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The Menu Bar
• Administrivia:

• Schedule alert: Lab 4 out Weds. Lab time 
today, tomorrow

• Please read notes4.pdf!! 

• Agenda: 
• Feature-based grammars/parsing: 

unification; the question of 
representation

• Semantic interpretation via lambda 
calculus: syntax directed translation
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Features are everywhere

morphology of a single word: 
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase 
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

provided α is in the set TRANSITIVE-VERBS
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Better approach to factoring 
linguistic knowledge

• Use the superposition idea: we superimpose 
one set of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints
• S → NP VP

[num x] [num x] [num x]

the guy eats
[num singular] [num singular]
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Or in tree form:

S [number x]

NP [number x] VP [number x]

DT [number x] V [number x] NP

the
[number singular]

guy
[number singular]

N [number x]

eats
[number singular]
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Values trickle up

S [number x]

NP [number x] VP [number x]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]
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Checking features

S [number x]

NP [number sing] VP [number sing]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]
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What sort of power do we need 
here?

• We have [feature value] combinations so far
• This seems fairly widespread in language
• We call these atomic  feature-value 

combinations
• Other examples: 
1. In English: 
person feature (1st, 2nd, 3rd); 
Case feature (degenerate in English: nominative, 

object/accusative, possessive/genitive): I know 
her vs. I know she; 

Number feature: plural/sing; definite/indefinite
Degree: comparative/superlative
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Other languages; formalizing features

• Two kinds:
1. Syntactic features, purely grammatical function 

Example: Case in German (NOMinative, 
ACCusative, DATive case) – relative pronoun 
must agree w/ Case of verb with which it is 
construed
Wer micht strak is, muss klug sein
Who not  strong is, must clever be
NOM NOM
Who isn’t strong must be clever
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Continuing this example

Ich nehme, wen         du mir empfiehlst
I      take  whomever you me recommend
ACC          ACC                  ACC
I     take   whomever you recommend to me

*Ich nehme, wen      du vertraust
I      take  whomever you trust
ACC        ACC               DAT
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Other class of features

2. Syntactic features w/ meaning – example, 
number, def/indef., adjective degree

Hungarian
Akart           egy könyvet
He-wanted  a    book

-DEF            -DEF
egy könyv amit     akart
A   book which     he-wanted

-DEF                   -DEF
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Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix
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How to formalize?

• Let F be a finite set of feature names, let 
A be a set of feature values

• Let p be a function from feature names 
to permissible feature values, that is, 
p: F→2A

• Now we can define a word category as a 
triple <F, A, p> 

• This is a partial function from feature 
names to feature values
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Example 

• F= {CAT, PLU, PER}
• p: 

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep =    {[CAT V], [PLU -], [PER 1]}
sleep =    {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is 

relatively simple here
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• Feature values can be feature 
structures themselves – should they be?
• Useful when certain features commonly co-

occur, e.g. number and person

• Feature path: path through structures to 
value (e.g. 
Agr à Num à SG












Agr

Cat



























3Pers
SGNum

NP
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Important question

• Do features have to be more complicated 
than this?

• More: hierarchically structured (feature 
structures) (directed acyclic graphs,  
DAGs, or even beyond)

• Then checking for feature compatibility 
amounts to unification

• Example
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Reentrant Structures

• Feature structures may also contain features 
that share some feature structure as a value

• Numerical indices indicate the shared values
• Big Question: do we need nested structures??
























































































1

3
1

AgrSubj

Pers
SGNumAgr

Head

SCat



6.863J/9.611J Lecture 11 Sp03

• Number feature

• Number-person features

• Number-person-category features 
(3sgNP)


Num 



SG











Pers
Num
Cat
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SG
NP








Pers
Num
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SG



6.863J/9.611J Lecture 11 Sp03

Graphical Notation for Feature 
Structures
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Features and grammars

 agreement: person: third
number: singular

 agreement:

agreement

personnumber

singular third

category

category: N

N
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Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep
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Operations on Feature Structures

• What will we need to do to these structures?
• Check the compatibility of two structures
• Merge the information in two structures

