6.863] Natural Language Processing
Lecture 10: Charting a course through

hierarchical parsing

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

. I,t}‘dministrivia:

~ T Lab 2a/2b due today; 3a out Weds, due
next Weds; 3b Friday — due after vacation

Agenda:

Parsing strategies: chart parsing as all-purpose
search data structure — algorithm & time
complexity;

CKY and Earley algorithm
What do people do?
Preview of Lab 3

6.8631/9.611] SP04 Lecture 10

The Chart
=Ioi x|

Ele Edt Apply Agmate Zoom Heb

Det =
an
=
L ‘shot’ an ‘elephant’ i’ L ‘pajamas’
o 1 A 3 4 9 6 7=
' ot an whephan in ey pajamas 8

'%'mw VUE PR %nu J-';a.am.._v.- %NP %nm '%n,ama.»: n
%dN S e e oohant e e Beieghant

%F PP % NP '_ﬁ 'anl’"-_"ﬁ?-li_"% 'nuumuu"-

= = e e

=, e ey X

o =S B, =,
2 T =
NP w P WP
T T o i — o
Last edge ener ated by: g | r (™
T&’l‘;"|°§!'2£’|' Fuds |Y°ET Fida |' Ride

U.0UJJ] 7.UL1J OFrUT LTLWUIT LU

hy a Chart?

6.8631/9.611] SP04 Lecture 10

B

Does this ever happen in natural
languages?
K

. It does if you write cookbooks... this from
an actual example (from 30M word corpus)

Combine grapefruit with bananas, strawberries and
bananas, bananas and melon balls, raspberries or
strawberries and melon balls, seedless white grapes
and melon balls, or pineapple cubes with orange
slices.

parses with 10 conjuncts is 103, 049
(grows as 6#conjuncts)

6.8631/9.611] SP04 Lecture 10

|

Chart we displayed has only /nactive

(c13rp|pleted) edges
[

my pajang

6.8631/9.611] SP04 Lecture 10

—lojx

He bt fgimate Zoom L
Dat =

g

VEFr .

Toop Diown | Bottom U | Tow Duvm ITwwm |7 |
Smairgy | Stoeqy | Fude | Fue Run | Rue |

6.8631/9.611] SP04 Lecture 10

ummary so far...

o

Chart: Set of edges (arcs), = state of
nondeterministic automaton at step i

Each edge characterizes a completed or partial
constituent spanning a group of words

. Edge is: Dotted PhraseName[start, stop]

. Active edge: edge which still has words/phrases to be
found

Inactive edge: completed phrase

. Two operations on edges: ‘blow-up’, and ‘boil down’
(aka ‘paste together”’); blow-up has 2 subparts: t-d or
b-u

6.8631/9.611] SP04 Lecture 10

Edges (continued)
|

§ | c
[= =

. An edge consists of: %,_F
. ound4Nee
. S: Astartindex (1...n) S E
. E: An end index (1...n)

. Type: A phrase type (NP, PP, etc.)
. Found: What we've found so far (list of phrase

types)
. Need: What we still need (list of phrase types)

6.8631/9.611] SP04 Lecture 10

hart parsing
o

. Chart data structure + Agenda (a queue that
will maintain set of edges to work on)

. How we decide to work on the Agenda
determines the type of strategy

6.8631/9.611] SP04 Lecture 10

‘ Fhart parsing algorithm, take 1
|

. \
| . Initialize and invoke RULE to add active edges to
AGENDA
Until AGENDA is empty
For each EDGE in AGENDA
Add EDGE to chart and

Apply RULE to EDGE, adding any new
edges to AGENDA

Apply fundamental rule to EDGE,
adding any new edges to AGENDA
Report any complete parses in AGENDA

6.8631/9.611] SP04 Lecture 10

‘ Fhart parsing strategies
|

& I |
. Chart, edge operations, plus:

. Ordering of how to apply the rules, and pull
edges from the agenda queue

6.8631/9.611] SP04 Lecture 10

B

‘ Fhart Parser Rules: only 3!

