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The Menu Bar
Administrivia:

e Schedule alert: Lab 4 out Weds. Lab time
today, tomorrow

e Please read notes4.pdf!!
Agenda:

Feature-based grammars/parsing:
unification; the question of
representation

Semantic interpretation via lambda
calculus: syntax directed translation
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Features are everywhere

morphology of a single word:
Verb[head:thrill, tense=present, num=sing, person=3,...] ® thrills

orojection of features up to a bigger phrase

VP[head=a, tense=h, num=q..] ® V[head=a, tense=b, num=g...] NP
provided a is in the set TRANSITIVE-VERBS

agreement between sister phrases:

Sthead=a, tense=h]1® NP[num=g,..] VP[head=a, tense=h, num=q...]
provided a is in the set TRANSITIVE-VERBS
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Better approach to factoring
linguistic knowledge

e Use the superposition idea: we superimpose
one set of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints

e S ® NP VP
[num X] [num X] [num X]
the guy eats

[num singular] [num singular]
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Or In tree form:

S [number x]

DT [numberx] N [numberx] V [numberx] NP

the guy /
[number singular] [number singular]
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Values trickle up

S [number x]

DT [number singN [numbersing] V [number singNP

the guy /
[number singular] [number singular]
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Checking features

§[nu$er}, —
NP/ Y

[number sing] P [number sing]

s |~

DT [number singIN [number sing] V [number singNP

the guy /
[number singular] [number singular]
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What sort of power do we need
here?

e We have [feature value] combinations so far
e This seems fairly widespread in language

e \We call these atomic feature-value
combinations

e Other examples:
1. In English:
person feature (1st, 2nd, 3rd);

Case feature (degenerate in English: nominative,
object/accusative, possessive/genitive): | know
her vs. | know she;

Number feature: plural/sing; definite/indefinite

Degree: comparative/superlative
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Other languages; formalizing features

e Two kinds:
1. Syntactic features, purely grammatical function

Example: Case in German (NOMinative,
ACCusative, DATIive case) — relative pronoun
must agree w/ Case of verb with which it is
construed

Wer micht strak is, muss klug sein
Who not strong is, must clever be
NOM NOM
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Continuing this example

Ich nehme, wen du mir empfiehlst
I take whomever you me recommend
ACC ACC ACC

*Ich nehme, wen du vertraust
I take whomever you trust
ACC ACC DAT
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Other class of features

2. Syntactic features w/ meaning — example,
number, def/indef., adjective degree

Hungarian

Akart egy konyvet

He-wanted a book
-DEF -DEF

egy konyv amit  akart
A book which  he-wanted
-DEF -DEF
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Feature Structures

e Sets of feature-value pairs where:
e Features are atomic symbols
e Values are atomic symbols or feature structures
 lllustrated by attribute-value matrix

¢Feature.  Valueg
Feature  Values
é a

.. e
sFeature.  Valued
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How to formalize?

e Let F be a finite set of feature names, let
A be a set of feature values

e Let p be a function from feature names
to permissible feature values, that is,

p: F® 24
e Now we can define a word category as a
triple <F, A, p>

 This iIs a partial function from feature
names to feature values
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Example

« F= {CAT, PLU, PER}
® p

P(CAT)={V, N, ADJ}

P(PER)={1, 2, 3}

p(PLU)={+, -}
sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps=  {[CAT V], [PLU -], [PER 3]}

Checking whether features are compatible is
relatively simple here
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e Feature values can be feature
structures themselves — should they be?

e Useful when certain features commonly co-
occur, e.dg. number and person

g’Cat NP v

u

. {
tNum G
U

e
é
eAQr ¢ :
M Pers 3

g

e Feature path: path through structures to
value (e.q.

