
6.863J Natural Language Processing
Lecture 11: From feature-based

grammars to semantics

Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J Lecture 11 Sp03

The Menu Bar
• Administrivia:

• Schedule alert: Lab 4 out Weds. Lab time
today, tomorrow

• Please read notes4.pdf!!

• Agenda:
• Feature-based grammars/parsing:

unification; the question of
representation

• Semantic interpretation via lambda
calculus: syntax directed translation

6.863J/9.611J Lecture 11 Sp03

Features are everywhere

morphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

provided α is in the set TRANSITIVE-VERBS

6.863J/9.611J Lecture 11 Sp03

Better approach to factoring
linguistic knowledge

• Use the superposition idea: we superimpose
one set of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints
• S → NP VP

[num x] [num x] [num x]

the guy eats
[num singular] [num singular]

6.863J/9.611J Lecture 11 Sp03

Or in tree form:

S [number x]

NP [number x] VP [number x]

DT [number x] V [number x] NP

the
[number singular]

guy
[number singular]

N [number x]

eats
[number singular]

6.863J/9.611J Lecture 11 Sp03

Values trickle up

S [number x]

NP [number x] VP [number x]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]

6.863J/9.611J Lecture 11 Sp03

Checking features

S [number x]

NP [number sing] VP [number sing]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]

6.863J/9.611J Lecture 11 Sp03

What sort of power do we need
here?

• We have [feature value] combinations so far
• This seems fairly widespread in language
• We call these atomic feature-value

combinations
• Other examples:
1. In English:
person feature (1st, 2nd, 3rd);
Case feature (degenerate in English: nominative,

object/accusative, possessive/genitive): I know
her vs. I know she;

Number feature: plural/sing; definite/indefinite
Degree: comparative/superlative

6.863J/9.611J Lecture 11 Sp03

Other languages; formalizing features

• Two kinds:
1. Syntactic features, purely grammatical function

Example: Case in German (NOMinative,
ACCusative, DATive case) – relative pronoun
must agree w/ Case of verb with which it is
construed
Wer micht strak is, muss klug sein
Who not strong is, must clever be
NOM NOM
Who isn’t strong must be clever

6.863J/9.611J Lecture 11 Sp03

Continuing this example

Ich nehme, wen du mir empfiehlst
I take whomever you me recommend
ACC ACC ACC
I take whomever you recommend to me

*Ich nehme, wen du vertraust
I take whomever you trust
ACC ACC DAT

6.863J/9.611J Lecture 11 Sp03

Other class of features

2. Syntactic features w/ meaning – example,
number, def/indef., adjective degree

Hungarian
Akart egy könyvet
He-wanted a book

-DEF -DEF
egy könyv amit akart
A book which he-wanted

-DEF -DEF

6.863J/9.611J Lecture 11 Sp03

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix

nFeature

Feature
Feature

...
2

1

nValue

Value
Value

....
2

1

6.863J/9.611J Lecture 11 Sp03

How to formalize?

• Let F be a finite set of feature names, let
A be a set of feature values

• Let p be a function from feature names
to permissible feature values, that is,
p: F→2A

• Now we can define a word category as a
triple <F, A, p>

• This is a partial function from feature
names to feature values

6.863J/9.611J Lecture 11 Sp03

Example

• F= {CAT, PLU, PER}
• p:

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is

relatively simple here

6.863J/9.611J Lecture 11 Sp03

• Feature values can be feature
structures themselves – should they be?
• Useful when certain features commonly co-

occur, e.g. number and person

• Feature path: path through structures to
value (e.g.
Agr à Num à SG

Agr

Cat

3Pers
SGNum

NP

6.863J/9.611J Lecture 11 Sp03

Important question

• Do features have to be more complicated
than this?

• More: hierarchically structured (feature
structures) (directed acyclic graphs,
DAGs, or even beyond)

• Then checking for feature compatibility
amounts to unification

• Example

6.863J/9.611J Lecture 11 Sp03

Reentrant Structures

• Feature structures may also contain features
that share some feature structure as a value

• Numerical indices indicate the shared values
• Big Question: do we need nested structures??

