
6.863J Natural Language Processing
Lecture 12: Featured attraction

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6•863J/9•611J SP04 Lecture 12

The Menu Bar
• Administrivia:

• 3a due Friday; Lab 3b out Weds; due after
vacation

Agenda:
Parsing strategies: Honey, I shrank the
grammar!
Features

6•863J/9•611J SP04 Lecture 12

Why: recover meaning from
structure

John ate ice-cream → ate(John, ice-cream)

-This must be done from structure
-Actually want something like λxλy ate(x,y)
How?

6•863J/9•611J SP04 Lecture 12

Why: recover meaning from
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)

6•863J/9•611J SP04 Lecture 12

Two parts:

• Syntax: define hierarchical structure
• Semantics: interpret over hierarchical

structure

• What are the constraints?

6•863J/9•611J SP04 Lecture 12

Conclusion we will head to

• If we use too powerful a formalism, it lets us
write ‘unnatural’ grammars

• This puts burden on the person writing the
grammar – which may be ok.

• However, child doesn’t presumably do this
(they don’t get ‘late days’)

• We want to strive for automatic programming
– ambitious goal

6•863J/9•611J SP04 Lecture 12

Key elements – part 1

• Establish basic phrase types: S, VP, NP, PP, …
• Where do these come from???

6•863J/9•611J SP04 Lecture 12

What kinds of phrases are there?

• Noun phrases, verb phrases, adjectival
phrases (“green with envy”), adverbial
phrases (“quickly up the hill”), prepositional
phrases (“off the wall”), etc.

• In general: grounded on lexical items
• Shows us the constraints on context-free

rules for natural grammars
• Example:

6•863J/9•611J SP04 Lecture 12

Phrase types are constrained by
lexical projection

Verb Phrase → Verb Noun Phrase
“is-a” (“kick the ball”)

Prepositional Phrase →Preposition Noun Phrase
(“on the table”)

Adjective Phrase → Adjective Prep. Phrase
(“green with envy”)

Etc. … what is the pattern?

6•863J/9•611J SP04 Lecture 12

Function-argument relation

XP →X arguments, where X= Noun, Verb,
Preposition, Adjective (all lexical

categories in the language)
Like function-argument structure
(so-called “Xbar theory”)
Constrains what grammar rules cannot be:
Verb Phrase →Noun Noun Phrase
or even
Verb Phrase →Noun Phrase Verb Noun Phrase

6•863J/9•611J SP04 Lecture 12

English is function-argument form

function

at

args

green

sold
the stock
a bargain price

with envy

the over-priced stock

6•863J/9•611J SP04 Lecture 12

Other languages are the mirror-
inverse: arg-function

at
green

sold
the stock
a bargain price

with envy

theover-priced stock

This is like Japanese

6•863J/9•611J SP04 Lecture 12

Key elements – part 2

• Establish verb subcategories
• What are these?

• Different verbs take different # arguments
• 0, 1, 2 arguments (‘complements’)
• Poirot thought; Poirot thought the gun; Poirot

thought the gun was the cause.
• Some verbs take certain sentence complements:
• I know who John saw/? I think who John saw

propositional types:
• Embedded questions: I wonder whether…
• Embedded proposition: I think that John saw

Mary

6•863J/9•611J SP04 Lecture 12

Key elements

• Subtlety to this
• Believe, know, think, wonder,…

• ? I believe why John likes ice-cream
• I know why John likes ice-cream
• I believe that John likes ice-cream
• I believe (that) John likes ice-cream

• # args, type: Verb subcategories
• How many subcategories are there?
• What is the structure?

6•863J/9•611J SP04 Lecture 12

Idea for phrases

• They are based on ‘projections’ of words
(lexical items) – imagine features ‘percolating’
up

know [V +proposition]

XP []V +proposition

6•863J/9•611J SP04 Lecture 12

Heads of phrases

know [V +proposition]

V +proposition

6•863J/9•611J SP04 Lecture 12

The parse structure for ‘embedded’
sentences

I believe (that) John likes ice-cream

S

NP VP

I

V

believe

that J. likes ice-cream

6•863J/9•611J SP04 Lecture 12

New phrase type: S-bar

NP VP

I

V

believe

S

Sbar

that J. likes ice-cream

6•863J/9•611J SP04 Lecture 12

Sbar VP

V

believe
Sbar

that

Comp S

J. likes ice-cream

6•863J/9•611J SP04 Lecture 12

Sbar VP

V

believe
Sbar

Comp S

J. likes ice-cream

ε

6•863J/9•611J SP04 Lecture 12

In fact, true for all sentences…

Comp S

ε

S

J. likes ice-cream

Sbar
John likes ice-cream

Why?