• We can do both using unification
• We say that two feature structures can be 

unified if the component features that make 
them up are compatible
• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]
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• [Num SG] U [Pers 3] =

• Structure are compatible if they contain 
no features that are incompatible 

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value 

pairs

• A failed unification attempt
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Features, Unification and 
Grammars
• How do we incorporate feature structures into 

our grammars?
• Assume that constituents are objects which have 

feature-structures associated with them
• Associate sets of unification constraints with 

grammar rules 
• Constraints must be satisfied for rule to be satisfied

• For a grammar rule β0 à β1 …βn
• <βi feature path> = Atomic value
• <βi feature path> = <βj feature path>

• NB: if simple feat-val pairs, no nesting, then no 
need for paths
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Feature unification examples

(1) [ agreement: [ number: singular 
person: first ]  ]

(2) [ agreement: [ number: singular] 
case: nominative  ]  

• (1) and (2) can unify, producing (3):
(3) [ agreement: [ number: singular 

person: first ]  
case: nominative  ]

(try overlapping the graph structures 
corresponding to these two)
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Feature unification examples

(2) [ agreement: [ number: singular] 
case: nominative  ]  

(4) [ agreement: [ number: singular 
person: third]  ]

• (2) & (4) can unify, yielding (5):
(5) [ agreement: [ number: singular 

person: third]  
case: nominative  ]

• BUT (1) and (4) cannot unify because their 
values conflict on <agreement person>
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• To enforce subject/verb number 
agreement

S à NP VP
<NP NUM> = <VP NUM>
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Head Features

• Features of most grammatical categories are 
copied from head child to parent (e.g. from V 
to VP, Nom to NP, N to Nom, …)

• These normally written as ‘head’ features, 
e.g.
VP à V NP
<VP HEAD> = <V HEAD>
NP à Det Nom
<NPà HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom à N
<Nom HEAD> = <N HEAD>
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NP[n=1] → Det N[n=1]

N[n=1] → N[n=1] VP
N[n=1] → plan

VP[n=1] → V[n=1] VP
V[n=1] → has

S→ NP[n=1]  VP[n=1]
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NP[n=α] → Det N[n=α]

N[n=α] → N[n=α] VP
N[n=1] → plan

VP[n=α] → V[n=α] VP
V[n=1] → has

S→ NP[n=α]  VP[n=α]
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NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
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NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

§ Morphology (e.g.,word endings)

§ N[h=plan,n=1] → plan
N[h=plan,n=2+] → plans
§ V[h=thrill,tense=prog] → thrilling

V[h=thrill,tense=past] → thrilled
V[h=go,tense=past] → went

§ Why use heads?
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NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]§ Subcategorization (i.e., 
transitive vs. intransitive)
§ When is VP → V NP ok?

VP[h=α] → V[h=α] NP
restrict to α ∈ TRANSITIVE_VERBS

§ When is N → N VP ok?
N[h=α] → N[h=α] VP

restrict to α ∈ {plan, plot, hope,…}

§ Why use heads?
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NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
§ Selectional restrictions
§ VP[h=α] → V[h=α] NP
§ I.e., VP[h=α] → V[h=α] NP[h=β]

§ Don’t fill template in all ways:
VP[h=thrill] → V[h=thrill] NP[h=Otto]

*VP[h=thrill] → V[h=thrill] NP[h=plan]

§ Why use heads?

leave out, or low prob

Equivalently: keep the template
but make prob depend on α,β
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How can we parse with feature 
structures?
• Unification operator: takes 2 features structures 

and returns either a merged feature structure or 
fail

• Input structures represented as DAGs
• Features are labels on edges
• Values are atomic symbols or DAGs

• Unification algorithm goes through features in 
one input DAG1 trying to find corresponding 
features in DAG2 – if all match, success, else fail
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Unification and Earley Parsing

• Goal:
• Use feature structures to provide richer 

representation
• Block entry into chart of ill-formed constituents

• Changes needed to Earley
• Add feature structures to grammar rules, e.g.