« A chart parser rule adds new edges to the chart.
 Each chart parsing strategy defines a set of rules and how

they are applied

« Top down:
top-down initialization rule
top-down rule
fundamental rule

» Bottom-up:
bottom-up rule
fundamental rule

Other strategies possible -
6.8631/9.611] SP04 Lecture 10

The Fundamental Rule (AKA “paste”)

. The fundamental rule is used by both top-down and

I" “Bottom-up strategies.

If the chart contains: Then add:
A C_ A
i .C’Y \j B Tk i aCI.,Y > k
| A
A /l .
A * 7
o C %

6.8631/9.611] SP04 Lecture 10

Rule a: Top-Down Rule ("TD Predict”)

. iTop-down initialization:
| For any rule S—a:
. Add S —e a to the left side of the chart (start = end = 0).
. Top-down rule (expansion)

B
|

If the chart contains: For each rule: Add:
A Y.
j .
o Y 'B ------ ’;/ .

6.8631/9.611] SP04 Lecture 10

Rule b: Bottom-Up Rule ("BU Predict”)

I
| ~|Bottom-Up Rule

|
I\l the chart contains: For each rule: | Add:
A) B—AB B,
T 1"
i B
= A ‘-..‘Bu

6.8631/9.611] SP04 Lecture 10

o

he overall algorithm
. Suppose there are nwords in the input

. Set up chart of height and width »
. Add input words onto stack, last word at bottom

. For each ending position /in the input, 0 through 7, set
up two sets, S,and D; (“Start”, “Done”)
So « all rules expanding start node of grammar
Si «@fori=0

Siwill be treated as search queue (BFS or DFS). Edges will
be extracted one by one from S; & put into D; . When S

becomes empty, remove 1st word from stack & go to
next ending position i +1

6.8631/9.611] SP04 Lecture 10

&8

Overall algorithm simple — t-d
?trategy
|

\
Apply top-down initialization rule — fill in pos
from words (from tagger or kimmo)

. Apply top-down expansion rule to make new
edges, until closure

. Apply fundamental rule (slinky extension) to
make new rules until closure

. If no more active edges, stop
. Otherwise, loop to step 2

6.8631/9.611] SP04 Lecture 10

r.

l Loop until S; is empty
I Remove first edge e from S
. Add e to D;

. Apply 3 extension operations to e, using the 3
operators: scan, complete, predict (which may produce
new edges)

. New edges added to S; or Si+1, if they are not already in
Si, Di, or Di+1

. Pop first word off input stack

. When all ending positions processed, chart contains all
complete phrases found

6.8631/9.611] SP04 Lecture 10

‘ '||'op—down initialization
|

| I ‘

for each production in the grammar:

>>> for production ingrammar.productions():
does the production expand the start-symbol of the grammar?

if production.lhs() == grammar.start():
loc =chart.location () .start_location()

chart.insert (self loop_edge (production,
location))

Self-loop= a zero-width edge

6.8631/9.611] SP04 Lecture 10

‘ Pverall algorithm
|
B | [

»Apply top-down initialization rule — fill in pos
from words (from tagger or kimmo)
Apply top-down expansion rule to make new
edges, until closure

. Apply fundamental rule (slinky extension) to
make new rules until closure

. If no more active edges, stop
Otherwise, loop to step 1

6.8631/9.611] SP04 Lecture 10
anmple: Top-down init w/ chart
|

B
|

S— NP VP, 0,0

® 6 &6 o o o o
0 I 1 2 shot 3 an4 elephant5in6 my 7 pajamas

We are constructing
State set S, -

6.8631/9.611] SP04 Lecture 10

|iitial
R

Chart Matr

o1 2 3 4 85 & 7

—lojx

Ele Edt fpply Agimate Zoom e

-l x|

Last edge panaratad by: Top down initiallzation 7 Siap
Toop Diwn | Bottom U | Top Duvm ITwum E |
Smaiegy | Stoeqy | Fude | Fue Run | Rue |

T

B

verall algorithm
ok

Apply top-down initialization rule — fill in pos
from words (from tagger or kimmo)