6•863J/9•611J SP04 Lecture 12

What rules will we need?

• (U do it..)

6•863J/9•611J SP04 Lecture 12

Verb types - continued

• What about:
Clinton admires honesty/Honesty admires

Clinton
How do we encode these in a CFG?
Should we encode them?
• Colorless green ideas sleep furiously
• Revolutionary new ideas appear infrequently

6•863J/9•611J SP04 Lecture 12

Problems with this – how much info?

6•863J/9•611J SP04 Lecture 12

Agreement gets complex…

POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

–Czech: AGFS3----1A----

6•863J/9•611J SP04 Lecture 12

Other sentence types

• Questions:
• Will John eat ice-cream?
• Did John eat ice-cream?

• How do we encode this?

6•863J/9•611J SP04 Lecture 12

`Empty’ elements or categories
• Where surface phrase is displaced from its canonical

syntactic position
• Examples:

• The ice-cream was eaten vs.
• John ate the ice-cream
• What did John eat?
• What did Bill say that that John thought the cat ate?
• For What x, did Bill say… the cat ate x
• Bush is too stubborn to talk to
• Bush is too stubborn [x to talk to Bush]
• Bush is too stubborn to talk to the Pope
• Bush is too stubborn [Bush to talk to the Pope]

6•863J/9•611J SP04 Lecture 12

More interesting clause types
• Apparently “long distance” effects:

‘displacement’ of phrases from their ‘base’
positions

1. So-called ‘wh-movement’:
What did John eat ?

2. Topicalization (actually the same)
On this day, it snowed two feet.

3. Other cases: so-called ‘passive’:
The eggplant was eaten by John

• How to handle this?

6•863J/9•611J SP04 Lecture 12

We can think of this as ‘fillers’ and
‘gaps’

• Filler= the displaced item
• Gap = the place where it belongs, as argument
• Fillers can be NPs, PPs, S’s
• Gaps are invisible- so hard to parse! (we have to

guess)
• Can be complex:

Which book did you file__ without__ reading__ ?
Which violins are these sonatas difficult to play__ on

6•863J/9•611J SP04 Lecture 12

Problems with this – how much info?

• Even verb subcategories not obvious
John gave Mary the book → NP NP
John gave the book to Mary → NP PP

But:
John donated the book to the library

‘Alternation’ pattern – semantic? NO!

6•863J/9•611J SP04 Lecture 12

Agreement gets complex…

POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

–Czech: AGFS3----1A----

6•863J/9•611J SP04 Lecture 12

More interesting clause types
• Apparently “long distance” effects:

‘displacement’ of phrases from their ‘base’
positions

1. So-called ‘wh-movement’:
What did John eat ?

2. Topicalization (actually the same)
On this day, it snowed two feet.

3. Other cases: so-called ‘passive’:
The eggplant was eaten by John

• How to handle this?

6•863J/9•611J SP04 Lecture 12

`Empty’ elements or categories
• Where surface phrase is displaced from its canonical

syntactic position & nothing shows on the surface
• Examples:

• The ice-cream was eaten vs.
• John ate the ice-cream
• What did John eat?
• What did Bill say that that John thought the cat ate?
• For What x, did Bill say… the cat ate x
• Bush is too stubborn to talk to
• Bush is too stubborn [x to talk to Bush]
• Bush is too stubborn to talk to the Pope
• Bush is too stubborn [Bush to talk to the Pope]

6•863J/9•611J SP04 Lecture 12

‘missing’ or empty categories

• John promised Mary ___ to leave
• John promised Mary [John to leave]
• Known as ‘control’

• John persuaded Mary [___ to leave]
• John persuaded Mary [Mary to leave]

6•863J/9•611J SP04 Lecture 12

We can think of this as ‘fillers’ and
‘gaps’

• Filler= the displaced item
• Gap = the place where it belongs, as argument
• Fillers can be NPs, PPs, S’s
• Gaps are invisible- so hard to parse! (we have to

guess)
• Can be complex:

Which book did you file__ without__ reading__ ?
Which violins are these sonatas difficult to play__
on ___

6•863J/9•611J SP04 Lecture 12

Gaps

• Pretend “kiss” is a pure transitive verb.
• Is “the president kissed” grammatical?