Agr 2 Num - SG
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Important question

e Do features have to be more complicated
than this?

e More: hierarchically structured (feature
structures) (directed acyclic graphs,
DAGSs, or even beyond)

 Then checking for feature compatibility
amounts to unification

e Example
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Reentrant Structures

e Feature structures may also contain features
that share some feature structure as a value

u

(as
1
(N

u
e , U
gAgr 1 eNum %ﬂﬂﬂ
: sPers 3

é gu
U

€
Subj ¢Agrl !
€ é u

¢
é

@D (D> (D> D> D> (D> D> D> D> D> (D> LD

d
iy
y
v
5

 Numerical indices indicate the shared values
e Big Question: do we need nested structures??
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e Number feature
gNum SGu

* Number—person features
‘Num 3G
Pers 3

e Number {Person category features
(BSgNP)eNum SG“

Pers 3 |
e u
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Graphical Notation for Feature
Structures

CAT 8] 5

MWLM EER
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Features and grammars

Tategory: N — _ —
agreement: person: third
number: singular

categcy
Y

N

agreement

numM'son

singular third
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Feature checking by unification

agreement agreement
number person number person
singular third plural third
John \ / sleep
agreement
number person
CLASH third

*John sleep
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Operations on Feature Structures

 What will we need to do to these structures?
e Check the compatibility of two structures
e Merge the information in two structures

e We can do both using unification

e We say that two feature structures can be
unified if the component features that make
them up are compatible

e [Num SG] U [Num SG] = [Num SG]
e [Num SG] U [Num PL] fails!
e [Num SG] U [Num [J] = [Num SG]
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e [Num SG] U [Pers 3] = iNum SG!
Pers 3

[t enlY el en Y eni?

e Structure are compatible if they contain
no features that are incompatible

e Unification of two feature structures:
e Are the structures compatible?
e |f so, return the union of all feature/value

pairs
* A failed unification attempt
ENum PIu ;
: :Num SGi; éAgr :
Agr 1ePerS 3 au § gPeI’S 3 U E

ag |

u ,
eSu ¢ W fq i 6 ¢Num  PL%¢
D) gAar I equn tagr s
é & ePer S 3 i
8 € dg
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Features, Unification and
Grammars

e How do we incorporate feature structures into
our grammars?

e Assume that constituents are objects which have
feature-structures associated with them

e Associate sets of unification constraints with
grammar rules

» Constraints must be satisfied for rule to be satisfied
e For a grammar rule by, =2 b, ...b,

e <D, feature path> = Atomic value

* <b, feature path> = <b, feature path>

e NB: if simple feat-val pairs, no nesting, then no
need for paths
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Feature unification examples

(1) [ agreement: [ number: singular

person: first] |
(2) [ agreement: [ number: singular]
case: nominative |

e (1) and (2) can unify, producing (3):
(3) [ agreement: [ number: singular
person: first ]
case: nominative ]

(try overlapping the graph structures
corresponding to these two)
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Feature unification examples

(2) [ agreement: [ number: singular]
case: nominative |
(4) [ agreement: [ number: singular
person: third] ]
e (2) & (4) can unify, yielding (5):
(5) [ agreement: [ number: singular
person: third]
case: nominative ]

e BUT (1) and (4) cannot unify because their
values conflict on <agreement person>
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e To enforce subject/verb number
agreement

S 2> NP VP
<NP NUM> = <VP NUM=>
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Head Features

e Features of most grammatical categories are
copied from head child to parent (e.g. from V
to VP, Nom to NP, N to Nom, ...)

 These normally written as ‘head’ features,
e.g.
VP > V NP
<VP HEAD> = <V HEAD>
NP = Det Nom
<NP-> HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom - N
<Nom HEAD> = <N HEAD>
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/K PN
Det V V
The /\ has /\

N V v
plan /\ been
to VP v NP
/\ thriling  Otto
v NP

swallow Wanda



S® NP[h=1] VP[n=1] S VP[h=1]1® V[n=1] VP

/\ V[h=1]® has

Det N [num=1] Y[num=1] \Y;
The /\ has /K
I}I[num 1] VP
plan /\ been A

to VP V

NP[r=1] ® Det N[n=1] /\ thrilling OttO

N[n=1] ® N[n=1] VP

N[h=1]® plan
swallow Wanda



S® NP[n=a] VP[n=a] S VP[h=a]® V[n=a] VP

/\ V[h=1] ® has

Det N [num=1] Y[num=1] \Y;
The /\ has /K
I}I[num 1] VP
plan /\ been A

to VP V

NP[h=a] ® Det N[n=a] /\ thrilling OttO

N[h=a] ® N[n=a] VP

N[h=1]® plan
swallow Wanda



/peaﬂs‘ﬁh'\
[h Plan] 7&@]
Det N
The [NepR@ fw]
[heac!}l:plan] WOW] [h Athrill]

aIIow] [head \{hrlll] [head= |%%to]

NP[h=a] ® Det N[h=a] hrilling Otto

N[h=a] ® N[h=a] VP
N[h=plan] ® plan [head=slallow] [heAEWand]
swallow Wanda



S

P VP
Det V \V/
The 4 an] has /\
rhead? Folan)
IO /\ been

to VP V

NP[h=a] ® Det N[h=a] /\ thrilling OttO

N[h=a] ® N[h=a] VP
N[h=plan] ® plan

—

swallow Wanda



Why use heads?