= Apply top-down expansion rule to make new
edges, until closure

2. Apply fundamental rule (slinky extension) to
make new rules until closure

3. If no more active edges, stop
4. Otherwise, loop to step 2

6.8631/9.611] SP04 Lecture 10

‘ Pperation 2: Top down edge creation
|
\

| . If ‘dot’ is before a phrase, we want to predict
or wish for it
. Example: S— NP VP
. Means we should look for an NP next
. So we should add all the possible ways to
find an NP
. This means self-loops, all starting at this
position, labeled NP — o etc...[0,0]
. We do this until we get terminal elements
6.8631/9.611] SP04 Lecture 10
‘ Irython
i |

for each production in the grammar:
>>> for production in grammar.productions() :
for each incomplete edge in the chart:
for edge in chart.incomplete edges():
does the expected constituent match the production?
if edge.next() == production.lhs():
location = edge.location() .end location()
chart.insert(self loop_ edge (production,
location))

6.8631/9.611] SP04 Lecture 10

in picture form

- [~ — °*NP VP
NP — ¢« D N (from td rule, or predict)
NP — el
NP — « NP PP
+ all WS eximsi@s ® ® O ®
0 I 1 2 shot 3 an4 elephant5in6 my 7 pajamas

State set S, now done

6.8631/9.611] SP04 Lecture 10

- _lolx]
h rt Fle Edt ipply Anmate Zoom Heb
d =
=
1 ‘shat ‘elephant i iy’ pjannas
0 1 7 3 4 6 2]
| ot an elephant i my pajama
SR
Bl
e pe
o
o
o
k<]
Lagt adge genaratad . ¥ Stap

T e | 1op Dow | Top dorm|
Stiolegr | Swwem | Nue M | Mue | Nue |

‘ Pverall algorithm
Apply top-down initialization rule — fill in pos
from words (from tagger or kimmo)

. Apply top-down expansion rule to make new
edges, until closure

=» Apply fundamental rule (slinky extension) to
make new rules until closure

. If no more active edges, stop
. Otherwise, loop to step 2

6.8631/9.611] SP04 Lecture 10

‘ Iifdge extension: Fundamental Rule
|

. Applies whenever we can extend the RHS of a phrase

. Two places: (1) Dot is before an element, and that
element is in the input (‘scan’); (2) dot is at end of
the rhs of a rule

. We have found the phrase’s longest right-hand
extent (and we know where the phrase started)

. Means the word or phrase is complete, and we have
confirmed the lhs of the rule

. In this case: NP now extended from 0,0 to 0,1

6.8631/9.611] SP04 Lecture 10

Scan (fundamental rule) to next
w<1>|:| follow the bouncing dot...

o — *NF VI

NP >eD N
NP o1

NP — NP PP
®e 6 ¢ o o ®

shot an elephant in my pajamas

NP >1e

6.8631/9.611] SP04 Lecture 10

Chart Parsing Demo i o [=] |

File Edit Apply Animate Zoom Help

o |

‘shot an' ‘slaphant' n' oy ‘pajamas’

1 shot an elephant in my pajamas
O v v v v O

NP

Last edge by Rule ¥ Step
Top Down | Bottem Up | Tap Down Init| Top down | Bottom Up Init| Fundamental
Shiategy | Strateqy Flule Flule Fiule Flule
U.000J77. U117 SFUT LECUUIT 1IU

‘]’he Fundamental Rule Applies...
|

B | |
. As time goes by...
. Actually, as NP goes by...

. We can also extend the length of all the other
edges that had an NP with a dot before
them...

. Thatis,

6.8631/9.611] SP04 Lecture 10

Pot at end...so we ‘complete’ NP

g —
NP —>eD N edge S — NP « VP

NP — o N
NP — o NP PP

shot an elephant in my pajamas
NP >Te

NP — NP o PP
S NP e VP

6.8631/9.611] SP04 Lecture 10

Chart Parsing Demo =] 3

Ele Edit Apply Apmate Zoom Help

T ‘shot' an' ‘elephant’ in' ‘my ‘pajamas’

NP

NP
NP PP

s
NP o VP

Last edge generated by | Rule | ¥ Step

Top Down
Strateqy

Battom Up
Shrategy

Taop Down [nit
Rule

Top down

Bottom Up Irit
Rule

Fundamental
ule

hat next?

