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The Menu Bar
• Administrivia:

• 3a due Friday; Lab 3b out Weds;  due after 
vacation

Agenda:
Parsing strategies: Honey, I shrank the 
grammar!
Features
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Why: recover meaning from 
structure

John ate ice-cream → ate(John, ice-cream)

-This must be done from structure 
-Actually want something like λxλy ate(x,y)
How?
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Why: recover meaning from 
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)
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Two parts:

• Syntax: define hierarchical structure
• Semantics: interpret over hierarchical 

structure

• What are the constraints?
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Conclusion we will head to

• If we use too powerful a formalism, it lets us 
write ‘unnatural’ grammars

• This puts burden on the person writing the 
grammar – which may be ok.

• However, child doesn’t presumably do this 
(they don’t get ‘late days’)

• We want to strive for automatic programming 
– ambitious goal
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Key elements – part 1

• Establish basic phrase types: S, VP, NP, PP, …
• Where do these come from???
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What kinds of phrases are there?

• Noun phrases, verb phrases, adjectival 
phrases (“green with envy”), adverbial 
phrases (“quickly up the hill”), prepositional 
phrases (“off the wall”), etc.

• In general: grounded on lexical items
• Shows us the constraints on context-free 

rules for natural grammars
• Example:
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Phrase types are constrained by 
lexical projection

Verb Phrase → Verb          Noun Phrase 
“is-a” (“kick the ball”)

Prepositional Phrase →Preposition Noun Phrase
(“on the table”)

Adjective Phrase → Adjective    Prep. Phrase
(“green with envy”)

Etc. … what is the pattern?
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Function-argument relation

XP →X arguments, where X= Noun, Verb, 
Preposition, Adjective (all lexical 

categories in the language)
Like function-argument structure
(so-called “Xbar theory”)
Constrains what grammar rules cannot be:
Verb Phrase →Noun Noun Phrase
or even
Verb Phrase →Noun Phrase Verb Noun Phrase
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English is function-argument form

function

at

args

green

sold
the stock
a bargain price

with envy

the over-priced stock
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Other languages are the mirror-
inverse:  arg-function

at
green

sold
the stock
a bargain price

with envy

theover-priced stock

This is like Japanese
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Key elements – part 2

• Establish verb subcategories
• What are these?

• Different verbs take different # arguments
• 0, 1, 2 arguments (‘complements’)
• Poirot thought; Poirot thought the gun; Poirot 

thought the gun was the cause.
• Some verbs take certain sentence complements:
• I know who John saw/? I think who John saw

propositional types: 
• Embedded questions: I wonder whether…
• Embedded proposition:  I think that John saw 

Mary
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Key elements

• Subtlety to this
• Believe, know, think, wonder,…

• ? I believe why John likes ice-cream
• I know why John likes ice-cream
• I believe that John likes ice-cream
• I believe (that) John likes ice-cream

• # args, type: Verb subcategories
• How many subcategories are there?
• What is the structure?
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Idea for phrases

• They are based on ‘projections’ of words 
(lexical items) – imagine features ‘percolating’ 
up

know [V +proposition]

XP [            ]V +proposition
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Heads of phrases

know [V +proposition]

V +proposition
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The parse structure for ‘embedded’ 
sentences

I believe (that) John likes ice-cream

S

NP VP

I

V

believe

that J. likes ice-cream
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New phrase type: S-bar

NP VP

I

V

believe

S

Sbar

that J. likes ice-cream
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Sbar VP

V

believe
Sbar

that

Comp S

J. likes ice-cream
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Sbar VP

V

believe
Sbar

Comp S

J. likes ice-cream

ε
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In fact, true for all sentences…

Comp S

ε

S

J. likes ice-cream

Sbar
John likes ice-cream

Why?
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What rules will we need?

• (U do it..)
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Verb types - continued

• What about:
Clinton admires honesty/Honesty admires 

Clinton
How do we encode these in a CFG?
Should we encode them?
• Colorless green ideas sleep furiously
• Revolutionary new ideas appear infrequently
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Problems with this – how much info?
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Agreement gets complex…

POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

–Czech: AGFS3----1A----
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Other sentence types

• Questions:  
• Will John eat ice-cream?
• Did John eat ice-cream?

• How do we encode this?