1

3
1

AgrSubj

Pers
SGNumAgr

Head

SCat

6.863J/9.611J Lecture 11 Sp03

• Number feature

• Number-person features

• Number-person-category features
(3sgNP)

Num

SG

Pers
Num
Cat

3
SG
NP

Pers
Num

3
SG

6.863J/9.611J Lecture 11 Sp03

Graphical Notation for Feature
Structures

6.863J/9.611J Lecture 11 Sp03

Features and grammars

 agreement: person: third
number: singular

 agreement:

agreement

personnumber

singular third

category

category: N

N

6.863J/9.611J Lecture 11 Sp03

Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep

6.863J/9.611J Lecture 11 Sp03

Operations on Feature Structures

• What will we need to do to these structures?
• Check the compatibility of two structures
• Merge the information in two structures

• We can do both using unification
• We say that two feature structures can be

unified if the component features that make
them up are compatible
• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]

6.863J/9.611J Lecture 11 Sp03

• [Num SG] U [Pers 3] =

• Structure are compatible if they contain
no features that are incompatible

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value

pairs

• A failed unification attempt

3Pers
SGNum

1
3

1

AgrSubj
Pers

SGNumAgr 3

3

Num PlAgr
Pers

Num PLSubj Agr
Pers

∪

6.863J/9.611J Lecture 11 Sp03

Features, Unification and
Grammars
• How do we incorporate feature structures into

our grammars?
• Assume that constituents are objects which have

feature-structures associated with them
• Associate sets of unification constraints with

grammar rules
• Constraints must be satisfied for rule to be satisfied

• For a grammar rule β0 à β1 …βn
• <βi feature path> = Atomic value
• <βi feature path> = <βj feature path>

• NB: if simple feat-val pairs, no nesting, then no
need for paths

6.863J/9.611J Lecture 11 Sp03

Feature unification examples

(1) [agreement: [number: singular
person: first]]

(2) [agreement: [number: singular]
case: nominative]

• (1) and (2) can unify, producing (3):
(3) [agreement: [number: singular

person: first]
case: nominative]

(try overlapping the graph structures
corresponding to these two)

6.863J/9.611J Lecture 11 Sp03

Feature unification examples

(2) [agreement: [number: singular]
case: nominative]

(4) [agreement: [number: singular
person: third]]

• (2) & (4) can unify, yielding (5):
(5) [agreement: [number: singular

person: third]
case: nominative]

• BUT (1) and (4) cannot unify because their
values conflict on <agreement person>

6.863J/9.611J Lecture 11 Sp03

• To enforce subject/verb number
agreement

S à NP VP
<NP NUM> = <VP NUM>

6.863J/9.611J Lecture 11 Sp03

Head Features

• Features of most grammatical categories are
copied from head child to parent (e.g. from V
to VP, Nom to NP, N to Nom, …)

• These normally written as ‘head’ features,
e.g.
VP à V NP
<VP HEAD> = <V HEAD>
NP à Det Nom
<NPà HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom à N
<Nom HEAD> = <N HEAD>

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=1] → Det N[n=1]

N[n=1] → N[n=1] VP
N[n=1] → plan

VP[n=1] → V[n=1] VP
V[n=1] → has

S→ NP[n=1] VP[n=1]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=α] → Det N[n=α]

N[n=α] → N[n=α] VP
N[n=1] → plan

VP[n=α] → V[n=α] VP
V[n=1] → has

S→ NP[n=α] VP[n=α]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

§ Morphology (e.g.,word endings)

§ N[h=plan,n=1] → plan
N[h=plan,n=2+] → plans
§ V[h=thrill,tense=prog] → thrilling

V[h=thrill,tense=past] → thrilled
V[h=go,tense=past] → went

§ Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]§ Subcategorization (i.e.,
transitive vs. intransitive)
§ When is VP → V NP ok?

