
6.863J Natural Language Processing
Lecture 10: Charting a course through

hierarchical parsing

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 10

The Menu Bar
• Administrivia:

• Lab 2a/2b due today; 3a out Weds, due
next Weds; 3b Friday – due after vacation

Agenda:
Parsing strategies: chart parsing as all-purpose
search data structure – algorithm & time
complexity;
CKY and Earley algorithm
What do people do?

• Preview of Lab 3

6.863J/9.611J SP04 Lecture 10

The Chart

6.863J/9.611J SP04 Lecture 10

Why a Chart?

6.863J/9.611J SP04 Lecture 10

Does this ever happen in natural
languages?

• It does if you write cookbooks… this from
an actual example (from 30M word corpus)

Combine grapefruit with bananas, strawberries and
bananas, bananas and melon balls, raspberries or
strawberries and melon balls, seedless white grapes
and melon balls, or pineapple cubes with orange
slices.

parses with 10 conjuncts is 103, 049
(grows as 6#conjuncts)

6.863J/9.611J SP04 Lecture 10

Chart we displayed has only inactive
(completed) edges

I shot an elephant in my pajamas

n v d n p d n
NP

PP

NP

NP

S
VP

NP

VP
S

6.863J/9.611J SP04 Lecture 10

6.863J/9.611J SP04 Lecture 10

Summary so far…

• Chart: Set of edges (arcs), = state of
nondeterministic automaton at step i

• Each edge characterizes a completed or partial
constituent spanning a group of words

• Edge is: Dotted PhraseName[start, stop]
• Active edge: edge which still has words/phrases to be

found
• Inactive edge: completed phrase
• Two operations on edges: ‘blow-up’, and ‘boil down’

(aka ‘paste together’); blow-up has 2 subparts: t-d or
b-u

6.863J/9.611J SP04 Lecture 10

Edges (continued)

• An edge consists of:
• S: A start index (1...n)
• E: An end index (1...n)
• Type: A phrase type (NP, PP, etc.)
• Found: What we've found so far (list of phrase

types)
• Need: What we still need (list of phrase types)

Type
Found Need
S E

S →NP •VP [0, 2]

6.863J/9.611J SP04 Lecture 10

Chart parsing

• Chart data structure + Agenda (a queue that
will maintain set of edges to work on)

• How we decide to work on the Agenda
determines the type of strategy

6.863J/9.611J SP04 Lecture 10

Chart parsing algorithm, take 1

• Initialize and invoke RULE to add active edges to
AGENDA
Until AGENDA is empty

For each EDGE in AGENDA
Add EDGE to chart and

Apply RULE to EDGE, adding any new
edges to AGENDA

Apply fundamental rule to EDGE,
adding any new edges to AGENDA

Report any complete parses in AGENDA

6.863J/9.611J SP04 Lecture 10

Chart parsing strategies

• Chart, edge operations, plus:
• Ordering of how to apply the rules, and pull

edges from the agenda queue

6.863J/9.611J SP04 Lecture 10

• A chart parser rule adds new edges to the chart.

• Each chart parsing strategy defines a set of rules and how
they are applied
• Top down:

top-down initialization rule
top-down rule
fundamental rule

• Bottom-up:
bottom-up rule
fundamental rule

Other strategies possible -

Chart Parser Rules: only 3!

6.863J/9.611J SP04 Lecture 10

The Fundamental Rule (AKA “paste”)

• The fundamental rule is used by both top-down and
bottom-up strategies.

If the chart contains: Then add:

A
α Cγ

C
β

A
αC γ

α

A

C

C

β
β

γ

α

A

C γ

i j k i k

6.863J/9.611J SP04 Lecture 10

Rule a: Top-Down Rule (“TD Predict”)

• Top-down initialization:
For any rule S→α:

• Add S →• α to the left side of the chart (start = end = 0).