S . ...
/bm Morphology (e.g.,word endings)

P N[h=plan,n=1]1 ® plan
N[h=plan,n=2+] ® plans
V[h=thrill,tense=prog] ® thrilling
Det N V[h=thrill,tense=past] ® thrilled

The [h lan] V[h=go,tense=past] ® went

[heacl}l:pl an] WOW] o [hﬁ\@%]

allow] [head \{hrlll] [head= |%%to]
thrilling Otto

NP[h=a] ® Det N[h=a]

N[h=a] ® N[h=a] VP
N[h=plan] ® plan [head=slallow] [heAEWand]
swallow Wanda



Why use heads?

S . ...

/bean: Subcategorization (i.e.,

transitive vs. intransitive)
heaiplar] When is VP ® V NP ok?

VP[h=a] ® V[h=a] NP

restrict to a | TRANSITIVE_VERBS
el el When is N® N VP ok?
The N[h=a] ® N[h=a] VP
restrict to a | {plan, plot, hope,...}

[headiplan Wpallow} ) [heagthrill]
plan been

00 Iheadbwallow] [head\{hnn][head'%’tto]
NP[n=a] ® Det N[h=a] thrilling Otto

N[h=a] ® N[h=a] VP
N[h=plan] ® plan [head=sliallow] [heAEWand]
swallow Wanda




Why use heads? S Equivalently: keep the template

I but make prob depend on a,b
Mectional restrictionsl

h PI VP[h=a]® V[h=a] NP
[ an| |.e S/P[h=a] ® V[h=a] NP[h=b]>

Don’t fill template in all ways:

Det [h N o th —thrill] NP[h=0tto]
The Prh=thril] ® V[h=thril] NP[h=plaoP

r___feave out, or [ow prob

[heacl}l:pl an] WOW] o [hﬁ\@%]

allow] [head \{hrlll] [head= |%Etto]
thrilling Otto

NP[h=a] ® Det N[h=a]

N[h=a] ® N[h=a] VP

N[h=plarj ® plan  [head=sWallow] [heAEWanda]
swallow Wanda



How can we parse with feature

structures?

e Unification operator: takes 2 features structures
and returns either a merged feature structure or
fail

e Input structures represented as DAGs

e Features are labels on edges
e Values are atomic symbols or DAGs

e Unification algorithm goes through features in

one input DAG, trying to find corresponding
features in DAG;, — If all match, success, else falil
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Unification and Earley Parsing

e Goal:

e Use feature structures to provide richer
representation

e Block entry into chart of ill-formed constituents

e Changes needed to Earley

e Add feature structures to grammar rules, e.g.
S > NP VP
<NP HEAD AGR> = <VP HEAD AGR>
<S HEAD> = <VP HEAD>

e Add field to states containing DAG representing
feature structure corresponding to state of parse,

e.g.
S > « NP VP, [0,0], [], DAG
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e Add new test to Completer operation

e Recall: Completer adds new states to chart by
finding states whose « can be advanced (i.e.,
category of next constituent matches that of
completed constituent)

 Now: Completer will only advance those states if
their feature structures unify
e New test for whether to enter a state In the
chart

e Now DAGs may differ, so check must be more
complex

 Don’t add states that have DAGs that are more
specific than states in chart: is new state
subsumed by existing states?
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General feature grammars —violate
the properties of natural languages?

e Take example from so-called “lexical-
functional grammar” but this applies as
well to any general unification grammar

e Lexical functional grammar (LFG): add
checking rules to CF rules (also variant
HPSG)
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Example Lexical functional
grammar

e Basic CF rule:

S® NP VP
e Add corresponding ‘feature checking’
S® NP VP

(- subj num)= - =
 What Is the Interpretation of this?
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Applying feature checking in LFG

[subj [num singularl]]