VP[h=α] → V[h=α] NP
restrict to α ∈ TRANSITIVE_VERBS

§ When is N → N VP ok?
N[h=α] → N[h=α] VP

restrict to α ∈ {plan, plot, hope,…}

§ Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
§ Selectional restrictions
§ VP[h=α] → V[h=α] NP
§ I.e., VP[h=α] → V[h=α] NP[h=β]

§ Don’t fill template in all ways:
VP[h=thrill] → V[h=thrill] NP[h=Otto]

*VP[h=thrill] → V[h=thrill] NP[h=plan]

§ Why use heads?

leave out, or low prob

Equivalently: keep the template
but make prob depend on α,β

6.863J/9.611J Lecture 11 Sp03

How can we parse with feature
structures?
• Unification operator: takes 2 features structures

and returns either a merged feature structure or
fail

• Input structures represented as DAGs
• Features are labels on edges
• Values are atomic symbols or DAGs

• Unification algorithm goes through features in
one input DAG1 trying to find corresponding
features in DAG2 – if all match, success, else fail

6.863J/9.611J Lecture 11 Sp03

Unification and Earley Parsing

• Goal:
• Use feature structures to provide richer

representation
• Block entry into chart of ill-formed constituents

• Changes needed to Earley
• Add feature structures to grammar rules, e.g.

S à NP VP
<NP HEAD AGR> = <VP HEAD AGR>
<S HEAD> = <VP HEAD>

• Add field to states containing DAG representing
feature structure corresponding to state of parse,
e.g.

S à • NP VP, [0,0], [], DAG

6.863J/9.611J Lecture 11 Sp03

• Add new test to Completer operation
• Recall: Completer adds new states to chart by

finding states whose • can be advanced (i.e.,
category of next constituent matches that of
completed constituent)

• Now: Completer will only advance those states if
their feature structures unify

• New test for whether to enter a state in the
chart
• Now DAGs may differ, so check must be more

complex
• Don’t add states that have DAGs that are more

specific than states in chart: is new state
subsumed by existing states?

6.863J/9.611J Lecture 11 Sp03

General feature grammars –violate
the properties of natural languages?

• Take example from so-called “lexical-
functional grammar” but this applies as
well to any general unification grammar

• Lexical functional grammar (LFG): add
checking rules to CF rules (also variant
HPSG)

6.863J/9.611J Lecture 11 Sp03

Example Lexical functional
grammar

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?

6.863J/9.611J Lecture 11 Sp03

Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[num singular]

[subj [num singular]]

N

guys sleeps
[num plural]

6.863J/9.611J Lecture 11 Sp03

Evidence that you don’t need this
much power - hierarchy
• Linguistic evidence: looks like you just check

whether features are nondistinct, rather than
equal or not – variable matching, not variable
substitution

• Full unification lets you generate unnatural
languages:
ai, s.t. i a power of 2 – e.g., a, aa, aaaa,
aaaaaaaa, …
why is this ‘unnatural’ – another (seeming)
property of natural languages:

Natural languages seem to obey a constant
growth property

6.863J/9.611J Lecture 11 Sp03

Constant growth property

• Take a language & order its sentences int terms
of increasing length in terms of # of words
(what’s shortest sentence in English?)

• Claim: ∃Bound on the ‘distance gap’ between
any two consecutive sentences in this list, which
can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot get
too big – cannot grow w/o bounds

• We can do this a bit more formally

6.863J/9.611J Lecture 11 Sp03

Constant growth

• Dfn. A language L is semilinear if the number of
occurrences of each symbol in any string of L is a
linear combination of the occurrences of these
symbols in some fixed, finite set of strings of L.

• Dfn. A language L is constant growth if there is a
constant c0 and a finite set of constants C s.t. for
all w∈L, where |w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c,
some c ∈C

• Fact. (Parikh, 1971). Context-free languages are
semilinear, and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is
non constant-growth

6.863J/9.611J Lecture 11 Sp03

Alas, this allows non-constant
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the

right & the left – make sure a power of 2

6.863J/9.611J Lecture 11 Sp03

Example

A

A A

A A A A

a a a a

Checks ok (↑ f) =1 (↑ f) =1 (↑ f) =1 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓

6.863J/9.611J Lecture 11 Sp03

If mismatch anywhere, get a
feature clash…

A

A A

A A

a a
a

Fails! (↑ f) =1 (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!

