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1. Introduction: Goals of the Laboratory 
In this laboratory you will investigate two aspects of assigning meaning to sentences and how to use that 
information: (1) word meaning, as illustrated by the hand-constructed ontology, Wordnet; and (2) sentence 
meaning, as illustrated by a very simple lambda-calculus interpreter.  For the first part, you will see how to 
use Wordnet to examine the relationships amongst word meanings, as might be used in a hypothetical word 
reasoning system.  For the second part, you will be asked to extend. When you have completed the 
assignment, you should understand the principle of compositionality in semantics and how that relates to 
syntactic analysis.  You will also know how to ‘put it all together’: you will have extended an English 
interface to a simple database. 
 
2. Word semantics 
 
2.1 The WordNet database (version 2.0) is available online via the following link.  (You may also download 
it to a windows or linux machine for local use – just follow the instructions there, but this isn’t necessary for 
the exercise.)  The second link is the online browser, which is all that you need here. 
 http://www.cogsci.princeton.edu/~wn/ 
 http://www.cogsci.princeton.edu/cgi-bin/webwn 
 
Wordnet is a hand-built directed graph of linked synonym sets or synsets. If you click on the second link, 
you’ll pull up a web browser window that allows you to explore them.  Typing ‘pentagon’ into the search 
window, Wordnet will display 3 meaning senses for ‘pentagon’: (1) a government building; (2) the US 
military establishment; and (3) a five-sided figure: 

 



 

 
 
Below these three word senses is a new search box with pull down menu items.  We have selected a 
‘hypernym’ search.  This is a class hierarchy description based on a “this is a kind of…” relation. For 
example, a pentagon in the third sense is “a kind of polygon”.  We have also typed in ‘3’ into the ‘senses’ 
box, meaning that we’ll look for hypernyms only for the third sense of pentagon.  We have also checked 
‘contextual help’ which will explain the format and definitions of the terms used in the display.  The 
pentagon hypernym search returns the following screen:  

 
 
                                        



The word “line” has 29 senses (!!) as a noun, and 6 as a verb.  In its sense as a moving point in geometry, its 
hypernyms are: 
  

 
 
 
The lowest common ancestor for these two senses is the hypernym shape, form. A hypernym path goes up 
the hypernym hierarchy from the first word to a common ancestor and then down to the second word. Note 
that a hypernym path from a node other than the lowest common ancestor will always be equal to or longer 
than the hypernym path provided by the lowest common ancestor.  For the example above, the hypernym 
path is pentagon to polygon, polygonal shape, to plane figure, two-dimensional 
figure, to figure to shape to line.  
 
Question 1: Find the lowest common ancestor across all senses for each of the following word pairs. 
Provide the hypernym path through the lowest common ancestor in each case. 

1. English and Tagalog 
2. United States and Cambridge 

 
2.2  Consider the following text: 
 The pilots screamed as the airplane skidded along the runway. The surface was covered with ice 
and the vehicle was slowly getting out of control. Finally the crew managed to stop. 
 
We use the term coreference (verb, corefer) to specify a pair of items that denote the same object or event in 
a text or dialog. If coreference does not hold between an item pair, we say they are non-coreferent  Noun 
phrases and pronouns most often corefer, e.g., Vincent drank. He coughed on the water, but this is not 
always the case. For example, in the above text, runway and surface may be said to corefer. 
 
Question 2: Use WordNet’s hypernym function to find evidence for the following coreference or lack of 
coreference, and briefly explain your reasoning: 

1. coreference between runway and surface 
2. coreference between airplane and vehicle 
3. non-coreference between vehicle and runway 
4. crew and pilot (you decide from WordNet whether coreference or non-coreference should hold) 



 
 
 
3. Sentence semantics 
 
In this section, you will extend a very simple lambda-calculus based semantic interpreter that uses the 
notion of paired syntactic and semantic rules.  Let’s first see what it can do. To run the semantic interpreter, 
add 6.863 as usual. Then, invoking  semantic –h provides a list of command line options:  
 
 athena% cd /mit/6.863/python-semantics 
 athena% semantic –h 
   usage: semantic.py [options] [rule_file] 
 