6•863J/9•611J SP04 Lecture 12

`Empty’ elements or categories
• Where surface phrase is displaced from its canonical 

syntactic position
• Examples:

• The ice-cream was eaten vs.
• John ate the ice-cream
• What did John eat?
• What did Bill say that that John thought the cat ate?
• For What x,  did Bill say… the cat ate x
• Bush is too stubborn to talk to
• Bush is too stubborn [x to talk to Bush]
• Bush is too stubborn to talk to the Pope
• Bush is too stubborn [Bush to talk to the Pope]
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More interesting clause types
• Apparently “long distance” effects: 

‘displacement’ of phrases from their ‘base’ 
positions

1. So-called ‘wh-movement’:
What did John eat   ?

2. Topicalization (actually the same)
On this day, it snowed two feet.

3. Other cases: so-called ‘passive’:
The eggplant was eaten by John

• How to handle this? 
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We can think of this as ‘fillers’ and 
‘gaps’

• Filler= the displaced item
• Gap = the place where it belongs, as argument
• Fillers can be NPs, PPs, S’s
• Gaps are invisible- so hard to parse! (we have to 

guess)
• Can be complex:

Which book did you file__ without__ reading__  ?
Which violins are these sonatas difficult to play__ on 
___
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Problems with this – how much info?

• Even verb subcategories not obvious
John gave Mary the book → NP NP
John gave the book to Mary → NP PP

But:
John donated the book to the library

‘Alternation’ pattern – semantic?  NO!
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Agreement gets complex…

POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

–Czech: AGFS3----1A----
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More interesting clause types
• Apparently “long distance” effects: 

‘displacement’ of phrases from their ‘base’ 
positions

1. So-called ‘wh-movement’:
What did John eat   ?

2. Topicalization (actually the same)
On this day, it snowed two feet.

3. Other cases: so-called ‘passive’:
The eggplant was eaten by John

• How to handle this? 
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`Empty’ elements or categories
• Where surface phrase is displaced from its canonical 

syntactic position & nothing shows on the surface
• Examples:

• The ice-cream was eaten vs.
• John ate the ice-cream
• What did John eat?
• What did Bill say that that John thought the cat ate?
• For What x,  did Bill say… the cat ate x
• Bush is too stubborn to talk to
• Bush is too stubborn [x to talk to Bush]
• Bush is too stubborn to talk to the Pope
• Bush is too stubborn [Bush to talk to the Pope]
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‘missing’ or empty categories

• John promised Mary ___ to leave
• John promised Mary [John to leave]
• Known as ‘control’

• John persuaded Mary [___ to leave]
• John persuaded Mary [Mary to leave]
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We can think of this as ‘fillers’ and 
‘gaps’

• Filler= the displaced item
• Gap = the place where it belongs, as argument
• Fillers can be NPs, PPs, S’s
• Gaps are invisible- so hard to parse! (we have to 

guess)
• Can be complex:

Which book did you file__ without__ reading__  ?
Which violins are these sonatas difficult to play__ 
on ___
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Gaps

• Pretend “kiss” is a pure transitive verb.
• Is “the president kissed” grammatical?

• If so, what type of phrase is it?

• the sandwich that
• I wonder what 
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle
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Gaps

• Object gaps:
• the sandwich that
• I wonder what 
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Subject gaps:
the sandwich that
I wonder what 
What else has

e kissed the president
Sally said e kissed the president

[how could you tell the difference?]
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Gaps

• All gaps are really the same – a missing XP:
• the sandwich that
• I wonder what 
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Phrases with missing NP:
X[missing=NP]

or just X/NP for short 

e kissed the president
Sally said e kissed the president
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Representation & computation 
questions again

• How do we represent this displacement? 
(difference between underlying & surface forms)

• How do we compute it?  (I.e., parse sentences 
that exhibit it)

• We want to recover the underlying structural 
relationship because this tells us what the 
predicate-argument relations are – Who did what 
to whom

• Example: What did John eat → For which x, x a 
thing, did John eat x?   

• Note how the eat-x predicate-argument is 
established
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Representations with gaps
• Let’s first look at a tree with gaps:

what

Did 

S

V

VP

NP

S

ε

NP

‘gap’ or
empty element

filler
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Crisper representation:

Comp S

what

Auxv

did

NP

Sbar

NP VP

J

eat ε

‘gap’ or
empty element

‘filler’
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Fillers can be arbitrarily far from gaps 
they match with…

• What did John say that Mary thought that the 
cat ate___?
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Fillers and gaps

• Since ‘gap’ is NP going to empty string, we 
could just add rule, NP→ε

• But this will overgenerate why?
• We need a way to distinguish between

• What did John eat
• Did John eat

• How did this work in the FSA case?
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So, what do we need?