• If so, what type of phrase is it?

• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

6•863J/9•611J SP04 Lecture 12

Gaps

• Object gaps:
• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Subject gaps:
the sandwich that
I wonder what
What else has

e kissed the president
Sally said e kissed the president

[how could you tell the difference?]

6•863J/9•611J SP04 Lecture 12

Gaps

• All gaps are really the same – a missing XP:
• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Phrases with missing NP:
X[missing=NP]

or just X/NP for short

e kissed the president
Sally said e kissed the president

6•863J/9•611J SP04 Lecture 12

Representation & computation
questions again

• How do we represent this displacement?
(difference between underlying & surface forms)

• How do we compute it? (I.e., parse sentences
that exhibit it)

• We want to recover the underlying structural
relationship because this tells us what the
predicate-argument relations are – Who did what
to whom

• Example: What did John eat → For which x, x a
thing, did John eat x?

• Note how the eat-x predicate-argument is
established

6•863J/9•611J SP04 Lecture 12

Representations with gaps
• Let’s first look at a tree with gaps:

what

Did

S

V

VP

NP

S

ε

NP

‘gap’ or
empty element

filler

6•863J/9•611J SP04 Lecture 12

Crisper representation:

Comp S

what

Auxv

did

NP

Sbar

NP VP

J

eat ε

‘gap’ or
empty element

‘filler’

6•863J/9•611J SP04 Lecture 12

Fillers can be arbitrarily far from gaps
they match with…

• What did John say that Mary thought that the
cat ate___?

6•863J/9•611J SP04 Lecture 12

Fillers and gaps

• Since ‘gap’ is NP going to empty string, we
could just add rule, NP→ε

• But this will overgenerate why?
• We need a way to distinguish between

• What did John eat
• Did John eat

• How did this work in the FSA case?

6•863J/9•611J SP04 Lecture 12

So, what do we need?

• A rule to expand NP as the empty symbol;
that’s easy enough: NP→ε

• A way to make sure that NP is expanded as
empty symbol iff there is a gap (in the right
place) before/after it

• A way to link the filler and the gap
• We can do all this by futzing with the

nonterminal names: Generalized Phrase
Structure Grammar (GPSG)

6•863J/9•611J SP04 Lecture 12

Example: relative clauses

• What are they?
• Noun phrase with a sentence embedded in it:

• The sandwich that the president ate
• What about it? What’s the syntactic representation

that will make the semantics transparent?

The sandwichi that the president ate ei

6•863J/9•611J SP04 Lecture 12

OK, that’s the output…what are
the cfg rules?

• Need to expand the object of eat as an empty
string

• So, need rule NP→ε
• But more, we need to link the head noun “the

sandwich” to this position
• Let’s use the fsa trick to ‘remember’

something – what is that trick???
• Remember?

6•863J/9•611J SP04 Lecture 12

Memory trick

• Use state of fsa to remember
• What is state in a CFG?
• The nonterminal names
• We need something like vowel harmony –

sequence of states = nonterminals
the sandwich that the president ate e

6•863J/9•611J SP04 Lecture 12

As a parse structure

NP

sandwichthe
NDet

that the president ate e

What’s this? We’ve seen it before…

It’s an Sbar = Comp+S

6•863J/9•611J SP04 Lecture 12

Parse structure for relative clause

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP
V NP

e
the P.

ate

NP

But how to generate this and block this:

6•863J/9•611J SP04 Lecture 12

Not OK!

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP
V NP

the pretzel
the P.

ate

NP

6•863J/9•611J SP04 Lecture 12

In short..

• We can expand out to e iff there is a prior
NP we want to link to

• So, we need some way of ‘marking’ this in
the state – I.e., the nonterminal

• Further, we have to somehow co-index e and
‘the sandwich’

• Well: let’s use a mark, say, “+”

6•863J/9•611J SP04 Lecture 12

The mark…

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP
V NP

e
the P.

ate

NP

+

+

+

+

6•863J/9•611J SP04 Lecture 12

But we can add + except this way:

• Add as part of atomic nonterminal name
• Before: NP→ NP Sbar

Sbar → Comp S
S → NP VP
VP → VP NP

• After: NP → NP Sbar+
Sbar+ → Comp S+
S+ → NP VP+
VP+ → V NP+
NP+ → e

6•863J/9•611J SP04 Lecture 12

Why does this work?