S à NP VP
<NP HEAD AGR> = <VP HEAD AGR>
<S HEAD> = <VP HEAD>

• Add field to states containing DAG representing 
feature structure corresponding to state of parse, 
e.g.

S à • NP VP, [0,0], [], DAG
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• Add new test to Completer operation
• Recall: Completer adds new states to chart by 

finding states whose • can be advanced (i.e., 
category of next constituent matches that of 
completed constituent)

• Now: Completer will only advance those states if 
their feature structures unify

• New test for whether to enter a state in the 
chart
• Now DAGs may differ, so check must be more 

complex
• Don’t add states that have DAGs that are more 

specific than states in chart: is new state 
subsumed by existing states?
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General feature grammars –violate 
the properties of natural languages?

• Take example from so-called “lexical-
functional grammar” but this applies as 
well to any general unification grammar

• Lexical functional grammar (LFG): add 
checking rules to CF rules (also variant 
HPSG)
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Example Lexical functional 
grammar

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP                          VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?
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Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[num singular]

[subj [num singular]]

N

guys sleeps
[num plural]
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Evidence that you don’t need this 
much power - hierarchy
• Linguistic evidence: looks like you just check 

whether features are nondistinct, rather than 
equal or not – variable matching, not variable 
substitution

• Full unification lets you generate unnatural 
languages:
ai,  s.t. i a power of 2 – e.g., a, aa, aaaa, 
aaaaaaaa, …
why is this ‘unnatural’ – another (seeming) 
property of natural languages:

Natural languages seem to obey a constant 
growth property
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Constant growth property

• Take a language & order its sentences int terms 
of increasing length in terms of # of words 
(what’s shortest sentence in English?)

• Claim: ∃Bound on the ‘distance gap’ between 
any two consecutive sentences in this list, which 
can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot get 
too big – cannot grow w/o bounds

• We can do this a bit more formally
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Constant growth

• Dfn. A language L is semilinear if the number of 
occurrences of each symbol in any string of L is a 
linear combination of the occurrences of these 
symbols in some fixed, finite set of strings of L.  

• Dfn. A language L is constant growth if there is a 
constant c0 and a finite set of constants C s.t. for 
all w∈L, where |w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c, 
some c ∈C

• Fact. (Parikh, 1971). Context-free languages are 
semilinear, and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is 
non constant-growth
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Alas, this allows non-constant 
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A                  A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the 

right & the left – make sure a power of 2
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Example

A

A A

A A A A

a a a a

Checks ok (↑ f) =1  (↑ f) =1  (↑ f) =1  (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓
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If mismatch anywhere, get a 
feature clash…

A

A A

A A

a a
a

Fails! (↑ f) =1  (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!
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Conclusion then

• If we use too powerful a formalism, it lets 
us write ‘unnatural’ grammars

• This puts burden on the person writing 
the grammar – which may be ok.

• However, child doesn’t presumably do this 
(they don’t get ‘late days’)

• We want to strive for automatic 
programming – ambitious goal
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Summing Up

• Feature structures encoded rich information 
about components of grammar rules

• Unification provides a mechanism for merging 
structures and for comparing them

• Feature structures can be quite complex:
• Subcategorization constraints
• Long-distance dependencies

• Unification parsing:
• Merge or fail
• Modifying Earley to do unification parsing
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From syntax to meaning

• What does ‘understanding’ mean
• How can we compute it if we can’t 

represent it
• The ‘classical’ approach: compositional 

semantics
• Implementation like a programming 

language
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Initial Simplifying Assumptions

• Focus on literal meaning
• Conventional meanings of words
• Ignore context
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big picture

Inference/Model
of Intentions

(type hierarchy)

Syntax-directed
message con-

struction

message phrase lists

selectional restrictions Yes-No
Thematic role

frames

Thematic
role interpreter

semantic restrictions Yes-No

Planner

semantic restrictions Yes-Noobject actions

parser

Syntactic structures PP Attachment decisions Yes-
No

(a)
Planner

Inference/Model
of Intentions

(type hierarchy)

Syntax-directed
message con-

struction

Thematic
role interpreter

s parser

(b)
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Example of what we might do

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY
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what

• The nature (representation) of meaning 
representations vs/ how these are 
assembled
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Analogy w/ prog. language

• What is meaning of 3+5*6?
• First parse it into 3+(5*6)

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+
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Interpreting in an Environment

• How about 3+5*x?
• Same thing: the meaning

of x is found from the
environment (it’s 6)

• Analogies in language?