• Top-down rule (expansion)
If the chart contains: For each rule: Add:

A
α Yβ

Y
γ

α

A

Y γ

Y

β

Y→γ jji

6.863J/9.611J SP04 Lecture 10

Rule b: Bottom-Up Rule (“BU Predict”)

• Bottom-Up Rule
If the chart contains: For each rule: Add:

B→Αβ
A
α

A

α

B
Αβ

B

βA

6.863J/9.611J SP04 Lecture 10

The overall algorithm
• Suppose there are n words in the input
• Set up chart of height and width n
• Add input words onto stack, last word at bottom
• For each ending position i in the input, 0 through n, set

up two sets, Si and Di (“Start”, “Done”)
S0 ← all rules expanding start node of grammar

Si ←∅ for i ≠ 0

Si will be treated as search queue (BFS or DFS). Edges will
be extracted one by one from Si & put into Di . When Si

becomes empty, remove 1st word from stack & go to
next ending position i +1

6.863J/9.611J SP04 Lecture 10

Overall algorithm simple – t-d
strategy

Apply top-down initialization rule – fill in pos
from words (from tagger or kimmo)

• Apply top-down expansion rule to make new
edges, until closure

• Apply fundamental rule (slinky extension) to
make new rules until closure

• If no more active edges, stop
• Otherwise, loop to step 2

6.863J/9.611J SP04 Lecture 10

Or:
• Loop until Si is empty

• Remove first edge e from Si

• Add e to Di

• Apply 3 extension operations to e, using the 3
operators: scan, complete, predict (which may produce
new edges)

• New edges added to Si or Si+1, if they are not already in
Si, Di, or Di+1

• Pop first word off input stack

• When all ending positions processed, chart contains all
complete phrases found

6.863J/9.611J SP04 Lecture 10

Top-down initialization

for each production in the grammar:
>>> for production ingrammar.productions():
does the production expand the start-symbol of the grammar?
...

if production.lhs() == grammar.start():
... loc =chart.location().start_location()
... chart.insert(self_loop_edge(production,

location))

Self-loop= a zero-width edge

6.863J/9.611J SP04 Lecture 10

Overall algorithm

Apply top-down initialization rule – fill in pos
from words (from tagger or kimmo)

• Apply top-down expansion rule to make new
edges, until closure

• Apply fundamental rule (slinky extension) to
make new rules until closure

• If no more active edges, stop
• Otherwise, loop to step 1

6.863J/9.611J SP04 Lecture 10

S → •NP VP, 0,0

Example: Top-down init w/ chart

0 I 1 2 shot 3 an 4 elephant 5 in 6 my 7 pajamas

We are constructing
State set S0 -

6.863J/9.611J SP04 Lecture 10

Initial initialization - chart

6.863J/9.611J SP04 Lecture 10

Overall algorithm

Apply top-down initialization rule – fill in pos
from words (from tagger or kimmo)

Apply top-down expansion rule to make new
edges, until closure

2. Apply fundamental rule (slinky extension) to
make new rules until closure

3. If no more active edges, stop
4. Otherwise, loop to step 2

6.863J/9.611J SP04 Lecture 10

Operation 2: Top down edge creation

• If ‘dot’ is before a phrase, we want to predict
or wish for it

• Example: S→ •NP VP
• Means we should look for an NP next
• So we should add all the possible ways to

find an NP
• This means self-loops, all starting at this

position, labeled NP → • etc…[0,0]
• We do this until we get terminal elements

6.863J/9.611J SP04 Lecture 10

Python

for each production in the grammar:
>>> for production in grammar.productions():

for each incomplete edge in the chart:
... for edge in chart.incomplete_edges():
does the expected constituent match the production?