• Has desired effect of blocking ‘the sandwich
that the P. ate the pretzel’

• Has desired effect of allowing e exactly when
there is no other object

• Has desired effect of ‘linking’ sandwich to the
object (how?)

• Also: desired configuation between filler and
gap (what is this?)

6•863J/9•611J SP04 Lecture 12

Actual ‘marks’ in the literature

• Called a ‘slash category’
• Ordinary category: Sbar, VP, NP
• Slash category: Sbar/NP, VP/NP, NP/NP
• “X/Y” is ONE atomic nonterminal
• Interpret as: Subtree X is missing a Y

(expanded as e) underneath
• Example: Sbar/NP = Sbar missing NP

underneath (see our example)

6•863J/9•611J SP04 Lecture 12

As for slash rules…

• We need slash category introduction rule,
e.g., Sbar → Comp S/NP

• We need ‘elimination’ rule NP/NP→e

• These are paired (why?)

• We’ll need other slash categories, e.g.,

6•863J/9•611J SP04 Lecture 12

Need PP/NP…

NP

pretzel
the
Det

that

N

Sbar

Comp S

NP VP
V PP

the P.
choked

NP

P NP
on e

6•863J/9•611J SP04 Lecture 12

Also have ‘subject’ gaps

NP

president
the
Det

that

N

Sbar

Comp S

NP VP
V PP

choked

NP

P NP
on the pretzel

e

6•863J/9•611J SP04 Lecture 12

How would we write this?

6•863J/9•611J SP04 Lecture 12

Filler-gap configuration

NP

e

S
S

e

NP

6•863J/9•611J SP04 Lecture 12

Filler-gap configuration

• Equivalent to notion of ‘scope’ for natural
languages (scope of variables) ≈ Environment
frame in Scheme/binding environment for
‘variables’ that are empty categories

• Formally: Fillers c-command gaps
(constituent command)

• Definition of c-command:

6•863J/9•611J SP04 Lecture 12

C-command

• A phrase α c-commands a phrase β iff the
first branching node that dominates α also
dominates β (blue = filler, green = gap)

Yes
Yes

Yes No No

6•863J/9•611J SP04 Lecture 12

Natural for λ abstraction

Sbar

did Mary see what

what

S

Sbar

Mary see x

λx

6•863J/9•611J SP04 Lecture 12

Puzzle:

• Who saw Mary?

6•863J/9•611J SP04 Lecture 12

Idea 1: WYSIG syntax
Root

Q(uestion)

NP+wh

Pronp+wh

VP+tns

V+tns NP

Namesaw
Mary

Who

6•863J/9•611J SP04 Lecture 12

Is this right?

6•863J/9•611J SP04 Lecture 12

Another example

S

Sbar SbarConj

and

Mary caught
the rabid dog

John killed
the rabid dog

Sbar

6•863J/9•611J SP04 Lecture 12

What if we move the object?

S/NP

Sbar SbarConj

and

Mary caught e John killed e

Sbar

the rabid dog

NP

6•863J/9•611J SP04 Lecture 12

Why not read off the rules?

• Why can’t we just build a machine to do this?
• We could induce rules from the structures
• But we have to know the right representations

(structures) to begin with
• Penn treebank has structures – so could use learning

program for that
• This is, as noted, a construction based approach
• We have to account for various constraints, as noted

6•863J/9•611J SP04 Lecture 12

So what?

• What about multiple fillers and gaps?

• Which violins are these sonatas difficult to
play _____ on _____ ?these sonatas which violins

6•863J/9•611J SP04 Lecture 12

How many context-free rules?

• For every displaced phrase, what do we do to
the ‘regular’ context-free rules?

• How many kinds of displaced rules are there?
Which book and Which pencil did Mary buy?
*Mary asked who and what bought

• Well, how many???
• Add in agreement…

6•863J/9•611J SP04 Lecture 12

And then..

• John saw more horses than bill saw cows or
Mary talked to

• John saw more horses than bill saw cows or
mary talked to cats

• The kennel which Mary made and Fido sleeps
in has been stolen

• The kennel which Mary made and Fido sleeps
has been stolen

6•863J/9•611J SP04 Lecture 12

CFG Solution

• Encode constraints into the non-terminals
• Noun/verb agreement

S SgS
S PlS
SgS SgNP SgVP
SgNP SgDet SgNom

• Verb subcategories:
IntransVP IntransV
TransVP TransV NP

• Complex nonterminal names

6•863J/9•611J SP04 Lecture 12

How big can the grammar get???