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult
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Compiling

• How about 3+5*x?
• Don’t know x at compile time

• “Meaning” at a node
is a piece of code, not a 
number

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression 
that produces equivalent code 
(can be converted to the 
previous code by optimization)
Analogies in language?
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What

• What representation do we want for 
something like
John ate ice-cream →
ate(John, ice-cream)

• Lambda calculus
• We’ll have to posit something that will do 

the work
• Predicate of 2 arguments:

λx λy ate(y, x) 
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How: recover meaning from 
structure

S or IP

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP )= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)
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What Counts as Understanding?
some notions

• We understand if we can respond appropriately
• ok for commands, questions (these demand response)
• “Computer, warp speed 5”
• “throw axe at dwarf”
• “put all of my blocks in the red box”
• imperative programming languages
• database queries and other questions

• We understand statement if we can determine its 
truth
• ok, but if you knew whether it was true, why did 

anyone bother telling it to you?
• comparable notion for understanding NP is to compute 

what the NP refers to, which might be useful
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What Counts as Understanding?
some notions

• We understand statement if we know how to 
determine its truth
• What are exact conditions under which it would be true?

• necessary + sufficient

• Equivalently, derive all its consequences 
• what else must be true if we accept the statement?

• Philosophers tend to use this definition

• We understand statement if we can use it to 
answer questions  [very similar to above – requires reasoning]

• Easy: John ate pizza.  What was eaten by John?
• Hard: White’s first move is P-Q4.  Can Black checkmate?
• Constructing a procedure  to get the answer is enough
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Representing Meaning

• What requirements do we have for 
meaning representations?
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What  requirements must 
meaning representations fulfill?

• Verifiability: The system should allow us to 
compare representations to facts in a 
Knowledge Base (KB)
• Cat(Huey)

• Ambiguity: The system should allow us to 
represent meanings unambiguously
• German teachers has 2 representations

• Vagueness: The system should allow us to 
represent vagueness
• He lives somewhere in the south of France.
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Requirements: Inference

• Draw valid conclusions based on the 
meaning representation of inputs and its 
store of background knowledge.
Does Huey eat kibble?
thing(kibble)
Eat(Huey,x) ^ thing(x)
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Requirements: Canonical Form

• Inputs that mean the same thing have the same 
representation.
• Huey eats kibble.
• Kibble, Huey will eat.
• What Huey eats is kibble.
• It’s kibble that Huey eats.

• Alternatives
• Four different semantic representations
• Store all possible meaning representations in 

Knowledge Base
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Requirements: Compositionality

• Can get meaning of “brown cow” from 
separate, independent meanings of 
“brown” and “cow”

• Brown(x)∧ Cow(x)
• I’ve never seen a purple cow, I never 

hope to see one…
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Barriers to compositionality

• Ce corps qui s’appelait e qui s’appelle 
encore le saint empire romain n’etait en 
aucune maniere ni saint, ni romain, ni 
empire.

• This body, which called itself and still calls 
itself the Holy Roman Empire, was neither 
Holy, nor Roman, nor an Empire -Voltaire
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Need some kind of logical 
calculus

• Not ideal as a meaning representation and 
doesn't do everything we want - but close
• Supports the determination of truth
• Supports compositionality of meaning
• Supports question-answering (via variables)
• Supports inference

• What are its elements?
• What else do we need?
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• Logical connectives permit compositionality of 
meaning
kibble(x) → likes(Huey,x)
cat(Vera) ^ weird(Vera)
sleeping(Huey) v eating(Huey)

• Expressions  can be assigned truth values, T 
or F, based on whether the propositions they 
represent are T or F in the world
• Atomic formulae are T or F based on their 

presence or absence in a DB (Closed World 
Assumption?)