  6.863 Semantic Framework 
  version 1.1 (April 14, 2004) 
  by Rob Speer 
  Distributed under the GPL. See LICENSE.TXT for information. 

 
  options: 

     -h, --help            show this help message and exit 
     -bFILE, --batch=FILE  Batch test: interpret all the lines in a file 
     -v, --verbose         output lots of lambda applications [default] 
     -q, --quiet           output only the responses [default in batch mode] 
 

To enter a command loop that reads a sentence in turn, you specify a file of paired syntactic, semantic rules, 
and the program will respond with a prompt: 

 athena% semantic lab_rules.py 
 Loading semantics... 
 Hello. 
 > 
We  can now type in sentences for the interpreter to process.  The system will first attempt to parse the 
sentence, using the Lab 3 Earley parser (with a given grammar).   It then applies the semantic rules 
associated with each context-free rule that applied to build a node of the parse tree, to yield a representation 
that can either add to a simple database of facts or query the database, and construct a response. You can 
then type in another sentence, and so forth.  A carriage return terminates the session and returns to the shell 
prompt.  
 
A declarative sentence adds a statement to the database; the system responds with “OK”.  A question can be 
one of three types: a yes-no question (“Did John see Mary”), in which case the system responds Yes or No; 
a wh-question (“Who did John see”), in which case the system responds with an answer retrieved from its 
database, possibly “I don’t know” ; or a wh-locative question (“Where did John see Mary”), in which case 
the system responds with a prepositional phrase or “I don’t know.”  (Note that if the parser cannot succeed 
in parsing a sentence, the system simply returns “I don’t understand”). Thus, in effect the system has a very 
primitive notion of a ‘speech act’ – the top-level ‘action’ that is implied by what you type in.  Thus, the 
system knows about only three types of speech acts: a request to add something to a database; a yes-no 
request; and an information request. As we shall see, each corresponds to a different procedure that is 
executed after semantically interpreting a sentence.  Here is an example of an interaction with the system: 
 
 
 



 > John saw Mary 
 OK 
 > Who did John see 
 Mary 
 > Did John see Mary 
 Yes. 
 > Did Mary see John 
 No. 
 > Where did John see Mary 
 I don’t know. 
 > John saw Mary in the park 
 OK. 
 > Where did John see Mary 
 in the park 
 > John quizzed Mary 
 I don’t understand. 
 >  <cr> 
 athena% 

How the system works.  To see how this all fits together, we next illustrate the intermediate semantic 
representations produced by the interpreter.  After this, we shall describe the paired syntactic and semantic 
rules in detail, and follow with a step-by-step explanation of the interpreter processing the simple sentence 
“John saw Mary”.   

The intermediate representation. 

As a first step, the system parses an input sentence, using the Earley parser from Lab 3.   We assume here 
that only zero or one parse will be returned (what should we do if there is more than one parse?  That’s a 
good term project.)  This parse tree is then passed to the semantic interpreter, which traverses the tree 
according to the lambda-calculus method we have described in class, and outputs an ‘event structure’: a 
template with the main verb at the front, and various attribute-value pairs filling in the remainder, 
corresponding to a kind of  meaning snapshot of the sentence.  For example, in the case of  “John saw 
Mary” the system produces the following event structure, where the ‘agent’ is supposed to denote the 
initiator of the even, and the ‘patient’ denotes the ‘affected object’:  
 Event[action see, agent Object[name John], patient Object[name Mary], tense 
                                                                              past] 
The labels ‘agent’ and ‘patient’, sometimes called the thematic roles for the verb are arbitrary. The number 
and kind of thematic roles needed to adequately describe the semantics of sentences is a topic of much 
current research, called lexical semantics.  
Here are the corresponding event structures for the sentences, “John gave Fido to Mary” and “Did John see 
Mary”. The ‘give’ sentence illustrates a new thematic role lable, the beneficiary, roughly, the person/thing 
that “receives” the object in an event: 
            John gave Fido to Mary: 