• A rule to expand NP as the empty symbol; 
that’s easy enough: NP→ε

• A way to make sure that NP is expanded as 
empty symbol iff there is a gap (in the right 
place) before/after it

• A way to link the filler and the gap
• We can do all this by futzing with the 

nonterminal names: Generalized Phrase 
Structure Grammar (GPSG)
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Example: relative  clauses

• What are they?
• Noun phrase with a sentence embedded in it:

• The sandwich that the president ate
• What about it? What’s the syntactic representation 

that will make the semantics transparent?

The sandwichi that the president ate ei
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OK, that’s the output…what are 
the cfg rules?

• Need to expand the object of eat as an empty 
string

• So, need rule NP→ε
• But more, we need to link the head noun “the 

sandwich” to this position
• Let’s use the fsa trick to ‘remember’

something – what is that trick???
• Remember?
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Memory trick

• Use state of fsa to remember
• What is state in a CFG?
• The nonterminal names
• We need something like vowel harmony –

sequence of states = nonterminals
the sandwich that the president ate e
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As a parse structure

NP

sandwichthe
NDet

that the president ate e

What’s this? We’ve seen it before…

It’s an Sbar = Comp+S
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Parse structure for relative clause

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP
V NP

e
the P.

ate

NP

But how to generate this and block this:
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Not OK!

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP
V NP

the pretzel
the P.

ate

NP
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In short..

• We can expand out to e  iff there is a prior 
NP we want to link to

• So, we need some way of ‘marking’ this in 
the state – I.e., the nonterminal

• Further, we have to somehow co-index e and 
‘the sandwich’ 

• Well: let’s use a mark, say, “+”
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The mark…

NP

sandwich
the
Det

that

N

Sbar

Comp S

NP VP
V NP

e
the P.

ate

NP

+

+

+

+
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But we can add + except this way:

• Add as part of atomic nonterminal name
• Before:    NP→ NP Sbar

Sbar → Comp S
S → NP VP
VP → VP NP

• After:      NP → NP Sbar+
Sbar+ → Comp S+
S+ → NP VP+
VP+ → V NP+
NP+ → e

6•863J/9•611J SP04 Lecture 12

Why does this work?

• Has desired effect of blocking ‘the sandwich 
that the P. ate the pretzel’

• Has desired effect of allowing e exactly when 
there is no other object

• Has desired effect of ‘linking’ sandwich to the 
object (how?)

• Also: desired configuation between filler and 
gap (what is this?)
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Actual ‘marks’ in the literature

• Called a ‘slash category’
• Ordinary category:  Sbar, VP, NP
• Slash category:  Sbar/NP, VP/NP, NP/NP
• “X/Y” is ONE atomic nonterminal
• Interpret as:  Subtree X is missing a Y 

(expanded as e) underneath
• Example: Sbar/NP = Sbar missing NP 

underneath (see our example)
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As for slash rules…

• We need slash category introduction rule, 
e.g., Sbar → Comp S/NP

• We need ‘elimination’ rule NP/NP→e

• These are paired (why?)

• We’ll need other slash categories, e.g.,
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Need PP/NP… 

NP

pretzel
the
Det

that

N

Sbar

Comp S

NP VP
V PP

the P.
choked

NP

P NP
on e
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Also have ‘subject’ gaps

NP

president
the
Det

that

N

Sbar

Comp S

NP VP
V PP

choked

NP

P NP
on the pretzel

e
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How would we write this?
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Filler-gap configuration 

NP

e

S
S

e

NP
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Filler-gap configuration

• Equivalent to notion of ‘scope’ for natural 
languages (scope of variables) ≈ Environment 
frame in Scheme/binding environment for 
‘variables’ that are empty categories

• Formally: Fillers c-command gaps 
(constituent command)

• Definition of c-command:
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C-command

• A phrase α c-commands a phrase β iff the 
first branching node that dominates α also 
dominates β  (blue = filler, green = gap)

Yes
Yes

Yes No No
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Natural for λ abstraction

Sbar

did Mary see what

what

S

Sbar

Mary  see     x

λx
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Puzzle:

• Who saw Mary?
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Idea 1: WYSIG syntax
Root

Q(uestion)

NP+wh

Pronp+wh

VP+tns

V+tns NP

Namesaw
Mary

Who
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Is this right?
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Another example

S

Sbar SbarConj

and

Mary caught
the rabid dog

John killed
the rabid dog

Sbar
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What if we move the object?