• Composed meanings are inferred from DB and 
meaning of logical connectives
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• cat(Huey)
• sibling(Huey,Vera)
• sibling(x,y) ^ cat(x) → cat(y)
• cat(Vera)??

• Limitations:
• Do ‘and’ and ‘or’ in natural language really 

mean ‘^’ and ‘v’?  
Mary got married and had a baby.
Your money or your life!
He was happy but ignorant.

• Does ‘→’ mean ‘if’?  
I’ll go if you promise to wear a tutu.
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• Frame
Having

Haver:  S
HadThing: Car

• All represent ‘linguistic meaning’ of I 
have a car

and state of affairs in some world
• All consist of structures, composed of 

symbols representing objects and 
relations among them
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What

• What representation do we want for 
something like
John ate ice-cream →
ate(John, ice-cream)

• Lambda calculus
• We’ll have to posit something that will do 

the work
• Predicate of 2 arguments:

λx λy ate(y, x) 
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Lambda application works

• Suppose John, ice-cream = constants, 
i.e., λx.x, the identity function

• Then lambda substitution does give the 
right results:
λx λy ate(y, x) (ice-cream)(John)→
λy ate(y, ice-cream)(John)→
ate(John, ice-cream)

But… where do we get the λ−forms from?
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Example of what we now can do

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY
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How: to recover meaning from 
structure

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*= V*(NP*)=
λxλy ate(y,x).ic= 

λy ate(y, ic)
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How

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*=λy ate(y, ic)

ate(John, ic)

*= VP*(NP*)=λy ate(y, ic).John=
ate(John, ic)
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In this picture

• The meaning of a sentence is the 
composition of a function VP* on an 
argument NP*

• The lexical entries are λ forms
• Simple nouns are just constants
• Verbs are λ forms indicating their argument 

structure
• Verb phrases return λ functions as their 

results (in fact – higher order)
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How

• Application of the lambda form associated with 
the VP to the lambda form given by the 
argument NP

• Words just return ‘themselves’ as values (from 
lexicon)

• Given parse tree, then by working bottom up as 
shown next, we get to the logical form 
ate(John, ice-cream)

• This predicate can then be evaluated against a 
database – this is model interpretation- to 
return a value, or t/f, etc.
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Code – sample rules

(root ==> s) (lambda (s)(PROCESS-SENTENCE s))

(s ==> np vp) (lambda (np vp)(funcall vp np)))

(vp ==> v+args) (lambda (v+args)(lambda (subj)
(funcall v+args subj))))

(v+args ==> v2 np)(lambda (v2 np)
(lambda (subj)

(funcall v2 subj np))))

(np-pro ==> name) #'identity)

Syntactic rule Semantic rule
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On to semantic interpretation

• Four basic principles
1. Rule-to-Rule semantic interpretation [aka “syntax-

directed translation”]: pair syntax, semantic rules.  (GPSG: 
pair each cf rule w/ semantic ‘action’; as in compiler theory 
– due to Knuth, 1968)

2. Compositionality: Meaning of a phrase is a function of 
the meaning of its parts and nothing more e.g., meaning of 
S→NP VP is f(M(NP)• M(VP)) (analog of ‘context-freeness’
for semantics – local)

3. Truth conditional meaning: meaning of S equated with 
conditions that make it true

4. Model theoretic semantics: correlation betw. Language 
& world via set theory & mappings 
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Syntax  & paired semantics

Item or rule Semantic translation
Verb ate λxλy.ate(y, x)
propN λx.x
V V*= λ for lex entry
S (or CP) S*= VP*(NP*)
NP N*
VP V*(NP*)
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Logic: Lambda Terms

• Lambda terms: 
• A way of writing “anonymous functions” 

• No function header or function name
• But defines the key thing: behavior of the function
• Just as we can talk about 3 without naming it “x”

• Let square = λp p*p
• Equivalent to int square(p) { return p*p; }
• But we can talk about λp p*p without naming it
• Format of a lambda term: λ variable expression
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Logic: Lambda Terms

• Lambda terms:
• Let square = λp p*p
• Then square(3) =  (λp p*p)(3) = 3*3
• Note: square(x) isn’t a function!  It’s just the value x*x.
• But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

• Let even = λp (p mod 2 == 0) a predicate: returns true/false

• even(x) is true if x is even
• How about even(square(x))?  
• λx even(square(x)) is true of numbers with even squares

• Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
• This happens to denote the same predicate as even does
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Logic: Multiple Arguments

• All lambda terms have one argument
• But we can fake multiple arguments ...

