e, and, finally, our abbreviation @:@ which stands for all the other characters except 
those anywhere in the pattern itself (the set difference between the Alphabet and Csib, c, h, 
+:0, and 0:e).  We do the same for all the states after the 0:e pair.   
 
Continuing, we must also add new states (renumbering the old ones) to ‘remember’ the 
additional left-context patterns sh, ch, and any other combinations of these, e.g., schs, etc., 
since in general the strings to check can be arbitrarily long.  Finally, we must label the states 
after the start state, but before the 0:e to be checked as accepting (final) states. (Why?  Because 
if string ends before we have found an 0:e, that is OK.) All in all, our final FTN looks like this: 
(Quick question: what is the purpose of the loop from State 1 to itself labeled with transition 
@?) 
 
As usual, we say that the machine accepts the string iff it is in a final state when the 
lexical:surface pairs it is presented are all used up. The final machine has 7 states.  
We will also write it in the following tabular format, where the rows are the states (7) and the 
columns are the character pair labels on the transitions (8 distinct pairs), in the form 
lexical/surface. The entries in the table are the next states. Accepting states are indicated by 
colons, and nonfinal states by a period. The zero (0) reject state is given in the table entries, but 
not otherwise listed. State 1 is the start state. 
 
RULE "3 Epenthesis, 0:e => [Csib|ch|sh|] +:0___s [#]" 7 8 
   c h s Csib + # 0 @ 
   c h s Csib 0 # e @ 
1: 2 1 4 3    1 1 0 1 
2: 2 3 3 3    1 1 0 1 
3: 2 1 3 3    5 1 0 1 
4: 2 3 3 3    5 1 0 1 
5: 2 1 2 2    1 1 6 1 
6. 0 0 7 0    0 0 0 0 
7. 0 0 0 0    0 1 0 0 
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FTN  for (most of) an epenthesis rule. 
 
Given our epenthesis machine, we can give it an (arbitrarily long) string and it will accept 
only those strings that include the 0:e.  You can check this yourself by using the Laboratory 
implementation of this approach, which is called Kimmo. 
 
We are now in a position to characterize our entire word parser.  It consists of two finite state 
machines operating in tandem: one that checks for the correct morpheme sequences, and one 
that checks for the correct lexical:surface pairs.  We run this together, so that at each point the 
collective set of transducers and morpheme automaton make transitions based on each 
character that is seen.  In the case of a pair like fox+s/foxes, we arrive at a picture like the 
following.  Here, the large circles represent morpheme states, e.g., C1 and C2 are two different 
states in a morpheme automaton for English, corresponding to two different possible suffix 
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forms, while the small circles denote the spelling change automata states. We have capitalized 
the lexical string for clarity. The ‘root’ stands for the start state of the morpheme tree. 

root

leftover input sleftover input s

F/fF/f

O/oO/o

Fox+s, Plural

#/#

+/0+/0

0/e0/e

Automaton blocks+/0

X/x

Noun

X/x

Noun0/e

C1

0/e

C1

C2

0:e END!S:s

 
 
Another view: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, we know that a language will, in general, have more than one spelling change rule.  
In that case, we must supply FTNs for each.  In English, for example, there are these five rules 
that do most of the work: 

1. Epenthesis (we know about this one) 
2. y-i spelling (happy+ly:happily) 
3. Reduplication, or germination (doubling of consonants, e.g., big+er bigger) 
4. Elision (erasing an e, e.g., move+ing:moving) 
5. i-y spelling (tie+ing:tying) 

 
Let’s see what happens when we have to apply several rules.   For instance, consider the 
lexical:surface pairing spy+s:spies, or rather spy0+s:spie0s.  Here we see that there are two 
rules that apply: (1) our familiar epenthesis rule (modified to take into account the y as left 
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context); (2) y-i spelling that pairs y:i   if before a plural ending. Clearly, we must see to it that 
both rules apply to get the right lexical:surface form.  We block off the two contextual 
conditions in the figure. If we apply the two rules as declarative constraints in parallel then the 
rules will work (we can imagine this as two templates simultaneously imposed on the 
lexical:surface pair): 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

With five or six rules, we apply all of these at once.  Thus the picture looks like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How can we be sure that this will work? While the notion of parallel rule application seems 
clear enough, this is actually quite a challenge to work out.  Laboratory 1a points out that there 
are certain difficulties that arise when one rule provides the context for another, and asks you 
to propose a solution.  
 
 
In the next section of these notes, we shall ask what the computational complexity of this 
machinery is – what sort of device it characterizes, and whether this is sufficient to naturally 
describe what we see in natural language.  The bottom line is that in the end, while such 
systems have proved quite useful – indeed, they are the most successful machines we know of 
for implementing morphological processors to handle a wide variety of languages from 
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Hungarian to Japanese to Czech to English, they are both too weak and too strong.  They are 
too weak in that they have difficulty in representing infixation, common in Semitic languages 
such as Arabic and Hebrew.  This is exactly what one might expect from a system that is based 
on linear concatenation.  In Arabic, vowels are interpolated inside of a consonant framework 
such as ktb.  Systems like Kimmo are too strong in that they can characterize computationally 
intractable problems that reflect processes never seen in human languages – they are at least 
NP-hard, if not worse. (If you don’t know what these terms mean, we’ll explicate them in the 
next installment.) 
 