S/NP

Sbar SbarConj

and

Mary caught e John killed e

Sbar

the rabid dog

NP
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Why not read off the rules?

• Why can’t we just build a machine to do this?
• We could induce rules from the structures
• But we have to know the right representations 

(structures) to begin with
• Penn treebank has structures – so could use learning 

program for that
• This is, as noted, a construction based approach
• We have to account for various constraints, as noted

6•863J/9•611J SP04 Lecture 12

So what?

• What about multiple fillers and gaps?

• Which violins are these sonatas difficult to 
play _____ on    _____   ?these sonatas which violins
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How many context-free rules?

• For every displaced phrase, what do we do to 
the ‘regular’ context-free rules?

• How many kinds of displaced rules are there?
Which book and Which pencil did Mary buy?
*Mary asked who and what bought

• Well, how many???
• Add in agreement… 
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And then..

• John saw more horses than bill saw cows or 
Mary talked to

• John saw more horses than bill saw cows or 
mary talked to cats

• The kennel which Mary made and Fido sleeps 
in has been stolen

• The kennel which Mary made and Fido sleeps 
has been stolen
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CFG Solution

• Encode constraints into the non-terminals
• Noun/verb agreement

S SgS
S PlS
SgS SgNP SgVP
SgNP SgDet SgNom

• Verb subcategories:
IntransVP IntransV
TransVP TransV NP

• Complex nonterminal names
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How big can the grammar get???
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• But this means huge proliferation of rules…
• An alternative:

• View terminals and non-terminals as 
complex objects with associated features, 
which take on different values

• Write grammar rules whose application is 
constrained by tests on these features, e.g.
S NP VP (only if the NP and VP agree in 

number)
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Design advantage

• Decouple skeleton syntactic structure from 
lexicon

• In fact, the syntactic structure really is a 
skeleton:
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From this…

NP

president
the
Det

that

N

Sbar

Comp S

NP VP

V PP

choked

NP

P NP

e
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To this

president
the

that

choked
e

on

the

the..
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Features are everywhere

morphology of a single word: 
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase 
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

provided α is in the set TRANSITIVE-VERBS
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Better approach to factoring linguistic 
knowledge

• Use the superposition idea: we superimpose one set 
of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints
• S → NP VP

[num x] [num x] [num x]

the guy eats
[num singular] [num singular]
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Or in tree form:

S [number x]

NP [number x] VP [number x]

DT [number x] V [number x] NP

the
[number singular]

guy
[number singular]

N [number x]

eats
[number singular]
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Values trickle up

S [number x]

NP [number x] VP [number x]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]



6•863J/9•611J SP04 Lecture 12

Checking features

S [number x]

NP [number sing] VP [number sing]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]
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What sort of power do we need 
here?

• We have [feature value] combinations so far
• This seems fairly widespread in language
• We call these atomic  feature-value combinations
• Other examples: 
1. In English: 
person feature (1st, 2nd, 3rd); 
Case feature (degenerate in English: nominative, 

object/accusative, possessive/genitive): I know her vs. 
I know she; 

Number feature: plural/sing; definite/indefinite
Degree: comparative/superlative
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Other languages; formalizing features

• Two kinds:
1. Syntactic features, purely grammatical function 

Example: Case in German (NOMinative, ACCusative, 
DATive case) – relative pronoun must agree w/ 
Case of verb with which it is construed
Wer micht strak is, muss klug sein
Who not  strong is, must clever be
NOM NOM
Who isn’t strong must be clever
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Continuing this example

Ich nehme, wen         du mir empfiehlst
I      take  whomever you me recommend
ACC          ACC                  ACC
I     take   whomever you recommend to me

*Ich nehme, wen      du vertraust
I      take  whomever you trust
ACC        ACC               DAT
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Other class of features

2. Syntactic features w/ meaning – example, number, 
def/indef., adjective degree

Hungarian
Akart           egy könyvet
He-wanted  a    book

-DEF            -DEF
egy könyv amit     akart
A   book which     he-wanted

-DEF                   -DEF

6•863J/9•611J SP04 Lecture 12

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix

1

2

...
n

Feature
Feature

Feature










1

2

....
n

Value
Value

Value











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How to formalize?

