6.863] Natural Language Processing

Lecture 12: Featured attraction

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

. Iﬂ}dministrivia:

~ 177 3a due Friday; Lab 3b out Weds; due after
vacation
Agenda:
Parsing strategies: Honey, I shrank the
grammar!

Features

6¢8631/9¢611] SP04 Lecture 12

Why: recover meaning from
Structure
|

= [

John ate ice-cream — ate(John, ice-cream)

-This must be done from structure

-Actually want something like AxLy ate(x,y)
How?

6¢8631/9¢611] SP04 Lecture 12

Why: recover meaning from
stﬁcture
|

| I |

S VP(NP)= ate (john ,icecream)

johnm
NP P= Ay.ate(y,ice-cream)

\Y4 NP ice-cream
John

X Ay.atefy, X) ¢

ate ice-cream

6¢8631/9¢611] SP04 Lecture 12

8

wo parts:
ul

[
. Syntax: define hierarchical structure

. Semantics: interpret over hierarchical
structure

. What are the constraints?

6¢8631/9¢611] SP04 Lecture 12

&8

‘ Fonclusion we will head to
|

|l
. If we use too powerful a formalism, it lets us
write ‘unnatural’ grammars

. This puts burden on the person writing the
grammar — which may be ok.

. However, child doesn’t presumably do this
(they don't get ‘late days’)

. We want to strive for automatic programming

— ambitious goal

6¢8631/9¢611] SP04 Lecture 12

‘ Ifey elements — part 1
|

8

. “Establish basic phrase types: S, VP, NP, PP, ...
. Where do these come from???

6¢8631/9¢611] SP04 Lecture 12

‘ YVhat kinds of phrases are there?
1

. Noun phrases, verb phrases, adjectival

phrases (“green with envy”), adverbial

phrases (“quickly up the hill"), prepositional
phrases (“off the wall”), etc.

. In general: grounded on lexical items

. Shows us the constraints on context-free
rules for natural grammars

. Example:

6¢8631/9¢611] SP04 Lecture 12

Phrase types are constrained by
ngiFaI projection

Verb Phrase — Verb Noun Phrase
“is-a’T (“kick the| ball”)

Prepositional Phrase —Preposition Noun Phrase

(“on the table”)

Adjective Phrase — | Adjective| Prep. Phrase

(“green with envy”)

Etc. ... what is the pattern?

8

6¢8631/9¢611] SP04 Lecture 12

I|=unction-argument relation
|

XP —X arguments, where X= Noun, Verb,

Preposition, Adjective (all lexical
categories in the language)

Like function-argument structure

(so-called “Xbar theory”)

Constrains what grammar rules cannot be:
Verb Phrase —Noun Noun Phrase

or even

Verb Phrase —Noun Phrase Verb Noun Phrase

6¢8631/9¢611] SP04 Lecture 12

8

ETglIish is function-argument form

function args

the stock
4t a bargain price

sold

6¢8631/9¢611] SP04 Lecture 12

Other languages are the mirror-
iqverse: arg-function
i

'This is like Japanese

6¢8631/9¢611] SP04 Lecture 12

B

I|<ey elements — part 2
|

\
Establish verb subcategories

. What are these?
. Different verbs take different # arguments
. 0, 1, 2 arguments (‘complements’)

. Poirot thought; Poirot thought the gun; Poirot
thought the gun was the cause.

. Some verbs take certain sentence complements:

. I know who John saw/? I think who John saw
propositional types:

. Embedded questions: I wonder whether...
. Embedded proposition: I think that John saw

Mary 698631/9+611] SP04 Lecture 12

|

H(ey elements
|
|

. Subtlety to this
Believe, know, think, wonder,...
. ? I believe why John likes ice-cream
. I know why John likes ice-cream
. I believe that John likes ice-cream
. I believe (that) John likes ice-cream

args, type: Verb subcategories
How many subcategories are there?
. What is the structure?