... if edge.next() == production.lhs():
... location = edge.location().end_location()

... chart.insert(self_loop_edge(production,
location))

6.863J/9.611J SP04 Lecture 10

NP → • I

In picture form

State set S0 now done

S → •NP VP
NP → • D N (from td rule, or predict)

NP → • NP PP
+ all POS expansions

0 I 1 2 shot 3 an 4 elephant 5 in 6 my 7 pajamas

6.863J/9.611J SP04 Lecture 10

Chart form

6.863J/9.611J SP04 Lecture 10

Overall algorithm

Apply top-down initialization rule – fill in pos
from words (from tagger or kimmo)

• Apply top-down expansion rule to make new
edges, until closure

Apply fundamental rule (slinky extension) to
make new rules until closure

• If no more active edges, stop
• Otherwise, loop to step 2

6.863J/9.611J SP04 Lecture 10

Edge extension: Fundamental Rule

• Applies whenever we can extend the RHS of a phrase
• Two places: (1) Dot is before an element, and that

element is in the input (‘scan’); (2) dot is at end of
the rhs of a rule

• We have found the phrase’s longest right-hand
extent (and we know where the phrase started)

• Means the word or phrase is complete, and we have
confirmed the lhs of the rule

• In this case: NP now extended from 0,0 to 0,1

6.863J/9.611J SP04 Lecture 10

Scan (fundamental rule) to next
word…follow the bouncing dot…

I shot an elephant in my pajamas

S → •NP VP
NP → • D N
NP → • I
NP → • NP PP

NP → I •

6.863J/9.611J SP04 Lecture 10

Chart

6.863J/9.611J SP04 Lecture 10

The Fundamental Rule Applies…

• As time goes by…
• Actually, as NP goes by…
• We can also extend the length of all the other

edges that had an NP with a dot before
them…

• That is,

6.863J/9.611J SP04 Lecture 10

Dot at end…so we ‘complete’ NP

I shot an elephant in my pajamas

S → •NP VP
NP → • D N
NP → • N
NP → • NP PP

NP → I •

S → NP • VP

S → •NP VP ⊗ NP →N • yields new
edge S → NP • VP

NP → NP • PP

6.863J/9.611J SP04 Lecture 10

6.863J/9.611J SP04 Lecture 10

What next?

• Apply fundamental rule until closure
• Then Top-down rule again, until closure

6.863J/9.611J SP04 Lecture 10

Loop: And now top-down expansion
again

I shot an elephant in my pajamas

NP → N •

S → NP • VP

PP → • P NP

VP → • V NP

VP → • V

NP → NP • PP

VP → • VP PP

6.863J/9.611J SP04 Lecture 10

6.863J/9.611J SP04 Lecture 10

Scan Verb, via Fundamental rule

I shot an elephant in my pajamas

NP → N •

S → NP • VP

VP → V • NP

VP → • VP PP

What next? … Predict NP

6.863J/9.611J SP04 Lecture 10

6.863J/9.611J SP04 Lecture 10

6.863J/9.611J SP04 Lecture 10

So this strategy is:

• Apply top-down init rule
• Apply top-down rule, until closure
• Apply fundamental rule, until closure
• Go back, loop, until no more rules apply

6.863J/9.611J SP04 Lecture 10

The ops add edges in our full chart
representation …

1. [Top-down edge processor]: Loops (Predict) –
start a phrase: top-down

2. [Word edge processor]: Skips (Scan) – build
phrase from word – aka Fundamental Rule
applied to one word or POS

3. [Fundamental Rule]: Pastes – glue 2 edges to
make a third, larger one (Complete) – finish a
phrase (the Fundamental rule)

6.863J/9.611J SP04 Lecture 10

Charting a course

• Many different strategies possible
• Let’s see pure bu
• then top-down w/ bottom up filtering =

Earley parser
• Point: many difft ways of ‘filling in’ the chart

(but not all possible ways!) – correspond to
“coherent” ways to explore the phrase search
space

6.863J/9.611J SP04 Lecture 10

CKY (Cocke-Kasami-Younger)

• A bottom-up chart parsing strategy
• Requires a grammar in Chomsky Normal Form

• Binary branching nonterminal rules
• A → B C

• Unary terminal rules
• A → w

• First, add lexical edges for each word.
• Then, for each width w (2 to N):

