
6.863J Natural Language Processing
Lecture 10: Feature-based grammars

Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J Lecture 10 Sp03

The Menu Bar
• Administrivia:

• Schedule alert: Lab 3 out; due next Weds. (after
that: Lab4 on semantics, 2 ways)

• Lab time today, tomorrow
• Please read notes3.pdf!! englishgrammar.pdf (on

web)

• Agenda:
• Limits of context-free grammars: the trouble

with tribbles
• Foundation for the laboratory: empty

categories
• Feature-based grammars/parsing

6.863J/9.611J Lecture 10 Sp03

CFG Solution to complexity of
language

• Encode constraints into the non-terminals
• Noun/verb agreement

Sà SgS
S à PlS
SgS à SgNP SgVP
SgNP à SgDet SgNom

• Verb subcategories:
IntransVP à IntransV
TransVP à TransV NP

6.863J/9.611J Lecture 10 Sp03

Problems with this – how much
info?

• Even verb subcategories not obvious
John gave Mary the book → NP NP
John gave the book to Mary → NP PP

But:
John donated the book to the library

‘Alternation’ pattern – semantic? NO!

6.863J/9.611J Lecture 10 Sp03

Agreement gets complex…

POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

–Czech: AGFS3----1A----

6.863J/9.611J Lecture 10 Sp03

More interesting clause types

• Apparently “long distance” effects:
‘displacement’ of phrases from their ‘base’
positions

1. So-called ‘wh-movement’:
What did John eat ?

2. Topicalization (actually the same)
On this day, it snowed two feet.

3. Other cases: so-called ‘passive’:
The eggplant was eaten by John

• How to handle this?

6.863J/9.611J Lecture 10 Sp03

`Empty’ elements or categories

• Where surface phrase is displaced from its
canonical syntactic position & nothing shows on
the surface

• Examples:
• The ice-cream was eaten vs.
• John ate the ice-cream
• What did John eat?
• What did Bill say that that John thought the cat ate?
• For What x, did Bill say… the cat ate x
• Bush is too stubborn to talk to
• Bush is too stubborn [x to talk to Bush]
• Bush is too stubborn to talk to the Pope
• Bush is too stubborn [Bush to talk to the Pope]

6.863J/9.611J Lecture 10 Sp03

‘missing’ or empty categories

• John promised Mary ___ to leave
• John promised Mary [John to leave]
• Known as ‘control’

• John persuaded Mary [___ to leave]
• John persuaded Mary [Mary to leave]

6.863J/9.611J Lecture 10 Sp03

We can think of this as ‘fillers’
and ‘gaps’

• Filler= the displaced item
• Gap = the place where it belongs, as

argument
• Fillers can be NPs, PPs, S’s
• Gaps are invisible- so hard to parse! (we have

to guess)
• Can be complex:

Which book did you file__ without__
reading__ ?
Which violins are these sonatas difficult to

play__ on ___

6.863J/9.611J Lecture 10 Sp03

Gaps

• Pretend “kiss” is a pure transitive verb.
• Is “the president kissed” grammatical?

• If so, what type of phrase is it?

• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

6.863J/9.611J Lecture 10 Sp03

Gaps

• Object gaps:
• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

§ Subject gaps:
§ the sandwich that
§ I wonder what
§ What else has

e kissed the president
Sally said e kissed the president

[how could you tell the difference?]

6.863J/9.611J Lecture 10 Sp03

Gaps

• All gaps are really the same – a missing XP:
• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Phrases with missing NP:
X[missing=NP]

or just X/NP for short

e kissed the president
Sally said e kissed the president

6.863J/9.611J Lecture 10 Sp03

Representation & computation
questions again

• How do we represent this displacement?
(difference between underlying & surface forms)

• How do we compute it? (I.e., parse sentences
that exhibit it)

• We want to recover the underlying structural
relationship because this tells us what the
predicate-argument relations are – Who did what
to whom

• Example: What did John eat → For which x, x a
thing, did John eat x?

• Note how the eat-x predicate-argument is
established

6.863J/9.611J Lecture 10 Sp03

Representations with gaps
• Let’s first look at a tree with gaps:

what

Did

S

V

VP

NP

S

ε

NP

‘gap’ or
empty element

filler

6.863J/9.611J Lecture 10 Sp03

Crisper representation:

Comp S

what

Auxv

did

NP

Sbar

NP VP

J

eat ε

‘gap’ or
empty element

‘filler’

6.863J/9.611J Lecture 10 Sp03

Fillers can be arbitrarily far from
gaps they match with…

• What did John say that Mary thought that
the cat ate___?