6•863J/9•611J SP04 Lecture 12

• But this means huge proliferation of rules…
• An alternative:

• View terminals and non-terminals as
complex objects with associated features,
which take on different values

• Write grammar rules whose application is
constrained by tests on these features, e.g.
S NP VP (only if the NP and VP agree in

number)

6•863J/9•611J SP04 Lecture 12

Design advantage

• Decouple skeleton syntactic structure from
lexicon

• In fact, the syntactic structure really is a
skeleton:

6•863J/9•611J SP04 Lecture 12

From this…

NP

president
the
Det

that

N

Sbar

Comp S

NP VP

V PP

choked

NP

P NP

e

6•863J/9•611J SP04 Lecture 12

To this

president
the

that

choked
e

on

the

the..

6•863J/9•611J SP04 Lecture 12

Features are everywhere

morphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

provided α is in the set TRANSITIVE-VERBS

6•863J/9•611J SP04 Lecture 12

Better approach to factoring linguistic
knowledge

• Use the superposition idea: we superimpose one set
of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints
• S → NP VP

[num x] [num x] [num x]

the guy eats
[num singular] [num singular]

6•863J/9•611J SP04 Lecture 12

Or in tree form:

S [number x]

NP [number x] VP [number x]

DT [number x] V [number x] NP

the
[number singular]

guy
[number singular]

N [number x]

eats
[number singular]

6•863J/9•611J SP04 Lecture 12

Values trickle up

S [number x]

NP [number x] VP [number x]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]

6•863J/9•611J SP04 Lecture 12

Checking features

S [number x]

NP [number sing] VP [number sing]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]

6•863J/9•611J SP04 Lecture 12

What sort of power do we need
here?

• We have [feature value] combinations so far
• This seems fairly widespread in language
• We call these atomic feature-value combinations
• Other examples:
1. In English:
person feature (1st, 2nd, 3rd);
Case feature (degenerate in English: nominative,

object/accusative, possessive/genitive): I know her vs.
I know she;

Number feature: plural/sing; definite/indefinite
Degree: comparative/superlative

6•863J/9•611J SP04 Lecture 12

Other languages; formalizing features

• Two kinds:
1. Syntactic features, purely grammatical function

Example: Case in German (NOMinative, ACCusative,
DATive case) – relative pronoun must agree w/
Case of verb with which it is construed
Wer micht strak is, muss klug sein
Who not strong is, must clever be
NOM NOM
Who isn’t strong must be clever

6•863J/9•611J SP04 Lecture 12

Continuing this example

Ich nehme, wen du mir empfiehlst
I take whomever you me recommend
ACC ACC ACC
I take whomever you recommend to me

*Ich nehme, wen du vertraust
I take whomever you trust
ACC ACC DAT

6•863J/9•611J SP04 Lecture 12

Other class of features

2. Syntactic features w/ meaning – example, number,
def/indef., adjective degree

Hungarian
Akart egy könyvet
He-wanted a book

-DEF -DEF
egy könyv amit akart
A book which he-wanted

-DEF -DEF

6•863J/9•611J SP04 Lecture 12

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix

1

2

...
n

Feature
Feature

Feature










1

2

....
n

Value
Value

Value












6•863J/9•611J SP04 Lecture 12

How to formalize?

• Let F be a finite set of feature names, let A
be a set of feature values

• Let p be a function from feature names to
permissible feature values, that is,
p: F→2A

• Now we can define a word category as a
triple <F, A, p>

• This is a partial function from feature names
to feature values

6•863J/9•611J SP04 Lecture 12

Example
• F= {CAT, PLU, PER}
• p:

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is relatively

simple here…how bad can it get?