Copy up above

NP VP
(- subj num)= =
/ v_/:\ )
o f

T [num singular] Whatever features from
guys sleeps below

[num plural]
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Evidence that you don’t need this
much power - hierarchy

e Linguistic evidence: looks like you just check
whether features are nondistinct, rather than
equal or not — variable matching, not variable
substitution

e Full unification lets you generate unnatural
languages:
a, s.t.iapower of 2 —e.g., a, aa, aaaa,
aaaaaaaa, ...

why Is this ‘unnatural’ — another (seeming)
property of natural languages:

Natural languages seem to obey a constant
growth propert
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Constant growth property

e« Take a language & order its sentences int terms
of increasing length in terms of # of words
(what'’s shortest sentence Iin English?)

e Claim: $Bound on the ‘distance gap’ between
any two consecutive sentences in this list, which
can be specified in advance (fixed)

e ‘Intervals’ between valid sentences cannot get
too big — cannot grow w/o bounds

e We can do this a bit more formally
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Constant growth

e Dfn. A language L is semilinear if the number of
occurrences of each symbol in any string of L is a
linear combination of the occurrences of these
symbols in some fixed, finite set of strings of L.

e Dfn. A language L is constant growth if there is a
constant ¢, and a finite set of constants C s.t. for
all wl L, where |w|> ¢, $wW I Ls.t. |w|=|w]+c,
somecl C

e Fact. (Parikh, 1971). Context-free languages are
semilinear, and constant-growth

» Fact. (Berwick, 1983). The power of 2 language Is
non constant-growth
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Alas, this allows non-constant
growth, unnatural languages

e (Can use LFG to generate power of 2 language
e Very simple to do

e A® A A
-H=" (H="
A® a
(- ) =1

Lets us count’ the number of embeddings on the
right & the left — make sure a power of 2

6.863J/9.611J Lecture 11 Sp03



Example

(- =1 (- =1

Checks ok
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If mismatch anywhere, get a
feature clash...

Fails!



Conclusion then

e |f we use too powerful a formalism, it lets
us write ‘unnatural’ grammars

e This puts burden on the person writing
the grammar — which may be ok.

 However, child doesn’t presumably do this
(they don'’t get ‘late days’)

e \We want to strive for automatic
programming — ambitious goal
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Summing Up

e Feature structures encoded rich information
about components of grammar rules

e Unification provides a mechanism for merging
structures and for comparing them

e Feature structures can be quite complex:
e Subcategorization constraints
e Long-distance dependencies
e Unification parsing:
e Merge or fall
e Modifying Earley to do unification parsing
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From syntax to meaning

e What does ‘understanding’ mean

e How can we compute It if we can’t
represent it

e The ‘classical’ approach: compositional
semantics

e Implementation like a programming
language
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Initial Simplifying Assumptions

e Focus on literal meaning
e Conventional meanings of words
e |gnore context
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@ Planner

object actions ¢

¢ semantic restrictions Yes-No

Inference/M odel
of Intentions

(type hierarchy)

message phrase|lists ¢

{

semantic restrictions Yes-No

Syntax-directed
message con-
struction
Thematic role
frames

¢ selectional restrictions Yes-No

> Thematic
role interpreter

Syntactic structures ¢

{

PP Attachment decisions Y es-
No

parser

ure 11 Sp03

big picture r=-

Syntax-directed Inference/Model
message con- of Intentions
structipn (type hierarchy)

v

Thematic S parser

role interpreter



Example of what we might do

at hena>(top-1 evel)

Shall | clear the database? (y or n) vy
seminterpret>John saw Mary in the park
K.

seminterpret>Were did John see Mary
| N THE PARK.

sem i nterpret>John gave Fido to Mary
K.

sem i nt erpret >Wo gave John Fi do

| DON' T KNOW

semi nterpret>Wo gave Mary Fido

JOHN

seminterpret >John saw Fi do

K.

seminterpret>Wo did John see
FI DO AND MARY
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what

 The nature (representation) of meaning
representations vs/ how these are
assembled
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Analogy w/ prog. language

e What Is meaning of 3+5*6?
e First parse it into 3+(5* 6)
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Interpreting in an Environment

e How about 3+5* x?

e Same thing: the meaning
of x Is found from the

environment (it’'s 6)

- Analogies in language? & F
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Complling

e How about 3+5* x?
e Don’'t know x at compile time

e “Meaning” at a node
IS a plece of code, not a

/\
number — |

5% (x+1) - 2 is a different expression ‘N E/L\E
that produces equivalent code | ]
(can be converted to the 3 l‘\l * I‘\I
previous code by optimization) c 9