6¢8631/9¢611] SP04 Lecture 12

‘ {dea for phrases
|

| | [
. They are based on ‘projections’ of words
(lexical items) — imagine features ‘percolating’
up

XP |[V +p;oposition]

o
o

.t
Pl
we®

know [V +proposition]

6¢8631/9¢611] SP04 Lecture 12

‘ H-Ieads of phrases
e

Vv +prop£sition

o
i
.t

....
.
e

know [V +proposition]

6¢8631/9¢611] SP04 Lecture 12

The parse structure for ‘embedded’
sertences

| I believe (that) John likes ice-cream

that J. likes ice-cream

beli |eve 68631/9¢611] SP04 Lecture 12

&8

New phrase type: S-bar

AR
NP \[P

beheve

that J. likes ice-cream

6¢8631/9¢611] SP04 Lecture 12

‘ ?bar WP

e 7\

Shar
beheve
Comp
that
J. likes ice-cream
68631/9¢611] SP04 Lecture 12
‘ ?bar P
e 7\
Shar
beheve
Comp
8

J. likes ice-cream

6¢8631/9¢611] SP04 Lecture 12

‘ }n fact, true for all sentences...
| Shar

— ij John Tikes ice-cream

Comp S
| Why?

€

J. likes ice-cream

6¢8631/9¢611] SP04 Lecture 12

‘ YVhat rules will we need?
] |
. (Udoit..)

6¢8631/9¢611] SP04 Lecture 12

‘ Yerb types - continued
|
B | [
. What about:

Clinton admires honesty/Honesty admires
Clinton

How do we encode these in a CFG?

Should we encode them?

. Colorless green ideas sleep furiously

. Revolutionary new ideas appear infrequently

6¢8631/9¢611] SP04 Lecture 12

Problems with this — how much info?

6¢8631/9¢611] SP04 Lecture 12

ﬁ;reement gets complex...

B I |

 GENDER POSSN VAR
ElPERSON l

\C \CAS Eé »NEG.
zech: AGFS3- —\A— -—=
POSSG VOICE
SUBPOS DCOMP
NUMBER TENSE

6¢8631/9¢611] SP04 Lecture 12

‘ Pther sentence types
|

| | |

. Questions:
. Will John eat ice-cream?
. Did John eat ice-cream?
. How do we encode this?

6¢8631/9¢611] SP04 Lecture 12

\

Empty’ elements or categories

synatic piin o

. Examples:

. The ice-cream was eaten vs.

. John ate the ice-cream

. What did John eat?

. What did Bill say that that John thought the cat ate?
. For What x, did Bill say... the cat ate x

. Bush is too stubborn to talk to

. Bush is too stubborn [x to talk to Bush]

. Bush is too stubborn to talk to the Pope

. Bush is too stubborn [Bush to talk to the Pope]

6¢8631/9¢611] SP04 Lecture 12

||Vlore interesting clause types
Apparently “long distance” effects:

‘displacement’ of phrases from their ‘base’
positions

So-called ‘wh-movement”:

What did John eat ?
Topicalization (actually the same)
On this day, it snowed two feet.
Other cases: so-called ‘passive”:
The eggplant was eaten by John
How to handle this?

6¢8631/9¢611] SP04 Lecture 12

8

We can think of this as *fillers’ and

aprs

I Filler= the displaced item

. Gap = the place where it belongs, as argument
. Fillers can be NPs, PPs, S’s

. Gaps are /nvisible- so hard to parse! (we have to
guess)

. Can be complex:
Which book did you file__ without _ reading __ ?
Which violins are these sonatas difficult to play __ on

6¢8631/9¢611] SP04 Lecture 12

&8

PrloPIems with this — how much info?
|

[
. Even verb subcategories not obvious

John gave Mary the book — NP NP
John gave the book to Mary — NP PP

But:
John donated the book to the library

‘Alternation’ pattern — semantic? NO!

6¢8631/9¢611] SP04 Lecture 12

8

ﬁ;reement gets complex...
|

POSSN VAR

GENDER El PERSON l

*NEG

~Czech: AGF§3-—e-1A----
zee A i \VOICE

~
POSSG
SUBPOS DCOMP

NUMBER TENSE

6¢8631/9¢611] SP04 Lecture 12

||Vlore interesting clause types
.| Apparently “long distance” effects:

I =displacement’ or phrases rrom thelr ‘base’

positions
1. So-called ‘wh-movement”:
What did John eat ?
2. Topicalization (actually the same)
On this day, it snowed two feet.
3. Other cases: so-called ‘passive”:
The eggplant was eaten by John
. How to handle this?

6¢8631/9¢611] SP04 Lecture 12

\

Empty’ elements or categories

syntactic position & nothing shows on the surface
. Examples:

. The ice-cream was eaten vs.

. John ate the ice-cream

. What did John eat?