• Scan left to right, combining edges to form new
edges with width w

6.863J/9.611J SP04 Lecture 10

CKY: Overview

• First, add the lexical edges
• Then, for each w, add edges of length w

The man ate a cookie

w=2

w=3

w=4
0 1 2 3 4 5

w=5

i

j

6.863J/9.611J SP04 Lecture 10

CKY: Algorithm

• First, add the lexical edges
• Then:

for w = 2 to N:
for i = 0 to N-w:

for k = 0 to w-1:
If (A→BC and

B→α ∈ chart[i,k] and
C→β ∈ chart[i+k,i+w-k])
Add A→BC to chart[i,i+w]

• If S∈chart[0,N], return the corresponding parse

i

j

i

2--------N

6.863J/9.611J SP04 Lecture 10

CKY: Result

• Use backpointers to remember what we
combined

i

j

NP

NP

VP

Sthe

guy

ate

a

cookie

6.863J/9.611J SP04 Lecture 10

The fundamental rule applies…

• Use backpointers to remember what we
combined

cookie

NPa

VPate

guy

SNPthe

i

j

6.863J/9.611J SP04 Lecture 10

Chart as a Matrix
• We can represent a chart as an upper triangular

matrix.
• chart[i,j] is the set of dotted rules that span [i:j]

321
j

0

3

Mary → •
NP → Mary•

NP → • Maryi 2

VP → V NP •saw → •
V → • saw
VP → V • NP

VP → • V NP
V → • saw

1

S -> NP VP •John → •
NP → John •
S → NP • VP

S → • NP VP
NP → • John

0

6.863J/9.611J SP04 Lecture 10

Left-to-Right BU: Overview

• First, add the lexical edges
• Then scan left to right, combining edges

The man ate a cookie

Col. 2
Col. 3

Col. 4

0 1 2 3 4 5Col. 4

i

j

6.863J/9.611J SP04 Lecture 10

Left-to-Right BU: Algorithm

• First, add the lexical edges
• Then:

for j = 1 to N:
for i = 0 to N-j:

for k = 1 to j-2:
If (A→BC and

B→α ∈ chart[i,k] and
C→β ∈ chart[i+k,j-k])
Add A→BC to chart[i,j]

• If S∈chart[0,N], return the corresponding parse

i

j

i

6.863J/9.611J SP04 Lecture 10

Comparison of construction patterns

for w = 2 to N:

for i = 0 to N-w:

for k = 0 to w-1:

for j = 1 to N:

for i = 0 to N-j:

for k = 1 to j-2:

ii

2--------N

6.863J/9.611J SP04 Lecture 10

Compute initial state set S0 Compute initial state set S0
1. S0← q0
2. S0← eta-closure (S0)

1. S0←q0
2. S0← eta-closure (S0)

q0= [Start→•S, 0] q0= [Start→•S, 0, 0]
eta-closure= transitive
closure of jump arcs

eta-closure= transitive closure
of Predict and Complete

FTN Parser CFG Parser

Initialize:

Compute Si from Si-1 Compute Si from Si-1
For each word, wi, 1=1,...,n For each word, wi, 1=1,...,n

Si←∪δ(q, wi)
q∈Si-1

Si←∪δ(q, wi)
q∈Si-1= Scan(Si-1)

q=itemSi←e-closure(Si) Si←e-closure(Si)
e-closure=

closure(Predict, Complete)

Loop:

Accept/reject:
If qf ∈ Snthen accept;
else reject

If qf∈Sn then accept;
else reject

Accept/reject:

qf= [Start→S•, 0] qf= [Start→S•, 0, n]

Final:

6.863J/9.611J SP04 Lecture 10

Picture: Predict (Top-down rule) adds
the ‘loops’

I shot an elephant in my pajamas

S → • NP VP

6.863J/9.611J SP04 Lecture 10

Picture: Scan (Fundamental rule)
adds the ‘jumps’

I shot an elephant in my pajamas

S → •NP VP
NP → • D N
NP → • N
NP → • NP PP

NP → N •

6.863J/9.611J SP04 Lecture 10

Picture: Complete (Fundamental
rule) combines edges

NP → D N •

NP → • NP PP

I shot an elephant in my pajamas

NP → N •

S → NP • VP

VP → V NP •

VP → VP • PP

S → NP VP •

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm

• Top-down chart parsing strategy
• With bottom-up filtering

• Applicable with any Grammar
• First, initialize with the top-down init rule:

For every grammar rule S→α:
Add

• Then, go left to right, applying 3 rules:
• Predictor (=top-down rule)
• Scanner (=fundamental rule on terminals)
• Completer (=fundamental rule on nonterminals)

S
•α

6.863J/9.611J SP04 Lecture 10

Picture: Predict adds the ‘loops’

I shot an elephant in my pajamas

S → • NP VP

6.863J/9.611J SP04 Lecture 10

Picture: Scan adds the ‘jumps’

I shot an elephant in my pajamas

S → •NP VP
NP → • D N
NP → • N
NP → • NP PP

NP → N •

6.863J/9.611J SP04 Lecture 10

Picture: Complete combines edges
(The “fundamental rule”)

NP → D N •

NP → • NP PP

I shot an elephant in my pajamas

NP → N •

S → NP • VP

VP → V NP •

VP → VP • PP

S → NP VP •

6.863J/9.611J SP04 Lecture 10

The ops
• 3 ops: scan, predict, complete; or

scan, push, pop
1. Scan: move forward, consuming a token (word class) -

what if this is a phrase name, though?
2. Predict (push): start building a phrase (tree) at this point

in the input; or jump to subnetwork;
3. Complete (pop): finish building a phrase (tree) at this

point; pop stack and return from subnet (which also says
where the subphrase gets attached)

Scan = linear precedence;
Predict, complete: dominance

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm: Rules

A→w•A→•w

Scanner

B→•CD

A→B•E

Predictor

A→BC•

D→EA•D→E•A

Completer

S→•AB

Initialization

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm

• For each column (j) (= State Set) maintain a queue
of edges.

• Initialization:
• For every grammar rule S→α, add to

queue[0]
• Process queues from left to right (0 to N).

• For each edge in the queue, apply one of 3 rules:
• If it’s incomplete, and the next symbol after the dot is a

preterminal (i.e., a part of speech tag), apply scanner.
• If it’s incomplete, and the next symbol after the dot is

not a preterminal, apply predictor.
• If it’s complete, apply completer.

S
•α

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm: Main
For each rule S→α in the grammar:

Add S→•α to chart[0,0]

For i = 0 to N:
for edge in queue[i]:

if edge is incomplete and edge.next is a part of
speech:

scanner(edge)

if edge is incomplete and edge.next is not a POS:
predictor(edge)

if edge is complete:
completer(edge)

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm: Predictor

• Predictor(A→α•Bβ, [i,j])

A
α Bβ

α

A

B β

i j B
γ

γ

B

B→γ
i

For each rule: Add:

B→•CD

A→B•E

Input Rule

Example

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm: Scanner

• Scanner(A→α•Bβ, [i,j])

A
α Bβ

α

A

B β

i j
A

αB β

α

A

B β

i j+1

w

B→w

For each rule: Add:

A→w•A→•w

Input Rule

Example

6.863J/9.611J SP04 Lecture 10

Earley’s Algorithm: Completer

• Completer(B→γ•, [i,j])

A
αB β

α

A

β

k j

For each edge
in queue[i]:B

γ

γ

B

i j A
α Bβ

α

A

B β

k i

γ

B

Add:

A→BC•

D→EA•D→E•A

Input Rule

Example

6.863J/9.611J SP04 Lecture 10

Definitions – words & symbols

• Scan
Suppose current edge e is not finished & part of
speech tag X follows the dot in the rule for e
Scan examines next word in input
If word has pos X, create new edge e’, identical to
e except dot is moved one place to the right &
length increment by 1
Add e’ to Si+1

6.863J/9.611J SP04 Lecture 10

Scan - formally

• Scan: (jump over a token)

• Before: [A →α•t β, k, i] in State Set Si & word i= t
• Result: Add [A →αt • β, k, i+1] to State Set Si+1