Analogies in language?
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What

e What representation do we want for
something like

John ate ice-cream ®
ate(John, ice-cream)

e Lambda calculus

e We'll have to posit something that will do
the work

e Predicate of 2 arguments:
| X | y ate(y, X)
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How: recover meaning from
structure

SorlP VRANP)= ate(john ,icecream)

T NP VP= | yate(y,ice-cream)
V

/ NP Ice-cream
John leyateé/ X) ‘ ¢

Ice-cream
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What Counts as Understanding?
some notions

e We understand if we can respond appropriately
e ok for commands, guestions (these demand response)
e “Computer, warp speed 5”
e “throw axe at dwarf”
e “put all of my blocks in the red box”
e Imperative programming languages
e database gueries and other guestions

e \We understand statement if we can determine Iits
truth

e ok, but if you knew whether it was true, why did
anyone bother telling it to you?

e comparable notion for understanding NP is to compute
what the NP refers to, which might be useful
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What Counts as Understanding?
some notions

e \We understand statement if we know how to
determine its truth

e \What are exact conditions under which it would be true?
e necessary + sufficient

e Equivalently, derive all its consequences
e what else must be true if we accept the statement?

e Philosophers tend to use this definition

 We understand statement if we can use it to
answer questions [very similar to above — requires reasoning]
e Easy: John ate pizza. What was eaten by John?
e Hard: White’s first move is P-Q4. Can Black checkmate?
e Constructing a procedure to get the answer is enough
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Representing Meaning

e What requirements do we have for
meaning representations?
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What requirements must
meaning representations.fulfill?

e Verifiability: The system should allow us to
compare representations to facts in a
Knowledge Base (KB)

e Cat(Huey)

e Ambiguity: The system should allow us to
represent meanings unambiguously
e German teachers has 2 representations

e Vagueness: The system should allow us to
represent vagueness

e He lives somewhere In the south of France.
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Requirements: Inference

e Draw valid conclusions based on the
meaning representation of inputs and its
store of background knowledge.

Does Huey eat kibble?
thing(kibble)
Eat(Huey,x) ™ thing(x)
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Requirements: Canonical Form

e Inputs that mean the same thing have the same
representation.
 Huey eats kibble.
e Kibble, Huey will eat.
 \What Huey eats is kibble.
e |It's kibble that Huey eats.

e Alternatives
e Four different semantic representations

e Store all possible meaning representations in
Knowledge Base
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Requirements: Compositionality

e Can get meaning of “brown cow” from
separate, independent meanings of
“brown” and “cow”

e Brown(x)U Cow(X)

e |'ve never seen a purple cow, | never
hope to see one...
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Barriers to compositionality

e Ce corps qui s'appelait e qui s'appelle
encore le saint empire romain n’etait en
aucune maniere ni saint, ni romain, ni
empire.

e This body, which called itself and still calls
itself the Holy Roman Empire, was neither
Holy, nor Roman, nor an Empire -Voltaire
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Need some kind of logical
calculus

e Not ideal as a meaning representation and
doesn't do everything we want - but close

e Supports the determination of truth
e Supports compositionality of meaning
e Supports question-answering (via variables)
e Supports inference
 \What are its elements?

e \What else do we need?
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e Logical connectives permit compositionality of
meaning
kibble(x) ® likes(Huey,x)
cat(Vera) ™ weird(Vera)
sleeping(Huey) v eating(Huey)

e Expressions can be assigned truth values, T
or F, based on whether the propositions they
represent are T or F in the world

e Atomic formulae are T or F based on their

presence or absence in a DB (Closed World
Assumption?)

e Composed meanings are inferred from DB and
meaning of logical connectives
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e cat(Huey)
e sibling(Huey,Vera)
* sibling(x,y) ™ cat(x) ® cat(y)
e cat(Vera)??
e Limitations:

e Do ‘and’ and ‘or’ in natural language really
mean ‘" and ‘v'?
Mary got married and had a baby.
Your money or your life!
He was happy but ignorant.
e Does ‘® ' mean ‘if’?
I'll go if you promise to wear a tutu.
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 Frame

