Simply Typed A-Calculus

We begin with a quick review of the A-calculus, culmi-
nating in a proof theory for the calculus.

Recall that at the core of the typed A-calculus is a set of
types:

From a nonemtpy set BasTyp of basic types,
the set Typ or types is the smallest set such
that:

a. BasTyp C Typ;
b. if o,7 € Typ then (¢ — 7) € Typ.

Following Montague, let’s take

BasTyp = {Ind, Bool}

where Ind is the type of individuals and Bool is the type
of propositions.

Note that there are other kinds of typing systems (e.g.,
parametric types and type inheritance systems), but sim-
ply typed systems have the clearest structure and have
been most widely applied to natural languages.

Recall that in order to construct A-terms we first need to
define:

a. Var,: a countably infinite set of variables of type 7.
b. Con;: a set of constants of type 7.
c. var = U,¢,,, Var;

d. Con = U,¢,,, Con,

We can now define A-terms in terms of a collection of
sets, Term., the smallest sets such that:

a. Var, C Term,;
b. Con, C Term,:

c. if « € Term,_,, and § € Term,, then a(f) €
Term;

d. A\x.(a) € Term, if 7 = ¢ — p and « € Var, and
a € Term,,.

In order to give a semantics for A-terms, we need to de-
fine notions like substitution which, in turn, rest on the
definition of free and bound variables:

The set Free(a) of free variables of the A-term «
is defined by:

a. Free(z) = {z} if x € Var;

b. Free(c) = () if ¢ € Con;

c. Free(a(f3)) = Free(a) U Free(f),
d. Free(Az.a) = Free(a) — {z}.

A variable that is not free is bound.

We turn next to substitution of one term for another:

The result afz — (] of the substitution of § for
the free occurences of x in « is defined by:

a. xlr — B =5

b. ylx — O] =y if y € Var,x # y;

c. clx — f] =cif ¢ € Con;

d. a(y)lz = 8] = alz = Bl(vlz = F]);

e. (Az.a)lx —] = \z.q;

f. (A\y.a)lx — Bl = Ay.(a|z — []) if x #y.

Finally, we define what it means for a term to be free for
substitution:

The term « is free for x in 3, FreeFor(a, z, B),

if and only if one of the following holds:

a. # € Con;
b. # € Var;
c. = ~(0) and FreeFor(a, x,) and FreeFor (o, z, §);

d. B = Ay.y and FreeFor(a,z,~) and either
x & Free(y) or y & Free(a).

The definition appears somewhat complicated but actu-
ally combines parts of gl +— «] and Free. Thus, we
can say that float(y) is free for x in Az.z(x) since we
can merge the two expressions to A\z.z(float(y)) without
accidently binding anything.

We turn now to providing models for the simply typed
A-calculus. This is a very straightforward matter which
proceeds by first defining the domains for the types and
then an interpretation function [-].

A frame for the collection BasTyp consists of
a collection Dom = U;¢,,...,, Dom, of basic do-

mains. Domains for functional types are defined
by:

Dom,_,s = Dom}™ = {f|f : Dom, — Domy}

Having defined frames, we can turn to the definition of a
model for the simply typed A-calculus:

A model of the simply typed A-calculus is a pair
M = (Dom, [-]) in which:

a. Dom is a frame;

b. the interpretation function [-] : Con — Dom
respects typing so that [a] € Dom, if a €
Con..

Missing from the above, of course, is the notion of assign-
ment:

6 : Var — Dom

such that 6(z) € Dom, if z € Var,.

We can now provide a recursive definition of the denota-
tions of \-terms:

The denotation [a]%, of a term a withe respect
to the model M = (Dom, [-]) and assignment
6 is given by:

a. [2]% = 0(z) if x € Var;

N
c. [a(B8)]% = ol ([B1h);
[Mz.(a)]% = f such that f(a) = [[oz}]f\[ff::a].

where [z := a] is that assignment that maps z
to a and maps y # x to whatever # maps y to.