6.863J/9.611J Lecture 11 Sp03

Conclusion then

• If we use too powerful a formalism, it lets
us write ‘unnatural’ grammars

• This puts burden on the person writing
the grammar – which may be ok.

• However, child doesn’t presumably do this
(they don’t get ‘late days’)

• We want to strive for automatic
programming – ambitious goal

6.863J/9.611J Lecture 11 Sp03

Summing Up

• Feature structures encoded rich information
about components of grammar rules

• Unification provides a mechanism for merging
structures and for comparing them

• Feature structures can be quite complex:
• Subcategorization constraints
• Long-distance dependencies

• Unification parsing:
• Merge or fail
• Modifying Earley to do unification parsing

6.863J/9.611J Lecture 11 Sp03

From syntax to meaning

• What does ‘understanding’ mean
• How can we compute it if we can’t

represent it
• The ‘classical’ approach: compositional

semantics
• Implementation like a programming

language

6.863J/9.611J Lecture 11 Sp03

Initial Simplifying Assumptions

• Focus on literal meaning
• Conventional meanings of words
• Ignore context

6.863J/9.611J Lecture 11 Sp03

big picture

Inference/Model
of Intentions

(type hierarchy)

Syntax-directed
message con-

struction

message phrase lists

selectional restrictions Yes-No
Thematic role

frames

Thematic
role interpreter

semantic restrictions Yes-No

Planner

semantic restrictions Yes-Noobject actions

parser

Syntactic structures PP Attachment decisions Yes-
No

(a)
Planner

Inference/Model
of Intentions

(type hierarchy)

Syntax-directed
message con-

struction

Thematic
role interpreter

s parser

(b)

6.863J/9.611J Lecture 11 Sp03

Example of what we might do

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6.863J/9.611J Lecture 11 Sp03

what

• The nature (representation) of meaning
representations vs/ how these are
assembled

6.863J/9.611J Lecture 11 Sp03

Analogy w/ prog. language

• What is meaning of 3+5*6?
• First parse it into 3+(5*6)

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

6.863J/9.611J Lecture 11 Sp03

Interpreting in an Environment

• How about 3+5*x?
• Same thing: the meaning

of x is found from the
environment (it’s 6)

• Analogies in language?

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

6.863J/9.611J Lecture 11 Sp03

Compiling

• How about 3+5*x?
• Don’t know x at compile time

• “Meaning” at a node
is a piece of code, not a
number

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code
(can be converted to the
previous code by optimization)
Analogies in language?

6.863J/9.611J Lecture 11 Sp03

What

• What representation do we want for
something like
John ate ice-cream →
ate(John, ice-cream)

• Lambda calculus
• We’ll have to posit something that will do

the work
• Predicate of 2 arguments:

λx λy ate(y, x)

6.863J/9.611J Lecture 11 Sp03

How: recover meaning from
structure

S or IP

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)

6.863J/9.611J Lecture 11 Sp03

What Counts as Understanding?
some notions

• We understand if we can respond appropriately
• ok for commands, questions (these demand response)
• “Computer, warp speed 5”
• “throw axe at dwarf”
• “put all of my blocks in the red box”
• imperative programming languages
• database queries and other questions

• We understand statement if we can determine its
truth
• ok, but if you knew whether it was true, why did

anyone bother telling it to you?
• comparable notion for understanding NP is to compute

what the NP refers to, which might be useful

6.863J/9.611J Lecture 11 Sp03

What Counts as Understanding?
some notions

• We understand statement if we know how to
determine its truth
• What are exact conditions under which it would be true?

• necessary + sufficient

• Equivalently, derive all its consequences
• what else must be true if we accept the statement?