x‘ |\|

—
. »Apply fundamental rule until closure

. Then Top-down rule again, until closure

6.8631/9.611] SP04 Lecture 10

Loop: And now top-down expansion
again
| R

[

— VP VNP
VP — ¢ VP PP
PP — « P NP
VP —» eV

I shot an elephant in my pajamas

NP — NP o PP

S SNP e VP

6.8631/9.611] SP04 Lecture 10

Chart Parsing Demo \ (=1 S

Fle Edit Apply Animate Zoom Help

T ‘shot' ‘an' ‘elephant' in' ' ‘najamas’

NP
TP * PP

S
—_—
NP #%P

g |41

Last edge by Top-down Rule

Top Down
Shrategy

K

Bottom Lp
Sirategy

Top Dovn It
Rule

Top dowin
Rule

Bottom Up Init
Rule

Fundamental
Rule

‘.Scan Verb, via Fundamental rule
I

I""WVP > Ve NP

VP -« VP (PP

shot an elephant in my pajamas

® What next? ... Predict NP

S SNP e VP

6.8631/9.611] SP04 Lecture 10

Chart Parsing Demo i =10| x|

Ble Edt Apply Apmate Zoom Hep

=
=
T ‘shot! ‘an’ ‘elephant’ i’ iy ‘pajamas
TR VE SR EP B
%MN l&mr-'
%r‘ PP L:* NP
v
%n(“Snor
3
. o
v
E:iTan ot »
-
—l
T
e
o
5
i a——
. ¥ s

Too Do | Bottom U | T Diown it | Top dovn | Bosom U 1| i |
Soingy | Stotegy | Fue | Hue Bun | Fue |

6.8631/9.611] SP04 Lecture 10

Chart Parsing Demo ' =ll=l jl
Fle Edt Apply Animate Zoom Help
=l
=
kB ‘shot' ‘an' ‘elephant' ‘in' "y ‘pajamas’
ToTiP vP ~R PP |
NE ¥
sty e
NP PR
Mp pr e
NP ¥
o =
Ds M
.ﬂmy- “Hnat
D [}
»the' _-*m'
= ——
an' ‘shot' s
Dt e,
ol T
NP
e
Te W e NP
NP
TF PP
5
—
O
Last erdge by: |F Rule | ¥ Step
Top Down | Bottom Up| Top Down Init| Tap down | Bottom Up Init| Fundamental
Strateqy | Strategy Rule Rule Rule Rule

of

fo this strategy is:
|

Apply top-down init rule

6.8631/9.611] SP04 Lecture 10

Apply top-down rule, until closure
Apply fundamental rule, until closure
Go back, loop, until no more rules apply

The ops add edges in our full chart
rjqesentation

! [Top-down edge processor]: Loops (Predict) —
start a phrase: top-down

2. [Word edge processor]: Skips (Scan) — build
phrase from word — aka Fundamental Rule
applied to one word or POS

3. [Fundamental Rule]: Pastes — glue 2 edges to
make a third, larger one (Complete) — finish a
phrase (the Fundamental rule)

6.8631/9.611] SP04 Lecture 10

harting a course
o

|
. Many different strategies possible

. Let's see pure bu

. then top-down w/ bottom up filtering =
Earley parser

. Point: many difft ways of *filling in” the chart
(but not all possible ways!) — correspond to
“coherent” ways to explore the phrase search
space

6.8631/9.611] SP04 Lecture 10

‘ FKY (Cocke-Kasami-Younger)
|

B
[
. A bottom-up chart parsing strategy
Requires a grammar in Chomsky Normal Form

. Binary branching nonterminal rules
.A—>BC

. Unary terminal rules
.A->w

. First, add lexical edges for each word.
. Then, for each width w (2 to N):

. Scan left to right, combining edges to form new
edges with width w

6.8631/9.611] SP04 Lecture 10

FKY: Overview

The man ate a cookie

\
\
A
\
\

//
LYY

> 012345
.. » W= _]

. First, add the lexical edges
. Then, for each w, add edges of length w

6.8631/9.611] SP04 Lecture 10

FKY: Algorithm e N
|

— %%%%
First, add the lexical edges ANANAN
: NN
Then: 1 ‘\}
for w=2 to N: |
for i = 0to N-w:]
for k=0 to w-1:
If (A—>BC and >
B—a e chart[i,k] and i
C—B e chart[i+k,i+w-k]) v
Add A—BC to chart[i,i+w]
If Sechart[0,N], return the corresponding parse
6.8631/9.611] SP04 Lecture 10
‘ FKY: Result
— NP > S
b i I H"e ?vr X
guy |
. > VP
i ate 1‘
a _%NP
cookie

]
. Use backpointers to remember what we
combined

6.8631/9.611] SP04 Lecture 10

i|' he fundamental rule applies...