Event[action give, agent Object[name John], beneficiary Object[name Mary], 
                                   patient Object[name Fido], tense past] 

 

A yes-no question has the same event structure as its corresponding declarative: 
 Did John see Mary  

 Event[action see, agent Object[name John], patient Object[name Mary],  
                                                          tense past]                     
However, event structures are not the end of the line for semantic interpretation.  As mentioned above, 
according to what kind of ‘speech act’ the sentence corresponds to, the event structure will be processed in 



one of three different ways, a dispatch case analysis that will hand off the event structure to one of three 
different top-level routines: processSentence, ynQuestion, or whQuestion: 

• If it’s a declarative sentence, the interpreter adds a ‘semantic fact’ to its database: 
 def processSentence(data): 
         sem.learned.add(data) 
  return "Okay." 
 

• If it’s a yes-no question, the interpreter tries to find a match for this event structure in its current 
database: 

 def ynQuestion(data): 
  if sem.learned.match(data): return "Yes." 
  else: return "No." 
 

• If it’s a wh-question, the interpreter tries to find a match between the variable denoting the wh-
element (e.g., ‘who’, ‘which book’, etc.) in this event structure and a previously stored event 
structure (the ‘translate’ routine is just pretty-printing for either a single name or something more 
complex): 

 def whQuestion(data): 
 vars = sem.learned.matchVar(data) 
 if vars is None: return "I don't know." 
 else: 
  if len(vars.keys()) == 1: 
   return translate(vars.values()[0]) 
  else: 
   return translate(sem.learned.match(data)) 

 Building the event structure: lambda-calculus semantic interpretation. To actually build the event 
structure, we use the rule-to-rule syntactic, semantic method and lambda calculus compositionality: with 
each context-free rule we associate a corresponding lambda calculus procedure.  As a parse proceeds, each 
syntactic node is decorated with a corresponding semantic lambda form or constant. The resulting parse tree 
has a lambda-calculus formula attached to each node, including lexical leaves. The event structure is then 
constructed by ‘tree walking’ through the parse structure and evaluating the lambda forms, bottom-up.  
Let’s first take a look at the paired syntactic, lambda form rules for a simple example, to illustrate their 
construction, and then walk through the simple example, “John saw Mary”. 

The syntactic, semantic rules. Below we give the paired rules from the file lab_rules.py, simplified just a 
bit from their actual python representation. The context-free rules should be familiar.  We will assume the 
following context-free rules to handle a simple sentence like “John saw Mary”: 

1. Start -> S 
2. S -> NP[wh -] VP 
3. VP -> V+args 
4. V+args -> V2[tense +] NP  
5. V2 -> saw 
6. NP[pro -, wh -] -> Name 
7. Name -> {John, Mary} 

We next illustrate the (syntactic rule, semantic rule) pairs for this simple grammar. The semantic rules are 
all procedures written in a lambda-calculus notation.  The keyword ‘lambda’ comes first, followed by the 
variables that are to be bound in the lambda form separated by commas, and then a colon.  After this follows 
the actual functional form for the lambda expression – the function that will be applied to the arguments 
bound by the lambda variables.  (Note that as usual this form could be  ‘higher order’ in the sense that 



lambda variables can also bind functions.  This is the case for verbs, as shown in the 4th rule below.) For 
instance, the first semantic rule, associated with the context-free rule Start -> S, specifies that the 
function processSentence(s)will be executed to compute the ‘meaning’ of the entire ‘root’ sentence. 
By this point, the variable ‘s’ will have been bound to the lambda form ‘passed up’ by interpreting the rest 
of the parse tree – namely, the whole sentence.  Thus the effect of the rule is to execute processSentence 
with an argument whose value is the event structure frame constructed from the rest of the sentence, thus 
adding it to the database as desired. 