. What did Bill say that that John thought the cat ate?
. For What x, did Bill say... the cat ate x

. Bush is too stubborn to talk to

. Bush is too stubborn [x to talk to Bush]

. Bush is too stubborn to talk to the Pope

. Bush is too stubborn [Bush to talk to the Pope]

6¢8631/9¢611] SP04 Lecture 12

‘|missing’ or empty categories
|

& I ‘
. John promised Mary ___ to leave

. John promised Mary [John to leave]
. Known as ‘control’

John persuaded Mary [___ to leave]
John persuaded Mary [Mary to leave]

6¢8631/9¢611] SP04 Lecture 12

We can think of this as *fillers” and
\gFPSI
i |
. Filler= the displaced item
. Gap = the place where it belongs, as argument

. Fillers can be NPs, PPs, S's

. Gaps are invisible- so hard to parse! (we have to
guess)

. Can be complex:
Which book did you file__ without _ reading _ ?

Which violins are these sonatas difficult to play
on

6¢8631/9¢611] SP04 Lecture 12

‘ (TSaps

. Is “the president kissed” grammatical?
. If so, what type of phrase is it?

. the sandwich tI‘Iat//_\4

+worder-what the president kissed e
) Sally said the president kissed e
- What else has— Sally consumed the pickle with e

Sally consumed e with the pickle

6¢8631/9¢611] SP04 Lecture 12

iiaps
hJ‘Otljea gapsT_—— \4

- the sandwich that| the president kissed e

. I wonder what Sally said the president kissed e
Sally consumed the pickle with e
’ M has Sally consumed e with the pickle

= Subject gaps:

= the sandwich that| e kissed the president

=] wonder what Sally said e kissed the president
= What else has

698631/9¢611] SP04 Lecture 12

- the sandwich that)| the president kissed e

. I wonder what Sally said the president kissed e
Sally consumed the pickle with e
+ What else has Sally consumed e with the pickle
e kissed the president
Sally said e kissed the president

Phrases with missing NP:
X[missing=NP]
or just X/NP for short

6¢8631/9¢611] SP04 Lecture 12

8

Representation & computation

guestions again
ow do we representthis displacement?

I-(difterence between underlying & surrace rorms)

. How do we computeit? (l.e., parse sentences
that exhibit it)

. We want to recover the underlying structural
relationship because this tells us what the
predicate-argument relations are — Who did what
to whom

. Example: What did John eat — For which x, x a
thing, did John eat x?

. Note how the eat-x predicate-argument is
established 6+8631/9+611] SP04 Lecture 12

&8

Representations with gaps
. ‘Let’s first look at a tree with gaps:

| | ~

what

/

filler Did NP

‘gap’ or
Ii/ empty element

68631/9+611] €P04 Lecture 12

Crispgragepresentation:
B

IR

Comp

what
’fille/r’v Auxv NP VP
& |
‘gap’ or
eat I\éPL/ empty element

6¢8631/9¢611] SP04 Lecture 12

Fillers can be arbitrarily far from gaps
tI-‘eY match with...
|

| | |
. What did John say that Mary thought that the
catate_ ?

6¢8631/9¢611] SP04 Lecture 12

I|=iIIers and gaps
|

. Since ‘gap’ is NP going to empty string, we
could just add rule, NP—¢

. But this will overgenerate why?

. We need a way to distinguish between
. What did John eat
. Did John eat

. How did this work in the FSA case?

6¢8631/9¢611] SP04 Lecture 12

‘ .'F»o, what do we need?
|

L I ‘
. A rule to expand NP as the empty symbol;
that’s easy enough: NP—¢
. A way to make sure that NP is expanded as
empty symbol iff there is a gap (in the right
place) before/after it
. A way to link the filler and the gap

- We can do all this by futzing with the
nonterminal names: Generalized Phrase
Structure Grammar (GPSG)

6¢8631/9¢611] SP04 Lecture 12

‘ IIExampIe: relative clauses
|

. What are they?
. Noun phrase with a sentence embedded in it:

. The sandwich that the president ate

. What about it? What's the syntactic representation
that will make the semantics transparent?

The sandwich; that the president ate g

6¢8631/9¢611] SP04 Lecture 12

OK, that’s the output...what are
tl"le1 cfg rules?
|

. Need to expand the object of eatas an empty
string
. So, need rule NP—¢

. But more, we need to link the head noun “the
sandwich” to this position

. Let’s use the fsa trick to ‘remember’
something — what is that trick???

. Remember?