• Philosophers tend to use this definition

• We understand statement if we can use it to
answer questions [very similar to above – requires reasoning]

• Easy: John ate pizza. What was eaten by John?
• Hard: White’s first move is P-Q4. Can Black checkmate?
• Constructing a procedure to get the answer is enough

6.863J/9.611J Lecture 11 Sp03

Representing Meaning

• What requirements do we have for
meaning representations?

6.863J/9.611J Lecture 11 Sp03

What requirements must
meaning representations fulfill?

• Verifiability: The system should allow us to
compare representations to facts in a
Knowledge Base (KB)
• Cat(Huey)

• Ambiguity: The system should allow us to
represent meanings unambiguously
• German teachers has 2 representations

• Vagueness: The system should allow us to
represent vagueness
• He lives somewhere in the south of France.

6.863J/9.611J Lecture 11 Sp03

Requirements: Inference

• Draw valid conclusions based on the
meaning representation of inputs and its
store of background knowledge.
Does Huey eat kibble?
thing(kibble)
Eat(Huey,x) ^ thing(x)

6.863J/9.611J Lecture 11 Sp03

Requirements: Canonical Form

• Inputs that mean the same thing have the same
representation.
• Huey eats kibble.
• Kibble, Huey will eat.
• What Huey eats is kibble.
• It’s kibble that Huey eats.

• Alternatives
• Four different semantic representations
• Store all possible meaning representations in

Knowledge Base

6.863J/9.611J Lecture 11 Sp03

Requirements: Compositionality

• Can get meaning of “brown cow” from
separate, independent meanings of
“brown” and “cow”

• Brown(x)∧ Cow(x)
• I’ve never seen a purple cow, I never

hope to see one…

6.863J/9.611J Lecture 11 Sp03

Barriers to compositionality

• Ce corps qui s’appelait e qui s’appelle
encore le saint empire romain n’etait en
aucune maniere ni saint, ni romain, ni
empire.

• This body, which called itself and still calls
itself the Holy Roman Empire, was neither
Holy, nor Roman, nor an Empire -Voltaire

6.863J/9.611J Lecture 11 Sp03

Need some kind of logical
calculus

• Not ideal as a meaning representation and
doesn't do everything we want - but close
• Supports the determination of truth
• Supports compositionality of meaning
• Supports question-answering (via variables)
• Supports inference

• What are its elements?
• What else do we need?

6.863J/9.611J Lecture 11 Sp03

• Logical connectives permit compositionality of
meaning
kibble(x) → likes(Huey,x)
cat(Vera) ^ weird(Vera)
sleeping(Huey) v eating(Huey)

• Expressions can be assigned truth values, T
or F, based on whether the propositions they
represent are T or F in the world
• Atomic formulae are T or F based on their

presence or absence in a DB (Closed World
Assumption?)

• Composed meanings are inferred from DB and
meaning of logical connectives

6.863J/9.611J Lecture 11 Sp03

• cat(Huey)
• sibling(Huey,Vera)
• sibling(x,y) ^ cat(x) → cat(y)
• cat(Vera)??

• Limitations:
• Do ‘and’ and ‘or’ in natural language really

mean ‘^’ and ‘v’?
Mary got married and had a baby.
Your money or your life!
He was happy but ignorant.

• Does ‘→’ mean ‘if’?
I’ll go if you promise to wear a tutu.

6.863J/9.611J Lecture 11 Sp03

• Frame
Having

Haver: S
HadThing: Car

• All represent ‘linguistic meaning’ of I
have a car

and state of affairs in some world
• All consist of structures, composed of

symbols representing objects and
relations among them

6.863J/9.611J Lecture 11 Sp03

What

• What representation do we want for
something like
John ate ice-cream →
ate(John, ice-cream)

• Lambda calculus
• We’ll have to posit something that will do

the work
• Predicate of 2 arguments:

λx λy ate(y, x)

6.863J/9.611J Lecture 11 Sp03

Lambda application works

• Suppose John, ice-cream = constants,
i.e., λx.x, the identity function

• Then lambda substitution does give the
right results:
λx λy ate(y, x) (ice-cream)(John)→
λy ate(y, ice-cream)(John)→
ate(John, ice-cream)

But… where do we get the λ−forms from?