Context-free Syntactic Rule Corresponding Semantic Rule 
1. Start -> S  lambda s: processSentence(s) 
2. S -> NP[wh -] VP  lambda np, vp: vp(np) 
3. VP -> V+args  lambda v: lambda subj: v(subj) 
4. V+args -> V2[tense +] NP  lambda v2, np: lambda subj:   v2(subj, np) 

5. V2 -> saw lambda root, tense: 
 lambda word: lambda agent, patient: 
 C("Event", action=root, agent=agent,
            patient=patient,tense=tense)) 

6. NP[pro -, wh -] -> Name lambda x: x  (e.g., identity function) 

7. Name -> {John, Mary} lambda name: C("Object", name=name) 

The actual format for the rules in the python file lab_rules.py is a simple syntactic sugaring for these 
pairs provides as argument to the function sem.add. Since your job in this part of the lab will be to modify 
these rules, you will have to know about this format, so we provide the actual python examples here.  The 
format for rules aside from lexical items is: 

 sem.add("context-free rule in quotes", lambda rule) e.g. 
  
 sem.add("Start -> S", lambda s: processSentence(s)) 
 sem.add("S -> NP[wh -] VP", lambda np, vp: vp(np)) 
 sem.add("VP -> V+args", lambda v: lambda subj: v(subj)) 
 sem.add("V+args -> V2[tense +] NP", lambda v2, np: lambda  
                                                    subj: v2(subj, np)) 
 sem.add("NP[pro -, wh -] -> Name", identity) 

For lexical items (preterminals), e.g., V2 -> saw, or Name -> John, the semantic form must be a bit 
different. The trick is to remember what we want the procedure to return as its result. For instance, for a 
name, the lambda procedure builds a piece of the event structure, a category, with the keyword “object” and 
the value following set to whatever the name happens to be (e.g., “John”).  The verb semantic lexical entries 
are the most complex of all, since they generally must specify a double lambda expression – a higher order 
function – taking first the object lambda form to construct the meaning of the VP, and then taking that 
resulting lambda form, and applying it to the subject NP meaning.  Again, the best way to think of the entry 
is as a template whose values will be filled in from the result of the rest of the semantic interpretation.   
Consider the entry for a V2 verb like “saw”.  The key is the template following the “C” function name: 

 



 

  lambda root, tense: 
        lambda word: lambda agent, patient: 
       C("Event", action=root, agent=agent, patient=patient,tense=tense) 

The template says that we want to build an event structure, with an action value set equal to whatever is 
filled in as the ‘root’ action (passed up from the verb); and the agent, patient values set to the values filled in 
from the semantics of the subject and object NPs.  

It’s probably best to see how this works by studying the trace of the interpreter in action on the sentence 
“John saw Mary”.  Unless the ‘quiet’ switch is set, interpreter will display which node it is evaluating, along 
with its associated lambda form.  Let’s follow the interpreter through the parse tree for “John saw Mary”.  
The first four ‘evaluating’ forms below show how the interpreter moves down from the Start node of the 
parse tree, then S, then NP, then Name, all the way down to the bottom lexical leaf “John”.  At each step, 
you can see the lambda expression associated with that part of the parse tree: 

>> Evaluating: Start -> S 
         Text: John saw Mary 
   Expression: (lambda s: processSentence(s)) 
 
>> Evaluating: S -> NP[pro -, wh -] VP 
         Text: John saw Mary 
   Expression: (lambda np, vp: vp(np)) 
 
>> Evaluating: NP[pro -, wh -] -> Name 
         Text: John 
   Expression: (lambda x: x) 
 
>> Evaluating: Name -> 'John' 
         Text: John 
   Expression: (lambda name: C('Object', name=name)) 
 
 

At this point, the interpreter can finally return a value,  since it can supply the constant “John” at the leaf 
node as the binding for the lambda variable ‘name’:  (lambda name: C('Object', name=name)). John 
Note that the result builds (returns) a piece of the final event structure, Object[name John]. 
 