6¢8631/9¢611] SP04 Lecture 12

IlVlemory trick
|

. Use state of fsa to remember
. What is state in a CFG?
. The nonterminal names

. We need something like vowel harmony —
sequence of states = nonterminals

the sandwich that the president ate e

6¢8631/9¢611] SP04 Lecture 12

‘ 4\5 a parse structure
|
|

S

INF

/\
Det N

tll'le sandwich /\

that the president ate e

What's this? We've seen it before...

It's an Sbar = Comp+S

6¢8631/9¢611] SP04 Lecture 12

Parse structure for relative clause

=IVAN

e\

t[liet ||\l Comp

e .

sandW|ch| P}\/
PN

that

the P. Jte E

But how to generate this and block this:

6¢8631/9¢611] SP04 Lecture 12

P

‘ I‘\Iot OK!
] N

I \$K
T o
sandwich | P}\/
r AR

that

A V NP
the P. |

ate ;

he pretzel

6¢8631/9¢611] SP04 Lecture 12

‘ }n short..

. We can expand out to e iff there is a prior
NP we want to link to

. So, we need some way of ‘marking’ this in
the state — I.e., the nonterminal

. Further, we have to somehow co-index e and
‘the sandwich’

. Well: let’s use a mark, say, “+”

6¢8631/9¢611] SP04 Lecture 12

he mark...
‘ Tl NP

[y
/N\P/ \$K
T o
sandwich| A
r R

thtﬁ
a V NRB
the P. J: E
ate

6¢8631/9¢611] SP04 Lecture 12

BTtl we can add + except this way:
|

. Add as part of atomic nonterminal name

. Before: NP— NP Sbar
Sbar - Comp S
S > NP VP

VP > VP NP

. After: NP — NP Sbar+
Sbar+ — Comp S+
S+ - NP VP+
VP+ > V NP+
NP+ > e

6¢8631/9¢611] SP04 Lecture 12

hy does this work?
5

S

. Has desired effect of blocking ‘the sandwich
that the P. ate the pretzel’

. Has desired effect of allowing e exactly when
there is no other object

. Has desired effect of ‘linking” sandwich to the
object (how?)

. Also: desired configuation between filler and
gap (what is this?)

6¢8631/9¢611] SP04 Lecture 12

‘ 4\ctua| ‘marks’ in the literature
i
. Called a ‘slash category’
. Ordinary category: Sbar, VP, NP
. Slash category: Sbar/NP, VP/NP, NP/NP
« "X/Y" is ONE atomic nonterminal

. Interpret as: Subtree X is missing a Y
(expanded as e) underneath

. Example: Sbar/NP = Sbar missing NP
underneath (see our example)

6¢8631/9¢611] SP04 Lecture 12

‘ 4\5 for slash rules...
1
. We need slash category introduction rule,
e.g., Sbar —» Comp S/NP

. We need ‘elimination’ rule NP/NP—e
. These are paired (why?)

. We'll need other slash categories, e.g.,

6¢8631/9¢611] SP04 Lecture 12

‘ INeed PP/NP...

|
/”i") \ﬁx
tﬁit | Cofmp
pretzel | Z\/
that_~ /KP

P
the P. t RN
cho edP NP

6¢8631/9¢611] SP04 Lectlﬁﬁ e

‘ ,ﬁlso have ‘subject’ gaps

|
€ N\
De{\ll\l Corsn/t;K

tI%epresident | P}\/
that | /KP
e YV

P
cholked I\

N
6¢8631/9¢611] SP04 LectLBf:i t e pretzel

‘ |—Iow would we write this?
|
B | |

6¢8631/9¢611] SP04 Lecture 12

‘ filler—gap configuration
|

B
|

mm) | NP

VAN

€

6¢8631/9¢611] SP04 Lecture 12

I|=iIIer-gap configuration
|

. Equivalent to notion of ‘scope’ for natural
languages (scope of variables) ~ Environment
frame in Scheme/binding environment for
‘variables’ that are empty categories

. Formally: Fillers c-command gaps
(constituent command)

. Definition of c-command:

6¢8631/9¢611] SP04 Lecture 12

-command
e

L I ‘
. A phrase o c-commands a phrase B iff the

first branching node that dominates a also
dominates B (blue = filler, green = gap)

6¢8631/9¢611] SP04 Lecture 12

‘ i\latural for A abstraction
|
o | |

Sbar
what
AX
Mary see x
68631/9¢6 P04 Lecture 12
‘ fuzzle:
|

. Who saw Mary?

6¢8631/9¢611] SP04 Lecture 12

‘ {dea 1: WYSIG syntax
|

e Root
Q(uestion)
NP+h VP+tns
Pronp+wh V+MP
Who saw Name
Mary
6¢8631/9¢6113 SP04 Lecture 12
II
e —

Is this right?