6.863J/9.611J Lecture 10 Sp03

Fillers and gaps

• Since ‘gap’ is NP going to empty string,
we could just add rule, NP→ε

• But this will overgenerate why?
• We need a way to distinguish between

• What did John eat
• Did John eat

• How did this work in the FSA case?

6.863J/9.611J Lecture 10 Sp03

So, what do we need?

• A rule to expand NP as the empty symbol;
that’s easy enough: NP→ε

• A way to make sure that NP is expanded
as empty symbol iff there is a gap (in the
right place) before/after it

• A way to link the filler and the gap
• We can do all this by futzing with the

nonterminal names: Generalized Phrase
Structure Grammar (GPSG)

6.863J/9.611J Lecture 10 Sp03

Example: relative clauses

• What are they?
• Noun phrase with a sentence embedded

in it:
• The sandwich that the president ate

• What about it? What’s the syntactic
representation that will make the semantics
transparent?

The sandwichi that the president ate ei

6.863J/9.611J Lecture 10 Sp03

OK, that’s the output…what are
the cfg rules?

• Need to expand the object of eat as an
empty string

• So, need rule NP→ε
• But more, we need to link the head noun

“the sandwich” to this position
• Let’s use the fsa trick to ‘remember’

something – what is that trick???
• Remember?

6.863J/9.611J Lecture 10 Sp03

Memory trick

• Use state of fsa to remember
• What is state in a CFG?
• The nonterminal names
• We need something like vowel harmony –

sequence of states = nonterminals
the sandwich that the president ate e

6.863J/9.611J Lecture 10 Sp03

As a parse structure

NP

sandwichthe
NDet

that the president ate e

What’s this? We’ve seen it before…

It’s an Sbar = Comp+S

6.863J/9.611J Lecture 10 Sp03

Parse structure for relative clause

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP

V NP

e
the P.

ate

NP

But how to generate this and block this:

6.863J/9.611J Lecture 10 Sp03

Not OK!

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP

V NP

the pretzel
the P.

ate

NP

6.863J/9.611J Lecture 10 Sp03

In short..

• We can expand out to e iff there is a
prior NP we want to link to

• So, we need some way of ‘marking’ this in
the state – I.e., the nonterminal

• Further, we have to somehow co-index e
and ‘the sandwich’

• Well: let’s use a mark, say, “+”

6.863J/9.611J Lecture 10 Sp03

The mark…

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP

V NP

e
the P.

ate

NP

+

+

+

+

6.863J/9.611J Lecture 10 Sp03

But we can add + except this
way:

• Add as part of atomic nonterminal name
• Before: NP→ NP Sbar

Sbar → Comp S
S → NP VP
VP → VP NP

• After: NP → NP Sbar+
Sbar+ → Comp S+
S+ → NP VP+
VP+ → V NP+
NP+ → e

6.863J/9.611J Lecture 10 Sp03

Why does this work?

• Has desired effect of blocking ‘the
sandwich that the P. ate the pretzel’

• Has desired effect of allowing e exactly
when there is no other object

• Has desired effect of ‘linking’ sandwich to
the object (how?)

• Also: desired configuation between filler
and gap (what is this?)

6.863J/9.611J Lecture 10 Sp03

Actual ‘marks’ in the literature

• Called a ‘slash category’
• Ordinary category: Sbar, VP, NP
• Slash category: Sbar/NP, VP/NP, NP/NP
• “X/Y” is ONE atomic nonterminal
• Interpret as: Subtree X is missing a Y

(expanded as e) underneath
• Example: Sbar/NP = Sbar missing NP

underneath (see our example)

6.863J/9.611J Lecture 10 Sp03

As for slash rules…

• We need slash category introduction rule,
e.g., Sbar → Comp S/NP

• We need ‘elimination’ rule NP/NP→e

• These are paired (why?)

• We’ll need other slash categories, e.g.,

6.863J/9.611J Lecture 10 Sp03

Need PP/NP…

NP

pretzel
the
Det

that

N

Sbar

Comp S

NP VP

V PP
the P.

choked

NP

P NP
on e

6.863J/9.611J Lecture 10 Sp03

Also have ‘subject’ gaps

NP

president
the
Det

that

N

Sbar

Comp S

NP VP

V PP
choked

NP

P NP
on the pretzel

e

6.863J/9.611J Lecture 10 Sp03

How would we write this?