 
<< Evaluated: Name -> 'John' 
        Text: John 
       Value: Object[name John] 
 
<< Evaluated: NP[pro -, wh -] -> Name 
        Text: John 
       Value: Object[name John] 
 

This value is then also returned as the value associated with the NP, since the lambda form here is just the 
identity function.  This is the final ‘semantic value’ of the NP. 
 
Next the interpreter turns to the VP syntactic node and evaluates it.  Here is the associated lambda form for 
the VP, the functional application VP(NP): 
 
>> Evaluating: VP -> V+args 
         Text: saw Mary 
   Expression: (lambda v: (lambda subj: v(subj))) 



Proceeding, we go all the way down to the V2 and then the lambda form associated with V2 verbs, in this 
case, “saw”: 
>> Evaluating: V+args -> V2[tense +] NP[pro -, wh -] 
         Text: saw Mary 
   Expression: (lambda v2, np: (lambda subj: v2(subj, np))) 
 

When the interpreter reaches the actual leaf node ‘saw’ it can finally bind this as the value of ‘action’, and 
then return the resulting partially-filled in event structure as the result: 
 
>> Evaluating: V2[tense +] -> 'saw' 
         Text: saw 
   Expression: (lambda word: (lambda agent, patient: C('Event', action='see',  
                                          agent=agent, patient=patient, tense='past'))) 
 
<< Evaluated: V2[tense +] -> 'saw' 
        Text: saw 

Value: (lambda agent, patient: C('Event', action='see', agent=agent,  
                                         patient=patient, tense='past')) 

 

Next the NP object semantics must be constructed (just like the NP subject): 
 
>> Evaluating: NP[pro -, wh -] -> Name 
         Text: Mary 
   Expression: (lambda x: x) 
 
>> Evaluating: Name -> 'Mary' 
         Text: Mary 
   Expression: (lambda name: C('Object', name=name)) 
 
<< Evaluated: Name -> 'Mary' 
        Text: Mary 
       Value: Object[name Mary] 
 
<< Evaluated: NP[pro -, wh -] -> Name 
        Text: Mary 
       Value: Object[name Mary] 
 
With the NP object evaluated, now the lambda form at the V+args node can be applied to the NP object 
value to obtain a new lambda expression that is the semantic value for ‘saw Mary’.  In the trace, the ‘@’ 
sign is used to indicate  the (delayed) function application of two arguments: the subject (whose value still 
has to be filled in when we get back to the S), and the object NP (whose value is now the piece of event 
structure just built).  This form is in turn passed up one more level, to the VP, which wraps another lambda 
around it: 
<< Evaluated: V+args -> V2[tense +] NP[pro -, wh -] 
        Text: saw Mary 
       Value: (lambda subj: (lambda agent, patient: C('Event', action='see',  
                 agent=agent, patient=patient, tense='past'))@(subj, Object[name Mary])) 
 
<< Evaluated: VP -> V+args 
        Text: saw Mary 

 Value: (lambda subj: (lambda subj: (lambda agent, patient: C('Event',   
                                       action='see', agent=agent,  
                                           patient=patient, tense='past')) 
                                               @(subj, Object[name Mary]))@(subj)) 

 
 
 
 



In its next to last step, the interpreter returns to the S node, where it can apply this function to the subject 
semantic value  it has already built. If we carry out the lambda applications/substitutions, we arrive at the 
semantic interpretation for the S node, which is an event structure: 
 
<< Evaluated: S -> NP[pro -, wh -] VP 
        Text: John saw Mary 
       Value: Event[action see, agent Object[name John], patient Object[name Mary], tense past] 
 

Finally the interpreter reaches the Start node, which carries out the execution of the top-level procedure 
processSentence, with the value given by the event structure.  In this case, the database is updated with the 
event structure information and the system returns OK: 
 
<< Evaluated: Start -> S 
        Text: John saw Mary 
       Value: 'Okay.' 
 