6¢8631/9¢611] SP04 Lecture 12

B

nother example
‘ 1\
\

Sbar on] Sbar

A

Mary ca_ug/?t John killed
the rabid dog the rabid dog

6¢8631/9¢611] SP04 Lecture 12

|

‘ YVhat if we move the object?
|
| S

Chay

Ul

'S/NP\NP

/)
Sbar onj Sbar

| the rabid dog
and

Mary caught e John killed e

6¢8631/9¢611] SP04 Lecture 12

‘ YVhy not read off the rules?

] |
. Why can't we just build a machine to do this?
. We could induce rules from the structures

But we have to know the right representations
(structures) to begin with

Penn treebank has structures — so could use learning
program for that

. This is, as noted, a construction based approach
. We have to account for various constraints, as noted

6¢8631/9¢611] SP04 Lecture 12

‘ Sﬁo what?

| I |

. What about multiple fillers and gaps?

« Which violins are these sonatas difficult to
pi§e sonatas o ywhich violins 7

6¢8631/9¢611] SP04 Lecture 12

8

Il-low many context-free rules?

. For every displaced phrase, what do we do to

the ‘regular’ context-free rules?

. How many kinds of displaced rules are there?

Which book and Which pencil did Mary buy?
*Mary asked who and what bought

. Well, how many???
. Add in agreement...

6¢8631/9¢611] SP04 Lecture 12

&8

nd then..
ot

John saw more horses than bill saw cows or
Mary talked to

. John saw more horses than bill saw cows or

mary talked to cats

. The kennel which Mary made and Fido sleeps

in has been stolen

. The kennel which Mary made and Fido sleeps

has been stolen

6¢8631/9¢611] SP04 Lecture 12

FG Solution
o

o | [
. Encode constraints into the non-terminals
. Noun/verb agreement
S-> SgS
S > PIS
SgS > SgNP SgVP
SgNP - SgDet SgNom
. Verb subcategories:
IntransVP - IntransV
TransVP - TransV NP

. Complex nonterminal names

6¢8631/9¢611] SP04 Lecture 12

‘ \-Iow big can the grammar get???
B |
[

6¢8631/9¢611] SP04 Lecture 12

IBut this means huge proliferation of rules...
An alternative:

|

AN
I View terminals and non-terminals as
complex objects with associated features,

which take on different values
. Write grammar rules whose application is
constrained by tests on these features, e.g.

S - NP VP (only if the NP and VP agree in
number)

6¢8631/9¢611] SP04 Lecture 12

‘ Pesign advantage
1
. Decouple skeleton syntactic structure from
lexicon

. In fact, the syntactic structure really is a
skeleton:

6¢8631/9¢611] SP04 Lecture 12

rom this...
ul

] L/NQ\\

/'\Q Sbar
Det N / \
tﬂe | Comp

president | j\

that ||\lP /VK
PP
e
choted I\

P N

6¢8631/9¢611] SP04 lecture 12

choked
on

608631/9¢611J SP04 Lecture the ..

I|=eatures are everywhere

mbrphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,...] - thrills

projection of features up to a bigger phrase

VP[head=aq, tense=p, num=y...] » V[head=0, tense=p, num=y...] NP
provided a is in the set TRANSITIVE-VERBS

agreement between sister phrases:

S[head=aq, tense=p] - NP[num=y,...] VP[head=q, tense=B, num=y...]
provided a is in the set TRANSITIVE-VERBS
68631/9¢611] SP04 Lecture 12

Better approach to factoring linguistic
knolwledge

Use the superposition idea: we superimpose one set
of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints

S — NP VP
[num X] [num x] [num x]
the guy eats

[num singular] [num singular]

6¢8631/9¢611] SP04 Lecture 12

‘ Pr in tree form:
= |

S [number x]

NP [number x] VP [number x]

A o~

DT [number x] N [number x] V [number x]

the / guy / ea/

[number singular] [number singular] [number singular]

6¢8631/9¢611] SP04 Lecture 12

alues trickle up
ot

| I |

S [number x]
NP [number x] VP [number x]

SN

DT [number sing]N [number sing] V [number Smg]NP

the guy eafs
[number singular] [number singular] [number singular]

6¢8631/9¢611] SP04 Lecture 12

‘ Fhecking features
|

S [number x

NP [number sing] VP [number sing]

AR

DT [number singN [number sing] V [number sing]NP

the guy eafs
[number singular] [number singular] [number singular]

6¢8631/9¢611] SP04 Lecture 12

What sort of power do we need
here?