• Let F be a finite set of feature names, let A 
be a set of feature values

• Let p be a function from feature names to 
permissible feature values, that is, 
p: F→2A

• Now we can define a word category as a 
triple <F, A, p> 

• This is a partial function from feature names 
to feature values

6•863J/9•611J SP04 Lecture 12

Example 
• F= {CAT, PLU, PER}
• p: 

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep =    {[CAT V], [PLU -], [PER 1]}
sleep =    {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is relatively 

simple here…how bad can it get?
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Operations on Feature Structures

• What will we need to do to these structures?
• Check the compatibility of two structures
• Merge the information in two structures

• We can do both using unification
• We say that two feature structures can be unified if 

the component features that make them up are 
compatible

• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]
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• [Num SG] U [Pers 3] =

• Structures are compatible if they contain no 
features that are incompatible 

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value 

pairs
• A failed unification attempt

3
Num SG
Pers

 
 
 
 
  

1
3

1

Num SGAgr
Pers

Subj Agr

  
  
  
  

  
       

3

3

Num PlAgr
Pers

Num PLSubj Agr
Pers

  
  
  
  
  
 

   
   
   
   
     

∪
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Features, Unification and Grammars
• How do we incorporate feature structures into our 

grammars?
• Assume that constituents are objects which have 

feature-structures associated with them
• Associate sets of unification constraints with 

grammar rules 
• Constraints must be satisfied for rule to be 

satisfied
• For a grammar rule β0 β1 …βn

• <βi feature path> = Atomic value
• <βi feature path> = <βj feature path>

• NB: if simple feat-val pairs, no arbitrary nesting, then 
no need for paths
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Feature unification examples
(1) [ agreement: [ number: singular 

person: first ]  ]
(2) [ agreement: [ number: singular] 

case: nominative  ]  

• (1) and (2) can unify, producing (3):
(3) [ agreement: [ number: singular 

person: first ]  
case: nominative  ]

(try overlapping the graph structures corresponding to 
these two)
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Feature unification examples
1) [ agreement: [ number: singular 

person: first ]  ]
(2) [ agreement: [ number: singular] 

case: nominative ]  
(4) [ agreement: [ number: singular 

person: third]  ]
• (2) & (4) can unify, yielding (5):
(5) [ agreement: [ number: singular 

person: third]  
case: nominative  ]

• BUT (1) and (4) cannot unify because their values 
conflict on <agreement person>
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• To enforce subject/verb number agreement

S NP VP
<NP NUM> = <VP NUM>
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Head Features

• Features of most grammatical categories are 
copied from head child to parent (e.g. from V to 
VP, Nom to NP, N to Nom, …)

• These normally written as ‘head’ features, e.g.
VP V NP
<VP HEAD> = <V HEAD>
NP Det Nom
<NP HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom N
<Nom HEAD> = <N HEAD>

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=1] → Det N[n=1]

N[n=1] → N[n=1] VP
N[n=1] → plan

VP[n=1] → V[n=1] VP
V[n=1] → has

S→ NP[n=1]  VP[n=1]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=α] → Det N[n=α]

N[n=α] → N[n=α] VP
N[n=1] → plan

VP[n=α] → V[n=α] VP
V[n=1] → has

S→ NP[n=α]  VP[n=α]



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Morphology (e.g.,word endings)

N[h=plan,n=1] → plan
N[h=plan,n=2+] → plans
V[h=thrill,tense=prog] → thrilling
V[h=thrill,tense=past] → thrilled
V[h=go,tense=past] → went

Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]Subcategorization (i.e., 
transitive vs. intransitive)
When is VP → V NP ok?
VP[h=α] → V[h=α] NP

restrict to α ∈ TRANSITIVE_VERBS

When is N → N VP ok?
N[h=α] → N[h=α] VP

restrict to α ∈ {plan, plot, hope,…}

Why use heads?



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Selectional restrictions
VP[h=α] → V[h=α] NP
I.e., VP[h=α] → V[h=α] NP[h=β]

Don’t fill template in all ways:
VP[h=thrill] → V[h=thrill] NP[h=Otto]

*VP[h=thrill] → V[h=thrill] NP[h=plan]

Why use heads?

leave out, or low prob

Equivalently: keep the template
but make prob depend on α,β
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• How do we define 3plNP?
• How does this improve over the CFG solution?