6•863J/9•611J SP04 Lecture 12

Operations on Feature Structures

• What will we need to do to these structures?
• Check the compatibility of two structures
• Merge the information in two structures

• We can do both using unification
• We say that two feature structures can be unified if

the component features that make them up are
compatible

• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]

6•863J/9•611J SP04 Lecture 12

• [Num SG] U [Pers 3] =

• Structures are compatible if they contain no
features that are incompatible

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value

pairs
• A failed unification attempt

3
Num SG
Pers

 
 
 
 
  

1
3

1

Num SGAgr
Pers

Subj Agr

  
  
  
  

  
       

3

3

Num PlAgr
Pers

Num PLSubj Agr
Pers

  
  
  
  
  
 

   
   
   
   
     

∪

6•863J/9•611J SP04 Lecture 12

Features, Unification and Grammars
• How do we incorporate feature structures into our

grammars?
• Assume that constituents are objects which have

feature-structures associated with them
• Associate sets of unification constraints with

grammar rules
• Constraints must be satisfied for rule to be

satisfied
• For a grammar rule β0 β1 …βn

• <βi feature path> = Atomic value
• <βi feature path> = <βj feature path>

• NB: if simple feat-val pairs, no arbitrary nesting, then
no need for paths

6•863J/9•611J SP04 Lecture 12

Feature unification examples
(1) [agreement: [number: singular

person: first]]
(2) [agreement: [number: singular]

case: nominative]

• (1) and (2) can unify, producing (3):
(3) [agreement: [number: singular

person: first]
case: nominative]

(try overlapping the graph structures corresponding to
these two)

6•863J/9•611J SP04 Lecture 12

Feature unification examples
1) [agreement: [number: singular

person: first]]
(2) [agreement: [number: singular]

case: nominative]
(4) [agreement: [number: singular

person: third]]
• (2) & (4) can unify, yielding (5):
(5) [agreement: [number: singular

person: third]
case: nominative]

• BUT (1) and (4) cannot unify because their values
conflict on <agreement person>

6•863J/9•611J SP04 Lecture 12

• To enforce subject/verb number agreement

S NP VP
<NP NUM> = <VP NUM>

6•863J/9•611J SP04 Lecture 12

Head Features

• Features of most grammatical categories are
copied from head child to parent (e.g. from V to
VP, Nom to NP, N to Nom, …)

• These normally written as ‘head’ features, e.g.
VP V NP
<VP HEAD> = <V HEAD>
NP Det Nom
<NP HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom N
<Nom HEAD> = <N HEAD>

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=1] → Det N[n=1]

N[n=1] → N[n=1] VP
N[n=1] → plan

VP[n=1] → V[n=1] VP
V[n=1] → has

S→ NP[n=1] VP[n=1]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=α] → Det N[n=α]

N[n=α] → N[n=α] VP
N[n=1] → plan

VP[n=α] → V[n=α] VP
V[n=1] → has

S→ NP[n=α] VP[n=α]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Morphology (e.g.,word endings)

N[h=plan,n=1] → plan
N[h=plan,n=2+] → plans
V[h=thrill,tense=prog] → thrilling
V[h=thrill,tense=past] → thrilled
V[h=go,tense=past] → went

Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]Subcategorization (i.e.,
transitive vs. intransitive)
When is VP → V NP ok?
VP[h=α] → V[h=α] NP

restrict to α ∈ TRANSITIVE_VERBS

When is N → N VP ok?
N[h=α] → N[h=α] VP

restrict to α ∈ {plan, plot, hope,…}

Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Selectional restrictions
VP[h=α] → V[h=α] NP
I.e., VP[h=α] → V[h=α] NP[h=β]

Don’t fill template in all ways:
VP[h=thrill] → V[h=thrill] NP[h=Otto]

*VP[h=thrill] → V[h=thrill] NP[h=plan]

Why use heads?

leave out, or low prob

Equivalently: keep the template
but make prob depend on α,β

6•863J/9•611J SP04 Lecture 12

• How do we define 3plNP?
• How does this improve over the CFG solution?

• Feature values can be feature structures themselves
• Useful when certain features commonly co-occur,

e.g. number and person

• Feature path: path through structures to value
(e.g.

Agr Num SG

Cat

Agr









3

NP
Num SG
Pers



          

6•863J/9•611J SP04 Lecture 12

Features and grammars

agreement: person: third
number: singularagreement:

agreement

personnumber

singular third

category

category: N

N

6•863J/9•611J SP04 Lecture 12

Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep

6•863J/9•611J SP04 Lecture 12

Our feature structures

• NP[agr ?B] -> DET[agr ?B] N[agr ?B]
• VP[fin ?A, agr ?B] -> V2[fin ?A, agr ?B] NP
• Maria NAME[agr [person 3, plural -]]

Kimmo entry for Verb (eg, ‘coge’ after analysis):
• +e Suffix "[fin +, agr [tense pres,

mode ind, person 3, plural -]]"

6•863J/9•611J SP04 Lecture 12

How can we parse with feature
structures?