. |We have [feature value] combinations so far
S This Seems tairly widespread In language
We call these atomic feature-value combinations
Other examples:
1. In English:
person feature (1st, 2nd, 3rd);

Case feature (degenerate in English: nominative,
object/accusative, possessive/genitive): I know hervs.
I know she,;

Number feature: plural/sing; definite/indefinite

Degree: comparative/superlative

6¢8631/9¢611] SP04 Lecture 12

Cﬁ\er languages; formalizing features
|

Two kinds:
1. Syntactic features, purely grammatical function

Example: Case in German (NOMinative, ACCusative,
DATive case) — relative pronoun must agree w/
Case of verb with which it is construed

Wer micht strak is, muss klug sein
Who not strong is, must clever be
NOM NOM

Who isn't strong must be clever

6¢8631/9¢611] SP04 Lecture 12

‘ Fontinuing this example
|

Ich nehme, wen du mir empfiehlst
I take whomever you me recommend
ACC ACC ACC

I take whomever you recommend to me

*Ich nehme, wen du vertraust
I take whomever you trust
ACC ACC DAT

6¢8631/9¢611] SP04 Lecture 12

Pther class of features
|
|

P ‘

I

2. Syntactic features w/ meaning — example, number,
def/indef., adjective degree

Hungarian

Akart egy konyvet

He-wanted a book
-DEF -DEF

egy kényv amit akart
A book which he-wanted
DEF -DEF

6¢8631/9¢611] SP04 Lecture 12

featu re Structures
= tsof feature=vatue pairs where:
. Features are atomic symbols

. Values are atomic symbols or feature structures
. Illustrated by attribute-value matrix

6¢8631/9¢611] SP04 Lecture 12

Il-low to formalize?
|

S
Let Fbe a finite set of feature names, let A4
be a set of feature values

. Let pbe a function from feature names to
permissible feature values, that is,

p: F>2A

. Now we can define a word category as a
triple <F, A, p>
This is a partial function from feature names
to feature values

6¢8631/9¢611] SP04 Lecture 12

‘ llExampIe

Ii'— JCAT DIl DPEDRY
l‘ Tl vy T oy iy

. p:
P(CAT)={V, N, ADJ}
HKPER)={1, 2, 3}
APLU)={+, -}
sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}

Checking whether features are compatible is relatively
simple here...how bad can it get?

6¢8631/9¢611] SP04 Lecture 12

‘ Pperations on Feature Structures
1
. What will we need to do to these structures?
. Check the compatibility of two structures
. Merge the information in two structures

. We can do both using unification

. We say that two feature structures can be unified if
the component features that make them up are
compatible

. [Num SG] U [Num SG] = [Num SG]
. [Num SG] U [Num PL] fails!
. [Num SG] U [Num []] = [Num SG]

6¢8631/9¢611] SP04 Lecture 12

« [Num SG] U [Pers 3] =

. ‘ Structures are compatible if they contain no

. Unification of two feature structures:
. Are the structures compatible?
. If so, return the union of all feature/value
pairs
. A failed unification attempt

6¢8631/9¢611] SP04 Lecture 12

F1a|tures, Unification and Grammars

grammars?

. Assume that constituents are objects which have
feature-structures associated with them

. Associate sets of unification constraints with
grammar rules

. Constraints must be satisfied for rule to be
satisfied

For a grammar rule By > By ...p,
. <p;feature path> = Atomic value
- <p,feature path> = <p;feature path>

. NB: if simple feat-val pairs, no arbitrary nesting, then

no need for paths
6¢8631/9¢611] SP04 Lecture 12

Feature unification examples

b 1) agreement: [number: singular

I person: first]]

(2) [agreement: [number: singular]
case: nominative]

. (1) and (2) can unify, producing (3):

(3) [agreement: [number: singular
person: first]
case: nominative]

(try overlapping the graph structures corresponding to
these two)

6¢8631/9¢611] SP04 Lecture 12

Feature unification examples

| 1) [agreement: [number: singular
| narcon: firct 1 1
| Peroons LA I
(2) [agreement: [number: singular]
case: nominative]
(4) [agreement: [number: singular
person: third]]
. (2) & (4) can unify, yielding (5):
(5) [agreement: [number: singular
person: third]
case: nominative]

BUT (1) and (4) cannot unify because their values
conflict on <agreement person>

6¢8631/9¢611] SP04 Lecture 12

. To enforce subject/verb number agreement

S > NP VP
<NP NUM> = <VP NUM>

6¢8631/9¢611] SP04 Lecture 12

B

H-Iead Features
|
\

Features of most grammatical categories are
copied from head child to parent (e.g. from V to
VP, Nom to NP, N to Nom, ...)