6.863J/9.611J SP04 Lecture 10

Predict operation

• Suppose current edge e is not finished
• Predict extracts next item X needed by e – the

phrase after the dot in the edge
• Find all rules in grammar whose lefthand side is X
• For each of these, make a new edge with the dot

on the left, and add edges to Si+1

6.863J/9.611J SP04 Lecture 10

And again…

• Predict (Push):

• Before: [A →α•B β, k, i] , B=nonterminal, in Si
then

• After: Add all new edges of form [B → • γ, i+1, i+1]
to State Set Si+1

6.863J/9.611J SP04 Lecture 10

Complete (finish phrase)

• Suppose current edge e is finished (dot at rh end).
Suppose e looks like:
X → y1 y2 … yp • from start pos k, length m

• Check if X is already in chart cell (k,m). If so, add e
to set of derivations for this phrase X.

• If X is not already in cell (k,m) then:
• Examine each edge E in Dk If E is incomplete, and

the next item needed for E is X, create a new
edge E’ with dot hopped over X to the right

• Length of E’ is sum of lengths of E + e
• Add E’ to Si

6.863J/9.611J SP04 Lecture 10

This new edge E’ will itself be
processed… since dot is at end...

VP→ V NP•

start pos= 1, len 3 1 4

Go back to state set 1 & see what rule was
looking for a VP

It’s the rule S→NP•VP… so we can paste these two
subtrees together to get a complete S,
“I shot an elephant”

6.863J/9.611J SP04 Lecture 10

More precisely

• Complete(Pop): (finish w/ phrase)
• Before: If Si contains e in form [B → γ •, k, i] then go to

state set Sk and for all rules of form
[A →α•B β, k, j], add E’ [A →αB • β, j, i] to state set Si

6.863J/9.611J SP04 Lecture 10

Picture: Complete combines edges

NP → D N •

NP → • NP PP

I shot an elephant in my pajamas

NP → N •

S → NP • VP

VP → V NP •

VP → VP • PP

S → NP VP •

6.863J/9.611J SP04 Lecture 10

Corresponding to Marxist analysisS

I

VP

V NP
NP

shot Det N

an elephant

PP

P
Det

in
pj’s

NP
N

my

6.863J/9.611J SP04 Lecture 10

So time complexity picture looks like
this:

Max. # state sets x Max time to build ONE
State set

n

Max # edges x Max time to
process 1 edge

O(|G|n) O(|G|n)

6.863J/9.611J SP04 Lecture 10

Time complexity

• Decompose this in turn into:
1. time to process a single edge in the set
2. times maximum # distinct edges possible in one

state set (assuming no duplicates!)
• Worst case: max. # of distinct edges:

• Max # of distinct dotted rules x max # of distinct
return values, i.e., |G |x n

• (Why is this?)
• (Edges have form: dotted rule, start, len)

• Note use of grammar size here: amount of ‘chalk’ =
Σ # symbols in G.

6.863J/9.611J SP04 Lecture 10

Max # distinct edges: loops, incoming from
scans, incoming from paste:

from predict (loops) –
at most |G|

from scan via
previous state –
at most |G|

From complete – could come from any
preceding state – at most n•|G|

6.863J/9.611J SP04 Lecture 10

Time complexity, continued
• The time to process a single edge is found by separately

considering time to process scan, predict, and complete
operations

• Claim: Scan, predict constant time (in |G| and n, n=
length of sentence)

• Because we can build in advance all next-state transitions,
given the Grammar

• Only action that takes more time is complete !
• For this, we have to go back to previous state set and look

at all (in worst case) edges in that state set - and we just
saw that in the worst case this could be O (|G|x n)

6.863J/9.611J SP04 Lecture 10

So time complexity picture looks like
this:

Max. # state sets x Max time to build ONE
State set

n

Max # edges
in 1 state set

x Max time to
process 1 edge

O(|G|n) O(|G|n)

6.863J/9.611J SP04 Lecture 10

Grand total

• O(|G|2 n3) - depends on both grammar size
and sentence length (which matters more?)

• Lots of fancy techniques to precompute &
speed this up

• We can extend this to optional elements, and
free variation of the ‘arguments’ to a verb