• Suppose we want to write times(5,6)
• Remember: square can be written as λx square(x)
• Similarly, times is equivalent to λx λy times(x,y)

• Claim that times(5)(6) means same as times(5,6)
• times(5) = (λx λy times(x,y)) (5) = λy times(5,y)

• If this function weren’t anonymous, what would we call it?

• times(5)(6) = (λy times(5,y))(6) = times(5,6)
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Logic: Multiple Arguments

• All lambda terms have one argument
• But we can fake multiple arguments ...

• Claim that times(5)(6) means same as times(5,6)
• times(5) = (λx λy times(x,y)) (5) = λy times(5,y)

• If this function weren’t anonymous, what would we call it?

• times(5)(6) = (λy times(5,y))(6) = times(5,6)

§ So we can always get away with 1-arg functions ...
§ ... which might return a function to take the next 

argument.  Whoa.

§ We’ll still allow times(x,y) as syntactic sugar, though
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Grounding out

• So what does times actually mean???
• How do we get from times(5,6) to 30 ?

• Whether times(5,6) = 30 depends on whether symbol times 
actually denotes the multiplication function!

• Well, maybe times was defined as another lambda term, 
so substitute to get times(5,6) = (blah blah blah)(5)(6) 

• But we can’t keep doing substitutions forever!
• Eventually we have to ground out in a primitive term
• Primitive terms are bound to object code

• Maybe times(5,6) just executes a multiplication function
• What is executed by loves(john, mary) ?



6.863J/9.611J Lecture 11 Sp03

Logic: Interesting Constants

• Thus, have “constants” that name some of 
the entities and functions (e.g., times):
• Eminem - an entity
• red – a predicate on entities

• holds of just the red entities: red(x) is true if x is red!
• loves – a predicate on 2 entities

• loves(Eminem,Detroit)
• Question: What does loves(Detroit) denote?

• Constants used to define meanings of words
• Meanings of phrases will be built from the 

constants & syntactic structure
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How: to recover meaning from 
structure

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*= V*(NP*)=
λxλy ate(y,x).ic= 

λy ate(y, ic)
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How

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*=λy ate(y, ic)

ate(John, ic)

*= VP*(NP*)=λy ate(y, ic).John=
ate(John, ic)
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Construction step by step – on 
NP side

S (IP)

NP-pro VP

NP
John

ate

VP(NP )= ate (john , ice-cream)

-

john

(root ==> s)(lambda (s)(PROCESS-SENTENCE s)))

(lambda (np vp)(funcall vp np))
root

s ==> np vp

np-pro ==> name

name

#'identity

john

Word-semantics john

john

name

V2

V+args
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In this picture

• The meaning of a sentence is the 
composition of a function VP* on an 
argument NP*

• The lexical entries are λ forms
• Simple nouns are just constants
• Verbs are λ forms indicating their argument 

structure
• Verb phrases return a function as its 

result
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Processing order

• Interpret subtree as soon as it is built –eg, as soon as 
RHS of rule is finished (complete subtree)

• Picture: “ship off” subtree to semantic interpretation as 
soon as it is “done” syntactically

• Allows for off-loading of syntactic short term memory; 
SI returns with ‘ptr’ to the interpretation

• Natural order to doing things (if process left to right)
• Has some psychological validity – tendency to interpret

asap & lower syntactic load
• Example:  I told John a ghost story vs. I told John a 

ghost story was the last thing I wanted to hear
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Picture 

S

NP

John

name

S

NP
John

S-I
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Paired syntax-semantics

(root ==> s)(lambda (s)(PROCESS-SENTENCE s)))

(lambda (np vp)(funcall vp np))(s ==> np vp)