. These normally written as ‘head’ features, e.g.
VP > V NP
<VP HEAD> = <V HEAD>
NP = Det Nom
<NP-> HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom = N
<Nom HEAD> = <N HEAD>

6¢8631/9¢611] SP04 Lecture 12

Det N Vv VP
The /\ has /\
N VP Vv Vv
plan /\ been
to VP Vv NP
/\ thrilling Otto
Vv NP

swallow Wanda

S— NP[n=1] VP[n=1] S xP[n=1] —;]V[n=1] VP
[n=1] - Nas

Det N [num=1] [num—l] VP

The /\ h as /\
N[num—l] VP
plan /\ been A

to Vv

NP[n=1] - Det N[n=1] /\ thrilling OttO

N[n=1] - N[n=1] VP
N[in=1] - plan
swaIIow Wanda

S— NP[n=0] VP[n=a] S xf[n:]a] T]V[n=u] VP
n=1] - NAas

A KT

Det N [num=1] Y[num—l] VP

The /\ has
N[num—l] VP
plan /\ been /D\

to V

NP[n=a] - Det Nin=o] /\ thrilling Otto

N[n=a] - N[n=a] VP

N[n=1] - plan
swaIIow Wanda

Vv VP
The [head™Rlan] has W]
[he%c,gﬁlan] Wlow] W

to

[hea VPwallow] [heﬁd i rill] [head I\@cto
NP[h=a] - Det N[h=a]

N[h=a] - N[h=a] VP p
N[h=plan] - plan [headzsyallow] [heﬂl—Wanda]
swallow Wanda

/S\
[he P lan] /VP\
Det N \Y VP

VP Vv \Y
h 1
[e%%ﬂ anl /\ been /D\

to VP \' NP

NP[h=0] > Det Nih=q] /\ thrilling ~ Otto

N[h=a] - N[h=a] VP Vv NP

N[h=plan] — plan
swallow Wanda

[he P lan]
Det
The ¢

[heac,}lzﬂlan] WIOW] been hea rill]

[hea Pwallow] [heﬁd ihrlll] [head= I\y)?cto
NP[h=a] - Det N[h=a] Otto

N[h=a] - N[h=a] VP p
N[h=plan] - plan [headstallow] [heﬂl—Wanda]
swallow Wanda

[he Plan]
Det
The ¢
[heaﬁl}! lan] [hea Pwallow]
p a?n

to

[hea VPwallow] [heﬁ \ﬁhrlll] [head= I\@tto
NP[h=a] - Det N[h=qa] /\ rilling Otto

N[h=a] - N[h=a] VP
N[h=plan] — plan [headZSMallow] [heMlEWanda]
swallow Wanda

[he P lan]

Det N

The Iy
[heac’i\lﬂlan] Wlow]

[hea Pwallow] [heﬁd ihrlll] [head= I\y)?cto
NP[h=a] - Det N[h=a] Otto

N[h=a] - N[h=a] VP
N[h=plan] - plan [headstallow] [heMlBWanda]
swallow Wanda

been hea rill]

. How do we define 3pINP?
. How does this improve over the CFG solution?
Feature values can be feature structures themselves

I Useful when certain features commonly co-occur,
e.g. number and person

. Feature path: path through structures to value
(e.q.
Agr = Num > SG

6¢8631/9¢611] SP04 Lecture 12

‘ features and grammars
|

B | |
category: N —)
agreement: person: th!rd _’
number: singular
categ%
N
agreement
number person
singular third
698631/9611] SP04 Lecture 12
‘ feature checking by unification
| | |
| | |

agreement] lagreemen

\ / sleep
~

agreemen

*John sleep

6¢8631/9¢611] SP04 Lecture 12

8

Pur feature structures
|

. NP[agr ?B] -> DET[agr ?B] N[agr 7?B]

. VP[fin ?A, agr ?B] -> V2[fin ?A, agr ?B] NP
. Maria NAME[agr [person 3, plural -]]

Kimmo entry for Verb (eg, ‘coge’ after analysis):
. +e Suffix "[fin +, agr [tense pres,
mode ind, person 3, plural -]]1"