Having
Haver: S
HadThing: Car

e All represent ‘linguistic meaning’ of |
have a car

and state of affairs in some world

e All consist of structures, composed of
symbols representing objects and
relations among them
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What

e What representation do we want for
something like

John ate ice-cream ®
ate(John, ice-cream)

e Lambda calculus

e We'll have to posit something that will do
the work

e Predicate of 2 arguments:
| X | y ate(y, X)

6.863J/9.611J Lecture 11 Sp03



Lambda application works

e Suppose John, ice-cream = constants,
l.e., | X.x, the identity function

e Then lambda substitution does give the
right results:

| x | y ate(y, x) (ice-cream)(John)®
| y ate(y, ice-cream)(John)®
ate(John, ice-cream)
But... where do we get the | - forms from?
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Example of what we now can do

at hena>(top-1 evel)

Shall | clear the database? (y or n) vy
seminterpret>John saw Mary in the park
K.

seminterpret>Were did John see Mary
| N THE PARK.

sem i nterpret>John gave Fido to Mary
K.

sem i nt erpret >Wo gave John Fi do

| DON' T KNOW

semi nterpret>Wo gave Mary Fido

JOHN

seminterpret >John saw Fi do

K.

seminterpret>Wo did John see
FI DO AND MARY
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How: to recover meaning from
structure

S
7N\ X oo,
dohn=1er el ve(ey= 1y ately, )]
Jo‘hn T* NP*lcecreV
e

| X.X, X=John | ‘
ICe-Cream

| X.X, X=Ice-cream

at

| XI'y ate(y\fx)
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How

ate(John, ic)
S*= VP*(NP*)=l y ate(y, Ic).John=

A? _ate(John, ic) 5/‘

John= NP* we(y, iC)
John T* NP* =jce-cream
| X.X, X=John | ‘
ae |Ce-Cream

| xly ate(y,x) | X-X, Xx=ice-cream
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In this picture

e The meaning of a sentence Is the
composition of a function VP* on an
argument NP*

 The lexical entries are | forms
e Simple nouns are just constants

e Verbs are | forms indicating their argument
structure

e Verb phrases return | _functions as their
results (in fact — higher order)
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How

e Application of the lambda form associated with
the VP to the lambda form given by the
argument NP

e Words just return ‘themselves’ as values (from
lexicon)

e Given parse tree, then by working bottom up as
shown next, we get to the logical form
ate(John, ice-cream)

e This predicate can then be evaluated against a
database — this iIs model interpretation- to
return a value, or t/f, etc.
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Code — sample rules

Syntactic rule Semantic rule
(root ==> s) (1 anbda (s) ( PROCESS- SENTENCE s))
(s ==> np vp) (lanbda (np vp)(funcall vp np)))

(vp ==> v+args) (l anbda (v+args) (I anbda (subj)
(funcal | v+args subj))))

(v+args ==> v2 np) (Il anbda (v2 np)
(1 anbda (subj)
(funcall v2 subj np))))

(np-pro ==> nane) # identity)
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On to semantic interpretation

Four basic principles

Rule-to-Rule_ semantic interpretation [aka “syntax-
directed translation”]: pair syntax, semantic rules. (GPSG:
pair each cf rule w/ semantic ‘action’; as in compiler theory
— due to Knuth, 1968)

Compositionality: Meaning of a phrase is a function of
the meaning of its parts and nothing more e.g., meaning of
S® NP VP is f{(M(NP)- M(VP)) (analog of ‘context-freeness’

for semantics — local)

Truth conditional meaning: meaning of S equated with
conditions_that make it true

Model theoretic semantics:_correlation betw. Language
& world via set theory & mappings
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Syntax & paired semantics

[tem or rule Semantic translation
Verb ate | Xl y.ate(y, X)
propN | X.X

V V*= | for lex entry
S (or CP) S*= VP*(NP¥*)

NP N*

VP V*(NP*)
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Logic: Lambda Terms

e Lambda terms:

e A way of writing “anonymous functions”
e No function header or function name
e But defines the key thing: behavior of the function
e Just as we can talk about 3 without naming it “x”

e Let square = | p p*p

e Equivalent to int square(p) { return p*p; }

e But we can talk about | p p*p without naming it
e Format of a lambda term: | variable expression
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Logic: Lambda Terms

e Lambda terms:
e Let square =1 p p*p
e Then square(3) = (I p p*p)(3) = 3*3
e Note: square(x) isn’t a function! It's just the value x*x.
e But| x square(x) =1 x x*x =1 p p*p = square
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is (I x square(x))(y)?)