• Feature values can be feature structures themselves
• Useful when certain features commonly co-occur, 

e.g. number and person

• Feature path: path through structures to value 
(e.g. 

Agr Num SG

Cat

Agr









3

NP
Num SG
Pers



          
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Features and grammars

agreement: person: third
number: singularagreement:

agreement

personnumber

singular third

category

category: N

N
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Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep
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Our feature structures

• NP[agr ?B] -> DET[agr ?B] N[agr ?B]
• VP[fin ?A, agr ?B] -> V2[fin ?A, agr ?B] NP
• Maria NAME[agr [person 3, plural -]]

Kimmo entry for Verb (eg, ‘coge’ after analysis):
• +e Suffix "[fin +, agr [tense pres, 

mode ind, person 3, plural -]]"
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How can we parse with feature 
structures?

• Unification operator: takes 2 features structures and 
returns either a merged feature structure or fail

• Input structures represented as DAGs
• Features are labels on edges
• Values are atomic symbols or DAGs

• Unification algorithm goes through features in one 
input DAG1 trying to find corresponding features in 
DAG2 – if all match, success, else fail

• WE WILL USE MUCH SIMPLER kind of feature 
structure
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Features and Earley Parsing
• Goal:

• Use feature structures to provide richer 
representation

• Block entry into chart of ill-formed constituents
• Changes needed to Earley

• Add feature structures to grammar rules, & lexical 
entries

• Add field to states containing set representing 
feature structure corresponding to state of parse, 
e.g.

S • NP VP, [0,0], [], Set= [Agr [plural -]]
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• Add new test to Completer operation
• Recall: Completer adds new states to chart by 

finding states whose • can be advanced (i.e., 
category of next constituent matches that of 
completed constituent)

• Now: Completer will only advance those states if 
their feature structures unify

• New test for whether to enter a state in the chart
• Now feature structures may differ, so check must 

be more complex
• Suppose feature structure is more specific than 

existing one tied to this state?  Do we add it?
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Evidence that you don’t need this 
much power

• Linguistic evidence: looks like you just check whether 
features are nondistinct, rather than equal or not –
variable matching, not variable substitution

• Full unification lets you generate unnatural languages:
ai,  s.t. i a power of 2 – e.g., a, aa, aaaa, aaaaaaaa, …
why is this ‘unnatural’ – another (seeming) property of 
natural languages:

Natural languages seem to obey a constant growth
property
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Parsing with features – hook from 
kimmo to earley

• Features written in this form (in Kimmo)

• +as Suffix "[fin +, agr [tense pres, mode 
ind, person 2, plural -]]”

• In general:  
[feature value,  feature [feature val, …, feature val]]
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Where wolf
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Constant growth property

Claim: ∃ Bound k on the ‘distance gap’ between 
any two consecutive sentences in this list, 
which can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot 
get too big – cannot grow w/o bounds

• We can do this a bit more formally
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Constant growth
• Dfn. A language L is semilinear if the number of 

occurrences of each symbol in any string of L is a linear 
combination of the occurrences of these symbols in some 
fixed, finite set of strings of L.  

• Dfn. A language L is constant growth if there is a constant 
c0 and a finite set of constants C s.t. for all w∈L, where 
|w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c, some c ∈C

• Fact. (Parikh, 1971). Context-free languages are semilinear, 
and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is non 
constant-growth
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General feature grammars – how 
violate these properties

• Take example from so-called “lexical-
functional grammar” but this applies as well 
to any general unification grammar

• Lexical functional grammar (LFG): add 
checking rules to CF rules (also variant HPSG)
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Example LFG

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP                          VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?
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Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[subj [num singular]]

N
[num singular]

sleepsguys
[num plural]
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Alas, this allows non-constant 
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A                  A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the 

right & the left – make sure a power of 2
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Example
A

A A

A A A A

a a a a
Checks ok (↑ f) =1  (↑ f) =1  (↑ f) =1  (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓
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If mismatch anywhere, get a feature 
clash…

A

A A

A A

a a
a

Fails! (↑ f) =1  (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!
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Conclusion then

• If we use too powerful a formalism, it lets us 
write ‘unnatural’ grammars

• This puts burden on the person writing the 
grammar – which may be ok.

• However, child doesn’t presumably do this 
(they don’t get ‘late days’)

• We want to strive for automatic programming 
– ambitious goal