• Unification operator: takes 2 features structures and
returns either a merged feature structure or fail

• Input structures represented as DAGs
• Features are labels on edges
• Values are atomic symbols or DAGs

• Unification algorithm goes through features in one
input DAG1 trying to find corresponding features in
DAG2 – if all match, success, else fail

• WE WILL USE MUCH SIMPLER kind of feature
structure

6•863J/9•611J SP04 Lecture 12

Features and Earley Parsing
• Goal:

• Use feature structures to provide richer
representation

• Block entry into chart of ill-formed constituents
• Changes needed to Earley

• Add feature structures to grammar rules, & lexical
entries

• Add field to states containing set representing
feature structure corresponding to state of parse,
e.g.

S • NP VP, [0,0], [], Set= [Agr [plural -]]

6•863J/9•611J SP04 Lecture 12

• Add new test to Completer operation
• Recall: Completer adds new states to chart by

finding states whose • can be advanced (i.e.,
category of next constituent matches that of
completed constituent)

• Now: Completer will only advance those states if
their feature structures unify

• New test for whether to enter a state in the chart
• Now feature structures may differ, so check must

be more complex
• Suppose feature structure is more specific than

existing one tied to this state? Do we add it?

6•863J/9•611J SP04 Lecture 12

Evidence that you don’t need this
much power

• Linguistic evidence: looks like you just check whether
features are nondistinct, rather than equal or not –
variable matching, not variable substitution

• Full unification lets you generate unnatural languages:
ai, s.t. i a power of 2 – e.g., a, aa, aaaa, aaaaaaaa, …
why is this ‘unnatural’ – another (seeming) property of
natural languages:

Natural languages seem to obey a constant growth
property

6•863J/9•611J SP04 Lecture 12

Parsing with features – hook from
kimmo to earley

• Features written in this form (in Kimmo)

• +as Suffix "[fin +, agr [tense pres, mode
ind, person 2, plural -]]”

• In general:
[feature value, feature [feature val, …, feature val]]

6•863J/9•611J SP04 Lecture 12

Where wolf

6•863J/9•611J SP04 Lecture 12

6•863J/9•611J SP04 Lecture 12

6•863J/9•611J SP04 Lecture 12

6•863J/9•611J SP04 Lecture 12

6•863J/9•611J SP04 Lecture 12

6•863J/9•611J SP04 Lecture 12

Constant growth property

Claim: ∃ Bound k on the ‘distance gap’ between
any two consecutive sentences in this list,
which can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot
get too big – cannot grow w/o bounds

• We can do this a bit more formally

6•863J/9•611J SP04 Lecture 12

Constant growth
• Dfn. A language L is semilinear if the number of

occurrences of each symbol in any string of L is a linear
combination of the occurrences of these symbols in some
fixed, finite set of strings of L.

• Dfn. A language L is constant growth if there is a constant
c0 and a finite set of constants C s.t. for all w∈L, where
|w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c, some c ∈C

• Fact. (Parikh, 1971). Context-free languages are semilinear,
and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is non
constant-growth

6•863J/9•611J SP04 Lecture 12

General feature grammars – how
violate these properties

• Take example from so-called “lexical-
functional grammar” but this applies as well
to any general unification grammar

• Lexical functional grammar (LFG): add
checking rules to CF rules (also variant HPSG)

6•863J/9•611J SP04 Lecture 12

Example LFG

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?

6•863J/9•611J SP04 Lecture 12

Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[subj [num singular]]

N
[num singular]

sleepsguys
[num plural]

6•863J/9•611J SP04 Lecture 12

Alas, this allows non-constant
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the

right & the left – make sure a power of 2

6•863J/9•611J SP04 Lecture 12

Example
A

A A

A A A A

a a a a
Checks ok (↑ f) =1 (↑ f) =1 (↑ f) =1 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓

6•863J/9•611J SP04 Lecture 12

If mismatch anywhere, get a feature
clash…

A

A A

A A

a a
a

Fails! (↑ f) =1 (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!

6•863J/9•611J SP04 Lecture 12

Conclusion then

• If we use too powerful a formalism, it lets us
write ‘unnatural’ grammars

• This puts burden on the person writing the
grammar – which may be ok.

• However, child doesn’t presumably do this
(they don’t get ‘late days’)

• We want to strive for automatic programming
– ambitious goal