e Leteven =1 p (p mod 2 ==10) a predicate: returns true/false
e even(x) is true if x is even
e How about even(square(x))?

e | x even(square(x)) is true of numbers with even squares
e Just apply rules to get | x (even(x*x)) = | x (x*x mod 2 == 0)

e This happens to denote the same predicate as even does
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Logic: Multiple Arguments

e All lambda terms have one argument
e But we can fake multiple arguments ...

e Suppose we want to write times(5,6)
e Remember: square can be written as | x square(x)
e Similarly, times is equivalent to | x | y times(x,y)

e Claim that times(5)(6) means same as times(5,6)
e times(5) = (I x I y times(x,y)) (5) =1y times(5,y)
e If this function weren't anonymous, what would we call it?
e times(5)(6) = (I y times(5,y))(6) = times(5,6)
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Logic: Multiple Arguments

e All lambda terms have one argument
e But we can fake multiple arguments ...

e Claim that times(5)(6) means same as times(5,6)
e times(5) = (I x I y times(x,y)) (5) =1y times(5,y)
e If this function weren’'t anonymous, what would we call it?

e times(5)(6) = (I y times(5,y))(6) = times(5,6)

So we can always get away with 1-arg functions ...

... which might return a function to take the next
argument. Whoa.

We'll still allow times(x,y) as syntactic sugar, though
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Grounding out

e So what does times actually mean???

e How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol times
actually denotes the multiplication function!

e Well, maybe times was defined as another lambda term,
SO substitute to get times(5,6) = (blah blah blah)(5)(6)

e But we can’t keep doing substitutions forever!
e Eventually we have to ground out in a primitive term
e Primitive terms are bound to object code

e Maybe times(5,6) just executes a multiplication function
 What is executed by loves(john, mary) ?
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Logic: Interesting Constants

e Thus, have “constants” that name some of

the entities and functions (e.g., ):
. - an entity
. — a predicate on entities
e holds of just the red entities: red(x) is true if x is red!
. — a predicate on 2 entities
e Question: What does denote?

e Constants used to define meanings of words

 Meanings of phrases will be built from the
constants & syntactic structure
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How: to recover meaning from
structure

S
7N\ X oo,
dohn=1er el ve(ey= 1y ately, )]
Jo‘hn T* NP*lcecreV
e

| X.X, X=John | ‘
ICe-Cream

| X.X, X=Ice-cream

at

| XI'y ate(y\fx)
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How

ate(John, ic)
S*= VP*(NP*)=l y ate(y, Ic).John=

A? _ate(John, ic) 5/‘

John= NP* we(y, iC)
John T* NP* =jce-cream
| X.X, X=John | ‘
ae |Ce-Cream

| xly ate(y,x) | X-X, Xx=ice-cream
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construction step by step — on
NP side

X dtr oot ==> s) (|l anbda (s)(PROCESS- SENTENCE s)))

p vp (lanmbda (np vp)(funcall vp np))
(IP) VRNP)= ate(john, icecream) l
j ohn

john
NP-pro P
Tn e \}iargs
. 23 NP
J Ohﬁohn V‘Z
ate na]he

np- pro ==> nane

# 1dentity —> \Wrd-senmantics —> j ohn
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In this picture

e The meaning of a sentence Is the
composition of a function VP* on an
argument NP*

e The lexical entries are | forms
e Simple nouns are just constants

e Verbs are | forms indicating their argument
structure

e Verb phrases return a function as Its
result

6.863J/9.611J Lecture 11 Sp03



Processing order

e Interpret subtree as soon as it is built —eg, as soon as
RHS of rule is finished (complete subtree)

e Picture: “ship off” subtree to semantic interpretation as
soon as it is “done” syntactically

» Allows for off-loading of syntactic short term memory;
SI returns with ‘ptr’ to the interpretation

e Natural order to doing things (if process left to right)

e Has some psychological validity — tendency to interpret
asap & lower syntactic load

e Example: I told John a ghost story vs. | told John a
ghost story was the last thing | wanted to hear
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Picture
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Paired syntax-semantics

(root ==> s) (|l anbda (s) (PROCESS- SENTENCE s)))

(s ==> np vp)(lanbda (np vp)(funcall vp np))
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