Your turn. 
Now we can turn to the actual questions for this section.  You will be asked to modify or add to the rules in 
lab_rules.py, so please first make a copy of this file in your directory and remember to load your rules, 
e.g., mylab_rules.py, and not the lab rules into the semantic interpreter. 
Consider the rules that allow the parser to handle sentences and questions such as “John gave Fido to 
Mary”,  “Did John give Fido to Mary”,  “Who did John give Fido to”, and “What did John give to Mary”.  
Verbs of type V3, like ‘give’ are required to take two arguments after the verb, and a subject, as indicated 
by the rule below. Note the arguments to the V3 function: 
 

sem.add("V+args -> V3[tense +] NP[wh -] PP.dat", 
  lambda v3, np, pp: lambda subj: v3(subj, pp, np)) 
 
To handle a yes-no question like “Did John give Fido to Mary” we need new syntactic rules and a semantic 
rule to handle the syntactic form “did” (called a “modal do”) followed by the subject NP, and then a VBAR 
nonterminal – the ‘do’ is an added function to be called which in this case is just the identity function. 
 

sem.add("Q[wh -] -> Do_Modal NP[wh -] VBAR[fin +]", 
  lambda dm, np, vbar: dm(vbar(np))) 
 

sem.add("Do_Modal -> Modal", identity) 
 

The following VBAR expansion will capture the syntactic form Verb-NP-PP (‘did give Fido to Mary’): 
 

sem.add("VBAR[fin +] -> V3[tense -] NP[wh -] PP.dat", 
  lambda v3, np, pp: lambda subj: v3(subj, pp, np)) 
 
   
Note that these new rules are actually a bit repetitive since it’s almost exactly the same as the rules to handle 
the corresponding declarative forms – a better grammar would somehow accommodate this. 
But we’ll pass on this.   
 
For our first actual exercise, note that for a Wh-question, we also need rules that introduce “gaps” that 
correspond to either the object Fido (the ‘patient’ thematic role) or the object of the PP, Mary (the 
‘beneficiary’ thematic role), so that these may be ‘displaced’ to the front of the sentence. 



 
So, we ask you to pick out which other two VBAR rules in the lab_rules file that do this – which two 
VBAR rules introduce the gaps that are needed to handle the sentences “What did John give to Mary” and 
“Who did John give Fido to.”? 
 
Question 3. Examine the lab rule file and please find and then write down these two VBAR rule from 
lab_rules.py that lets the system handle a Wh-questions such as these. 

Question 4. Adding new syntactic/semantic rules.   We’d also like the system to be able to process and 
answer related sentences and questions like the following: 

 John gave Mary Fido 
 John did give Mary Fido 
 Did John give Mary Fido 
 What did John give Mary 
  
4.1 To do this, you’ll have to add new syntactic/semantic rules to the existing lab rules.  The first sentence 
above clearly means the same thing as “John gave Fido to Mary”, so the event structure that is output should 
be the same. Currently though, the parser cannot even parse a sentence like this. So you will have to add 
both a new syntactic rule and a corresponding semantic rule to handle a ‘double object’ sentence.  In fact, 
this should require exactly one new rule.  It requires only a minor tweak to the sem.add rule for ‘give’ in 
declarative sentences that we have already provided.  Please add this new sem.add  rule, and then, via 
interaction with the system, demonstrate that your addition works correctly. 
 
4.2  Next, you will need to add a syntactic/semantic rule to handle “John did give Mary Fido”.  You can do 
this by examining the rule for processing the similar sentence, “John did give Fido to Mary.” Once you have 
this working, try the yes-no question sentence, “Did John give Mary Fido”. The system should answer 
properly.  Please explain why this works without having to add any more new syntactic or semantic rules. 
 
4.3 Now consider “What did John give Mary”.  You should be able  to add just one new sem.add rule to 
get the job done. The rule is similar to the first VBAR expansion rules for Wh-questions that you found for 
your answer in Question 3. Please add this single new sem.add  rule, and then, via interaction with the 
system, demonstrate that your addition works correctly: turn in output showing that your system works (you 
can use the batch file option).  Why don’t you have to add two different VBAR rules, as required for 
Question 3? 
 

This concludes Laboratory 4 