6.863J/9.611J Lecture 10 Sp03

Filler-gap configuration

NP

e

S

S

e

NP

6.863J/9.611J Lecture 10 Sp03

Filler-gap configuration

• Equivalent to notion of ‘scope’ for natural
languages (scope of variables) ≈
Environment frame in Scheme/binding
environment for ‘variables’ that are empty
categories

• Formally: Fillers c-command gaps
(constituent command)

• Definition of c-command:

6.863J/9.611J Lecture 10 Sp03

C-command

• A phrase α c-commands a phrase β iff the
first branching node that dominates α also
dominates β (blue = filler, green = gap)

Yes
Yes

Yes No No

6.863J/9.611J Lecture 10 Sp03

Natural for λ abstraction

Sbar

did Mary see what

what

S

Sbar

Mary see x

λx

6.863J/9.611J Lecture 10 Sp03

Puzzle:

• Who saw Mary?

6.863J/9.611J Lecture 10 Sp03

Idea 1: WYSIG syntax

Root

Q(uestion)

NP+wh

Pronp+wh

VP+tns

V+tns NP

Namesaw
Mary

Who

6.863J/9.611J Lecture 10 Sp03

Is this right?

6.863J/9.611J Lecture 10 Sp03

Another example

S

Sbar SbarConj

and

Mary caught
the rabid dog

John killed
the rabid dog

Sbar

6.863J/9.611J Lecture 10 Sp03

What if we move the object?

S/NP

Sbar SbarConj

and

Mary caught e John killed e

Sbar

the rabid dog

NP

6.863J/9.611J Lecture 10 Sp03

Why not read off the rules?

• Why can’t we just build a machine to do this?
• We could induce rules from the structures
• But we have to know the right representations

(structures) to begin with
• Penn treebank has structures – so could use

learning program for that
• This is, as noted, a construction based approach
• We have to account for various constraints, as

noted

6.863J/9.611J Lecture 10 Sp03

So what?

• What about multiple fillers and gaps?

• Which violins are these sonatas difficult to
play _____ on _____ ?these sonatas which violins

6.863J/9.611J Lecture 10 Sp03

How many context-free rules?

• For every displaced phrase, what do we
do to the ‘regular’ context-free rules?

• How many kinds of displaced rules are
there?
Which book and Which pencil did Mary buy?
*Mary asked who and what bought

• Well, how many???
• Add in agreement…

6.863J/9.611J Lecture 10 Sp03

And then..

• John saw more horses than bill saw cows
or Mary talked to

• John saw more horses than bill saw cows
or mary talked to cats

• The kennel which Mary made and Fido
sleeps in has been stolen

• The kennel which Mary made and Fido
sleeps has been stolen

6.863J/9.611J Lecture 10 Sp03

Limits of CFGs

• Agreement (A cat sleeps. Cats sleep.)
S à NP VP
NP à Det Nom
But these rules overgenerate, allowing,

e.g., *A cat sleep…
• Subcategorization (Cats dream. Cats eat

cantaloupe.)

6.863J/9.611J Lecture 10 Sp03

VP à V
VP à V NP
But these also allow

*Cats dream cantaloupe.

• We need to constrain the grammar rules
to enforce e.g. number agreement and
subcategorization differences

• We’ll do this with feature structures and the
constraint-based unification formalism

6.863J/9.611J Lecture 10 Sp03

CFG Solution

• Encode constraints into the non-terminals
• Noun/verb agreement

Sà SgS
S à PlS
SgS à SgNP SgVP
SgNP à SgDet SgNom

• Verb subcat:
IntransVP à IntransV
TransVP à TransV NP

6.863J/9.611J Lecture 10 Sp03

• But this means huge proliferation of
rules…

• An alternative:
• View terminals and non-terminals as

complex objects with associated features,
which take on different values

• Write grammar rules whose application is
constrained by tests on these features, e.g.
S à NP VP (only if the NP and VP agree in

number)

6.863J/9.611J Lecture 10 Sp03

Design advantage

• Decouple skeleton syntactic structure
from lexicon

• In fact, the syntactic structure really is a
skeleton:

6.863J/9.611J Lecture 10 Sp03

From this…

NP

president
the
Det

that

N

Sbar

Comp S

NP VP

V PP

choked

NP

P NP

e

6.863J/9.611J Lecture 10 Sp03

To this

president
the

that

choked
e

on

the

the..