Theorem: Type Soundness
If o is a term of type 7, then [a]%, € Dom, for
every model M and assignment 6.

Proof Sketch: The proof is by induction on terms.
The base case, on constants and variables, is obviously
correct. One needs only extend the induction to:

i. function application;

1I. A-terms.

There are a number of properties of this system that are
quite equivalent to simple first order logic:

1. The identity of bound variables is irrelevant.

2. The notion of logical equivalence is easily defined:

Two A-terms a and (3 are logically equivalent,
a = 3, if and only if [a]%, = [B]% for every
model M and assignment 6.

Furthermore, there are equivalences related to function
application; in particular, the A calculus forces function
application to one argument at a time.

We can devise a method to show that this is a mere mat-
ter of notation and not deep logical property. For any
type, (0 — (7 — p)) we can define:

perm, dlef)\f(‘H(T_m)).)\xT.)\y".f(x)(y)

This function basically rescopes the A operators on vari-
ables in a A-term. A different form of perm can be used
for every permutation of the A operators.

We can use perm to show that the various permutations
of the arguments are type-logically equivalent.

10

Similarly, we can do a like operation for function compo-
sition:

def T 0—T o
comp,.,., & g Af7 Ma g(f ()
Again, we can rescope terms freely using comp.

Note the following definitions:

o foa ™ comp(B)(a)
(80 a)(d) = (comp(B)(a))(d) = B(a(d))
ol def N\o™ .

I(a) = (M\z.2)(a)

07

11

A Proof Theory for the Simply Typed
A-calculus

The following are the Curry-Feys axioms, which can be
treated like a simple rewriting system:

a-reduction:
- Az.a = Ay.(alz — y])
y & Free(a) and y is free for z in «a.

(B-reduction:
- (Az.a)(B) = alz — []

0 free for x in a.

n-reduction:
FAz.(a(z)) = «
x & Free(«)

12

The rules of inference for the A-calculus take the closure
of the axioms. The rules allow not only for transitive and
reflexive closure, but also for the congruence closure:
logically equivalent terms bay be freely substituted one
for the other, preserving truth.

Rules of inference: The rules of inference for the simply
typed A-calculus consist of all instances of the following
schemata;

1. Reflexivity
Fa= «a

2. Transitivity
a=03,0=>7Fa=7

3. Congruence
a=d,f=0Faf)=d(F)

4. Congruence
a=ao F\t.a= \x.o

5. Equivalence
a=v,0=7Fa&s

13

Proof: A proof of ¢ from W is a sequence ¢y, . . . , ¢, such
that o = ¢, and for every ¢;, one of the following holds:

a. p; € W;
b. ; is an axiom;

c. ® k- ; is an inference rule with ® C {q, ..., i 1}.

14

Lemma: If z ¢ Free(a) then [a]%, = [[aﬂf\[/:lc::a]

Sketch: The proof is a trivial induction on «. The trivi-
ality follows from the fact that x & Free(a).

15

Theorem: Soundness
If Ha= (3 then a = 3.

Sketch: First the axioms must be verified. Having done
that as a base, one does induction on terms. The proof
requires a number of cases and, so, is rather tiresome.

Theorem: Church-Rosser
If Ha= (and - o = ~ then there is some ¢
such that - B = 0 and v =0

Sketch: The proof uses induction on the structure of
terms to show that if two terms can be rewrrten using
an axiom applied to a subterm in one step, then there
is a further sequence of steps that can reduce them to a
common term.

Church-Rosser means, in essence, that the order in which
subterms of a term are reduced is not important. The
intermediate results can always be made equivalent via
further rewritings.

16

Furthermore, reduction always terminates after a finite
number of steps, resulting in a term that cannot be fur-
ther reduced. Such a term is in normal form:

B,n Normal Form

A Aterm is in 3,7 normal form if and only if
there is no subterm v of « that has an alphabetic
variant 7' = ~ such that +' is eather a (-redex
or an n-redex.