6.863J/9.611J Lecture 11 Sp03

Example of what we now can do

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6.863J/9.611J Lecture 11 Sp03

How: to recover meaning from
structure

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

= V(NP*)=
λxλy ate(y,x).ic=

λy ate(y, ic)

6.863J/9.611J Lecture 11 Sp03

How

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*=λy ate(y, ic)

ate(John, ic)

= VP(NP*)=λy ate(y, ic).John=
ate(John, ic)

6.863J/9.611J Lecture 11 Sp03

In this picture

• The meaning of a sentence is the
composition of a function VP* on an
argument NP*

• The lexical entries are λ forms
• Simple nouns are just constants
• Verbs are λ forms indicating their argument

structure
• Verb phrases return λ functions as their

results (in fact – higher order)

6.863J/9.611J Lecture 11 Sp03

How

• Application of the lambda form associated with
the VP to the lambda form given by the
argument NP

• Words just return ‘themselves’ as values (from
lexicon)

• Given parse tree, then by working bottom up as
shown next, we get to the logical form
ate(John, ice-cream)

• This predicate can then be evaluated against a
database – this is model interpretation- to
return a value, or t/f, etc.

6.863J/9.611J Lecture 11 Sp03

Code – sample rules

(root ==> s) (lambda (s)(PROCESS-SENTENCE s))

(s ==> np vp) (lambda (np vp)(funcall vp np)))

(vp ==> v+args) (lambda (v+args)(lambda (subj)
(funcall v+args subj))))

(v+args ==> v2 np)(lambda (v2 np)
(lambda (subj)

(funcall v2 subj np))))

(np-pro ==> name) #'identity)

Syntactic rule Semantic rule

6.863J/9.611J Lecture 11 Sp03

On to semantic interpretation

• Four basic principles
1. Rule-to-Rule semantic interpretation [aka “syntax-

directed translation”]: pair syntax, semantic rules. (GPSG:
pair each cf rule w/ semantic ‘action’; as in compiler theory
– due to Knuth, 1968)

2. Compositionality: Meaning of a phrase is a function of
the meaning of its parts and nothing more e.g., meaning of
S→NP VP is f(M(NP)• M(VP)) (analog of ‘context-freeness’
for semantics – local)

3. Truth conditional meaning: meaning of S equated with
conditions that make it true

4. Model theoretic semantics: correlation betw. Language
& world via set theory & mappings

6.863J/9.611J Lecture 11 Sp03

Syntax & paired semantics

Item or rule Semantic translation
Verb ate λxλy.ate(y, x)
propN λx.x
V V*= λ for lex entry
S (or CP) S*= VP*(NP*)
NP N*
VP V*(NP*)

6.863J/9.611J Lecture 11 Sp03

Logic: Lambda Terms

• Lambda terms:
• A way of writing “anonymous functions”

• No function header or function name
• But defines the key thing: behavior of the function
• Just as we can talk about 3 without naming it “x”

• Let square = λp p*p
• Equivalent to int square(p) { return p*p; }
• But we can talk about λp p*p without naming it
• Format of a lambda term: λ variable expression

6.863J/9.611J Lecture 11 Sp03

Logic: Lambda Terms

• Lambda terms:
• Let square = λp p*p
• Then square(3) = (λp p*p)(3) = 3*3
• Note: square(x) isn’t a function! It’s just the value x*x.
• But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

• Let even = λp (p mod 2 == 0) a predicate: returns true/false

• even(x) is true if x is even
• How about even(square(x))?
• λx even(square(x)) is true of numbers with even squares

• Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
• This happens to denote the same predicate as even does

6.863J/9.611J Lecture 11 Sp03

Logic: Multiple Arguments

• All lambda terms have one argument
• But we can fake multiple arguments ...