6.863J/9.611J Lecture 10 Sp03

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix

nFeature

Feature
Feature

...
2

1

nValue

Value
Value

....
2

1

6.863J/9.611J Lecture 10 Sp03

How to formalize?

• Let F be a finite set of feature names, let
A be a set of feature values

• Let p be a function from feature names
to permissible feature values, that is,
p: F→2A

• Now we can define a word category as a
triple <F, A, p>

• This is a partial function from feature
names to feature values

6.863J/9.611J Lecture 10 Sp03

Example

• F= {CAT, PLU, PER}
• p:

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is

relatively simple here

6.863J/9.611J Lecture 10 Sp03

Important question

• Do features have to be more complicated
than this?

• More: hierarchically structured (feature
structures) (directed acyclic graphs,
DAGs, or even beyond)

• Then checking for feature compatibility
amounts to unification

• Example

6.863J/9.611J Lecture 10 Sp03

• How do we define 3plNP?
• How does this improve over the CFG solution?

• Feature values can be feature structures
themselves
• Useful when certain features commonly co-occur,

e.g. number and person

• Feature path: path through structures to value
(e.g.

Agr à Num à SG

Agr

Cat

3Pers
SGNum

NP

6.863J/9.611J Lecture 10 Sp03

Features and grammars

 agreement: person: third
number: singular

 agreement:

agreement

personnumber

singular third

category

category: N

N

6.863J/9.611J Lecture 10 Sp03

Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep

6.863J/9.611J Lecture 10 Sp03

Evidence that you don’t need this
much power
• Linguistic evidence: looks like you just check

whether features are nondistinct, rather than
equal or not – variable matching, not variable
substitution

• Full unification lets you generate unnatural
languages:
ai, s.t. i a power of 2 – e.g., a, aa, aaaa,
aaaaaaaa, …
why is this ‘unnatural’ – another (seeming)
property of natural languages:

Natural languages seem to obey a constant
growth property

6.863J/9.611J Lecture 10 Sp03

Constant growth property

• Take a language & order its sentences int terms
of increasing length in terms of # of words
(what’s shortest sentence in English?)

• Claim: ∃Bound on the ‘distance gap’ between
any two consecutive sentences in this list, which
can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot get
too big – cannot grow w/o bounds

• We can do this a bit more formally

6.863J/9.611J Lecture 10 Sp03

Constant growth

• Dfn. A language L is semilinear if the number of
occurrences of each symbol in any string of L is a
linear combination of the occurrences of these
symbols in some fixed, finite set of strings of L.

• Dfn. A language L is constant growth if there is a
constant c0 and a finite set of constants C s.t. for
all w∈L, where |w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c,
some c ∈C

• Fact. (Parikh, 1971). Context-free languages are
semilinear, and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is
non constant-growth

6.863J/9.611J Lecture 10 Sp03

General feature grammars – how
violate these properties

• Take example from so-called “lexical-
functional grammar” but this applies as
well to any general unification grammar

• Lexical functional grammar (LFG): add
checking rules to CF rules (also variant
HPSG)

6.863J/9.611J Lecture 10 Sp03

Example LFG

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?

6.863J/9.611J Lecture 10 Sp03

Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[num singular]

[subj [num singular]]

N

guys sleeps
[num plural]

6.863J/9.611J Lecture 10 Sp03

Alas, this allows non-constant
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the

right & the left – make sure a power of 2

6.863J/9.611J Lecture 10 Sp03

Example

A

A A

A A A A

a a a a

Checks ok (↑ f) =1 (↑ f) =1 (↑ f) =1 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓

6.863J/9.611J Lecture 10 Sp03

If mismatch anywhere, get a
feature clash…

A

A A

A A

a a
a

Fails! (↑ f) =1 (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!

6.863J/9.611J Lecture 10 Sp03

Conclusion then

• If we use too powerful a formalism, it lets
us write ‘unnatural’ grammars

• This puts burden on the person writing
the grammar – which may be ok.

• However, child doesn’t presumably do this
(they don’t get ‘late days’)

• We want to strive for automatic
programming – ambitious goal