The following is a theorem, although the proof is distress-
ingly complicated:

Strong Normalization
There are no infinitely long sequences of terms
Q1,...,Qy,... such that for ¢+ > 0,F o =
at + 1 and «; #, Q1.

17

Lemma: If o and 2 are in normal form, then
a = (3 if and only if a =, .

Sketch: Right to left is immediate. We must show that
if a« #, [then a # (. If they're of different types,
the result is trivial. Otherwise, the proof proceeds by
induction on the structure of a.

Theorem: Completeness
Two Aterms a and [are logically equivalent
only if - a < 3 is provable.

Proof: Suppose ' and (' are in normal form such that
Fa=dandtF g= 0 Ifad =, thent a= g
and - a & .

18

Note that unlike the case of ordinary first order logic,
the question of whether or not two A-terms are logically
equivalent is decidable:

Theorem: Decidability
There is an algorithm for deciding whether two
A-terms, o and 3, are logically equivalent.

Proof: Normalize o and (3. This process terminates af-
ter a finite number of steps. Check to see if the results
are alphabetic variants. The latter is clearly a decidable
relation.

19

Products

It’s useful to think about how we might handle n-ary
relations, keeping BasTyp constant. We would need to
add a new clause to our definition of types, one which
creates product types:

(0 x 7)€ Typifo,7 € Typ

This allows us to create straightforward types for binary
and ternary relations:

(Ind x Ind) — Bool)
((Ind x Ind) x Ind) — Bool)
(Ind x (Ind x Ind)) — Bool)

Note that the type for ternary relations is uninterestingly
ambiguous. We, thus, want:

(a,b,¢) < (a, (b,¢))

20

Naturally, we require constants and variables for the new
types:

a. Con,y, C Term, .,

b. Var,,, C Term,,,

Next, we need ways of referring to the subparts of product
types:

a. («, B) € Term,, if « € Term, and § € Term,
b. m(a) € Term, if a € Term,,

c. mo(a) € Term, if a € Term,

m and w9y are projection functions.

21

Products must now be added to frames. To do this,
we must define the domain of interpretation for product

types:
Dom,,, = Dom, x Dom,

That is, a product type (o x 7) is interpreted in the
domain of ordered pairs where the first element is in the
domain of type o and the second element is in the domain
of type 7.

Models are still pairs consisting of a frame and an inter-

pretation funtion [-]%:

1. [c] € Dom,y; if ¢ € Congy;;
0(r) € Dom,y if z € Var,«,
[{at, 810 = ([, [B10)
[m1(a)] if [afj = (a,b)
[ma(a)

(=
7T2([[}]9\/1 <a7 b>

2.
3.
4.
D.

0
M
)i

22

Finally, we can extend our proof system by means of the

addition of a few simple axioms:

L.

Left Projection
- m((a, B) = a

. Right Projection

= m({a, 8)) = 3

. Pairing

- (m(a), m(a)) = «

Pairing Congruence

a=d,0=0F (o) = ()

. Projection Congruence

a=d Fm(a) = m(d)

. Projection Congruence

a = o Fm(a) = m(d)

23

Furthermore we can define the following combinators:
comm ¥ \z.(my(z), m(2))
assoc ¥ \x. ((m (), m(ma(z))) ma(ma(2)))
curry & \z(1)=20 Xy A2z ((y, 2))
uncurry % \z(0=7)20 g (71 (y)) (w2 (y))

The combinators curry and uncurry are particularly
interesting since they show that one can go back and forth
between a function defined on pairs and a function that
takes the elements of a pair one at a time to produce
a result. In particular, assuming everything is properly
typed, we have the following:

curry(uncurry(a)) = «

uncurry(curry(3)) = [

Thus, we have a one-to-one relation between objects of
type (o x 7) — p and objects of type (6 — 7) — p.

24