• Suppose we want to write times(5,6)
• Remember: square can be written as λx square(x)
• Similarly, times is equivalent to λx λy times(x,y)

• Claim that times(5)(6) means same as times(5,6)
• times(5) = (λx λy times(x,y)) (5) = λy times(5,y)

• If this function weren’t anonymous, what would we call it?

• times(5)(6) = (λy times(5,y))(6) = times(5,6)

6.863J/9.611J Lecture 11 Sp03

Logic: Multiple Arguments

• All lambda terms have one argument
• But we can fake multiple arguments ...

• Claim that times(5)(6) means same as times(5,6)
• times(5) = (λx λy times(x,y)) (5) = λy times(5,y)

• If this function weren’t anonymous, what would we call it?

• times(5)(6) = (λy times(5,y))(6) = times(5,6)

§ So we can always get away with 1-arg functions ...
§ ... which might return a function to take the next

argument. Whoa.

§ We’ll still allow times(x,y) as syntactic sugar, though

6.863J/9.611J Lecture 11 Sp03

Grounding out

• So what does times actually mean???
• How do we get from times(5,6) to 30 ?

• Whether times(5,6) = 30 depends on whether symbol times
actually denotes the multiplication function!

• Well, maybe times was defined as another lambda term,
so substitute to get times(5,6) = (blah blah blah)(5)(6)

• But we can’t keep doing substitutions forever!
• Eventually we have to ground out in a primitive term
• Primitive terms are bound to object code

• Maybe times(5,6) just executes a multiplication function
• What is executed by loves(john, mary) ?

6.863J/9.611J Lecture 11 Sp03

Logic: Interesting Constants

• Thus, have “constants” that name some of
the entities and functions (e.g., times):
• Eminem - an entity
• red – a predicate on entities

• holds of just the red entities: red(x) is true if x is red!
• loves – a predicate on 2 entities

• loves(Eminem,Detroit)
• Question: What does loves(Detroit) denote?

• Constants used to define meanings of words
• Meanings of phrases will be built from the

constants & syntactic structure

6.863J/9.611J Lecture 11 Sp03

How: to recover meaning from
structure

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

= V(NP*)=
λxλy ate(y,x).ic=

λy ate(y, ic)

6.863J/9.611J Lecture 11 Sp03

How

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*=λy ate(y, ic)

ate(John, ic)

= VP(NP*)=λy ate(y, ic).John=
ate(John, ic)

6.863J/9.611J Lecture 11 Sp03

Construction step by step – on
NP side

S (IP)

NP-pro VP

NP
John

ate

VP(NP)= ate (john , ice-cream)

-

john

(root ==> s)(lambda (s)(PROCESS-SENTENCE s)))

(lambda (np vp)(funcall vp np))
root

s ==> np vp

np-pro ==> name

name

#'identity

john

Word-semantics john

john

name

V2

V+args

6.863J/9.611J Lecture 11 Sp03

In this picture

• The meaning of a sentence is the
composition of a function VP* on an
argument NP*

• The lexical entries are λ forms
• Simple nouns are just constants
• Verbs are λ forms indicating their argument

structure
• Verb phrases return a function as its

result

6.863J/9.611J Lecture 11 Sp03

Processing order

• Interpret subtree as soon as it is built –eg, as soon as
RHS of rule is finished (complete subtree)

• Picture: “ship off” subtree to semantic interpretation as
soon as it is “done” syntactically

• Allows for off-loading of syntactic short term memory;
SI returns with ‘ptr’ to the interpretation

• Natural order to doing things (if process left to right)
• Has some psychological validity – tendency to interpret

asap & lower syntactic load
• Example: I told John a ghost story vs. I told John a

ghost story was the last thing I wanted to hear

6.863J/9.611J Lecture 11 Sp03

Picture

S

NP

John

name

S

NP
John

S-I

6.863J/9.611J Lecture 11 Sp03

Paired syntax-semantics

(root ==> s)(lambda (s)(PROCESS-SENTENCE s)))

(lambda (np vp)(funcall vp np))(s ==> np vp)