" ot

the «— NP < S
| I

QUY ¥

; ate{ \iP

<€
a I;P
cookie
1

. Use backpointers to remember what we
combined

6.8631/9.611] SP04 Lecture 10

Chart as a Matrix
I We can represent a chart as an upper triangular

matrix.
I'."chart[i,j] is the set of dotted rules that span [i:j]
0 S > eNPVP John — e S->NPVPe
NP — e John NP — John e
S —> NP e VP
1 VP > e¢VNP |saw — e VP - VNP e
V — e saw V — e saw
VP — Ve NP
H NP — e Mary | Mary — o
I 2 NP — Marye
3

0 1 2 3

6.8631/9.611] SP04 Lecture 10

i}el"t-to-Right BU: Overview

. First, add the lexical edges

. Then scan left to right, combining edges

6.8631/9.611] SP04 Lecture 10

i ‘ lie man ate a_ cookie
— — — — —
Col. 2 \ N A
.................. »
............................ » Col. 3
.................. » i
............................. > Col. 4
> I
T ol4 012345
.. >]

‘ I_eft—to—Right BU: Algorithm
|

el B |
First, add the lexical edges ‘
Then: 1
for j=1 to N:
for i=0 to N-j:
for k=1 to j-2:

If (A—»BC and
B—a e chart[i,k] and
C—B e chart[i+k,j-k])
Add A—BC to chart[i,j]
If Sechart[0,N], return the corresponding parse

6.8631/9.611] SP04 Lecture 10

Y

i

‘ Fomparison of construction patterns
|

B | |

for w=2 to N:

for i =0 to N-w:
for k=0 to w-1:

for j=1 to N:

for i=0 to N-j:

for k=1 to j-2:

AN, \ ‘
N Wil
AN
i \\\ 1
\} -
I
6.8631/9.611] SP04 Lecture 10
FTN Parser CFG Parser

Initialize:

Compute initial state set
1. <9

2. §y<«—eta-closure (Sp)

qy= [Start—+S, 0]
eta-closure= transitive
closure of jump arcs

Compute initial state set §
1. S«

2. S?<—eta-closure (Sp

qo= [Start—>S, 0, 0]
eta-closure= transitive closur
of Predict and Complete

7

Compute S;from S;_;
For each word, wi, 1=1,...,n

Compute §; from §;_;
For each word, w;, 1=1,...,n

else reject
gr= [Start—Se, 0]

P04 Le

Loop: Sjd(g, Wy Si«—8(q, W)

. €S
11 - Seant§)
-e- : =it
S;<«e-closure(S) S; <—g-c11 g;{llre(si)
e-closure=
closure(Predict, Complete)
Accept/reject: Accept/reject:
Final: If gr € Sy, then accept; If greS;, then accept;

else reject
gr= [Start—>Se, 0, n]

Picture: Predict (Top-down rule) adds
‘ ihe ‘loops’
|

B

\'S - « NP VP

I shot an elephant in my pajamas

6.8631/9.611] SP04 Lecture 10

Picture: Scan (Fundamental rule)

aﬂdls the jumps’

S — eNP VP

NP — o NP PP
® &6 o o o @

shot an elephant in my pajamas

NP > N e

6.8631/9.611] SP04 Lecture 10

Picture: Complete (Fundamental
ryJIF) combines edges

EHEE VS el
VNP e
® O @
in my pajamas
DNe
*« NP PP
S SNP e VP
6.8631/9.611] SP04 Lecture 10
‘ Farley’s Algorithm
|

= |
| . Top-down chart parsing strategy
. With bottom-up filtering
. Applicable with any Grammar
. First, initialize with the top-down init rule:

For every grammar rule S—a:
Add I

. Then, go left to right, applying 3 rules:
. Predictor (=top-down rule)
. Scanner (=fundamental rule on terminals)
. Completer (=fundamental rule on nonterminals)

6.8631/9.611] SP04 Lecture 10

‘ ficture: Predict adds the ‘loops’
|

S
"\S > « NP VP

I shot an elephant in my pajamas

6.8631/9.611] SP04 Lecture 10

PiTtlure: Scan adds the jumps’

e

S — eNP VP

NP — o NP PP
® &6 o o o @

shot an elephant in my pajamas

NP > N e

6.8631/9.611] SP04 Lecture 10

Picture: Complete combines edges
(The “fundamental rule”)

¢ #‘-'P wa N

® O @
in my pajamas
D Ne
e NP PP

6.8631/9.611] SP04 Lecture 10

‘ '||'he ops

scan, push, pop

1. Scan: move forward, consuming a token (word class) -
what if this is a pArase name, though?

2 Predict (push). start building a phrase (tree) at this point
in the input; or jump to subnetwork;

5. Complete (pop): finish building a phrase (tree) at this
point; pop stack and return from subnet (which also says
where the subphrase gets attached)

Scan = linear precedence;
Predict, complete: dominance

6.8631/9.611] SP04 Lecture 10

Farley’s Algorithm: Rules

L [>=°"8 A—>DBeC

\ 4
B—>eCD
Initialization Predictor
D—EeA > D EAe
A
A—awi L Apswe

A—>BCe

Scanner Completer

6.8631/9.611] SP04 Lecture 10

‘ Farley’s Algorithm
01—
. For each column (j) (= State Set) maintain a queue
of edges. S
. Initialization: —a>
. For every grammar rule S—a, add to
queue[0]

. Process queues from left to right (0 to N).

. For each edge in the queue, apply one of 3 rules:

. If it's incomplete, and the next symbol after the dot is a
preterminal (i.e., a part of speech tag), apply scanner.

. If it's incomplete, and the next symbol after the dot is
not a preterminal, apply predictor.

. If it's complete, apply completer.

6.8631/9.611] SP04 Lecture 10

Earley’s Algorithm: Main

‘ chr each rule S—a in the grammar:

I Add S—ea to chart[0,0]

Fori=0toN:
for edge in queueli]:
if edge is incomplete and edge.next is a part of
speech:
scanner(edge)

if edge is incomplete and edge.next is not a POS:
predictor(edge)

if edge is complete:

completer(edge)
6.8631/9.611] SP04 Lecture 10

|

A-BeE

¥

‘ Farley’s Algorithm: Predictor
|

B—«CD

]
. Predictor(A—a.eBB, [i,j])

Example

A For each rule: Add:
i o°Bf i
B—
y =

DT d

Input Rule

6.8631/9.611] SP04 Lecture 10

Earley’s Algorithm: Scanner

k I I A—ew kjw-
. Scanner(A—o.eBp, [i,j]) e
For each rule: Add:
i aOIBB 1 i odTOB i+
A ,IA..
(x/}:.3 ‘o..éa o T o..B."
w
Input Rule
6.8631/9.611 SP04 Lecture 10
‘ Farley’s Algorithm: Completer
D—>EeAm==3p [D—EAe
b |
| A>BCe
. Completer(B—vye, [i,j])
Example
For each edge
Add:

in queuefi]:

A 2.
Y / ‘::‘:: /I .“:....':.
o B P o % B

Y

6.8631/9.611] SP04 Lecture 10

‘ IPefinitions — words & symbols
|

. \
. IM
Suppose current edge e is not finished & part of
speech tag X follows the dot in the rule for e
Scan examines next word in input
If word has pos X, create new edge ¢€’, identical to
e except dot is moved one place to the right &
length increment by 1

Adde'to S,

6.8631/9.611] SP04 Lecture 10

can - formally
ot

. Scan: (jump over a token)
. Before: [A —>aeff, k /] in State Set S; & word /=t
. Result: Add [A —ate B, k, /+1] to State Set S;,,

6.8631/9.611] SP04 Lecture 10

‘ Ii’redict operation
|

| | [
Suppose current edge e is not finished

Predict extracts next item X needed by e — the
phrase after the dot in the edge

. Find all rules in grammar whose lefthand side is X

. For each of these, make a new edge with the dot
on the left, and add edges to S,

6.8631/9.611] SP04 Lecture 10

nd again...
o

L | |
. Predict (Push):

. Before: [A >aeB B, k, /] , B=nonterminal, in S,
then

. After: Add all new edges of form [B — e, /+1, j+1]
to State Set S, ,

6.8631/9.611] SP04 Lecture 10

‘ (Fomplete (finish phrase)

I
. Suppose current edge e is finished (dot at rh end).

Suppose e looks like:
X—>VY: VY, .Y, ® from start pos k, length m

. Check if X'is already in chart cell (k,m). If so, add e
to set of derivations for this phrase X.

. If X'is not already in cell (k,m) then:

. Examine each edge E in D, If E is incomplete, and
the next item needed for E is X, create a new
edge E’ with dot hopped over X to the right

. Length of E" is sum of lengths of E + e
. AddE'to S

6.8631/9.611] SP04 Lecture 10

This new edge E’ will itself be
processed... since dot is at end...

| VP= V NP+

1 start pos= 1, len 5 4

Go back to state set 1 & see what rule was
looking for a VP
It's the rule S—NPeVP... so we can paste these two
subtrees together to get a complete S,
"I shot an elephant” syo 6113 5704 Lecure 10

‘ |Vlore precisely
R

. Complete(Pop): (finish w/ phrase)

. Before: If S; contains e in form [B — y e, &, /] then go to
state set S,and for a// rules of form

[A >aeBp, k jl, addE' [A —aBe B, J, /] to state set S;

6.8631/9.611] SP04 Lecture 10

IT(iture: Complete combines edges
P N glk‘lp \'ID./\

UI

pajamas

S SNP e VP

6.8631/9.611] SP04 Lecture 10

‘ Forr sponding to Marxist analysis

|
P RS
I AN
shot DFt |}l
an elephant P)\”3\

! Det N

n-] |,

my pjs

6.8631/9.611] SP04 Lecture 10

So time complexity picture looks like

& tITluisp:

Max. # state sets| X

Max time to build ONE
State set

\ 4

v

Max # edges | x| Max time to

n G|

)

process 1 edge

!

X1G|n)

6.8631/9.611] SP04 Lecture 10

ime complexity
ol

|
[
Decompose this in turn into:

1. time to process a single edge in the set

2. times maximum # distinct edges possible in one
state set (assuming no duplicates!)

Worst case: max. # of distinct edges:

Max # of distinct dotted rules x max # of distinct
return values, i.e., |G |x n

(Why is this?)

(Edges have form: dotted rule, start, len)
Note use of grammar size here: amount of ‘chalk’ =
> # symbols in G.

6.8631/9.611] SP04 Lecture 10

Max # distinct edges: loops, incoming from
scTr]s, incoming from paste:
|

N\

| | |
<«——— from predict (loops) —
at most |G|

from scan via
previous state —
at most |G|

From complete — could come from any
preceding state — at most ne|G|

6.8631/9.611] SP04 Lecture 10

Iime complexity, continued
= The,time to process a single edge is found by separately

operations

. Claim: Scan, predict constant time (in |G| and n, n=

length of sentence)

Because we can build in advance all next-state transitions,

given the Grammar

. Only action that takes more time is complete !

For this, we have to go back to previous state set and look
at a// (in worst case) edges in that state set - and we just
saw that in the worst case this could be O (|G|x n)

6.8631/9.611] SP04 Lecture 10

So time complexity picture looks like

& tITluisp:

Max. # state sets

Max time to build ONE
State set

v

Max # edges | x| Max time to
in 1 state set| |process 1 edge

|
n a(Gln)

!

X1G|n)

6.8631/9.611] SP04 Lecture 10

8

t{:rand total
|
\

. (|G|?) - depends on both grammar size
and sentence length (which matters more?)

. Lots of fancy techniques to precompute &
speed this up

. We can extend this to optional elements, and
free variation of the ‘arguments’ to a verb

6.8631/9.611] SP04 Lecture 10