6¢8631/9¢611] SP04 Lecture 12

How can we parse with feature
strdgures?
|

Unification operator: takes 2 features structures and
returns either a merged feature structure or 7ai/

Input structures represented as DAGs
. Features are labels on edges
. Values are atomic symbols or DAGs

Unification algorithm goes through features in one
input DAG,; trying to find corresponding features in
DAG; — if all match, success, else fail

. WE WILL USE MUCH SIMPLER kind of feature
structure

6¢8631/9¢611] SP04 Lecture 12

[features and Earley Parsing
Goal:

|
]
. Use feature structures to provide richer
representation

. Block entry into chart of ill-formed constituents
Changes needed to Earley

. Add feature structures to grammar rules, & lexical
entries

. Add field to states containing set representing
feature structure corresponding to state of parse,

e.g.
S > « NP VP, [0,0], [1, Set= [Agr [plural -]]

6¢8631/9¢611] SP04 Lecture 12

. Add new test to Completer operation

| . Recall: Completer adds new states to chart by
'_finding states whose e can be advanced (i.e.,

' category of next constituent matches that of
completed constituent)

. Now: Completer will only advance those states if
their feature structures unify

New test for whether to enter a state in the chart

. Now feature structures may differ, so check must
be more complex

. Suppose feature structure is more specific than
existing one tied to this state? Do we add it?

6¢8631/9¢611] SP04 Lecture 12

Evidence that you don't need this

rr!ulch power
|
R

Linguistic evidence: looks like you just check whether
features are nondistinct, rather than equal or not —
variable matching, not variable substitution

Full unification lets you generate unnatural languages:
a, s.t.iapowerof2-e.q., a aa, aaaa, aaaaaaaa, ...

why is this ‘unnatural’ — another (seeming) property of
natural languages:

Natural languages seem to obey a constant growth
property

6¢8631/9¢611] SP04 Lecture 12

Parsing with features — hook from
‘ Ifimmo to earley
|

. Features written in this form (in Kimmo)

.- +as Suffix "[fin +, agr [tense pres, mode
ind, person 2, plural -]]1"

. In general:
[feature value, feature [feature val, ..., feature val]]

6¢8631/9¢611] SP04 Lecture 12

here wolf

NP[wh -]
NAME

Bil
@[ow]

Start
S[fin +]
AUX[fin +1/*
BEP DET[wh
BE a
| @[2w]
is

@[1w]

N Piwh -]
-] NBAR[wh -]
|
N
|
werewolf
@[3w]

6¢8631/9¢611] SP04 Lecture 12

.,

NP[agr (person 3, plural -], wh -]

VPlagr [mode

AME(age (porson 3, plural -], wh -V2lagr (mode ind, person 3, plural -, te

B[ow]

eolete

ind, person 3, plural -,

nse pres], £in +]

DET[age [plucal

los

6¢8631/9¢611] SP04 Lecture 12

tense pres], fin +)

¥P{age [plural +], wh -]

1. wh -] NBAR[agr [plucal +], wh -]
Nlagr [plural +]]

1'pizes

arse Tree I [=] |
Sitart =
Sffitn +]
k NP[agr [person ‘3 plural -. wih -] VPlaor [mode ind. person 3, plural -, tense pres]. fin +]
NAME[aar [DEISDI"\ 3, plural 1. wh -] %2[agr [mode ind, person 3, plural -, tense pres], fin +] NP[aar [plural +], wh -]
haria colete DET[agr [plural +]. wh -] NEAR[agr [plural +], wh]
@(in] @l \ \
los M[agr [plural +]]
@20 |
|"piz+s
@S]
7] Bk
Piev | Mest | Print to Postscipt | Done | Tree 1 o 1
6¢8631/9¢611] SP04 Lecture 12
NP[agr [plural +], wh -]
DET[agr [plural +], wh -]
Maria' ‘toge’ ‘los! 1*pizt
S EERAR ALK YR 1 SN COMJ MNP “AF HBAR *
S[fin +] VP[fin 7A] NP[%\&[8, wh -] NBA?!WII 1 NBAR[wh -]
* QHAR VP *WIAP * NAME * FACT SBAR +MNBAR FP
S[fin +] VP[fn 7A] HP[agr 7B, wh 74] HBAR]agr [plural -], wh -] NBﬂgwh -1
& QHAR ALK VP &4 ADVP « DET NBAR MNe * AF MNBAR
S[fin ?B]i7A VP[fin 7A] NP[%h 24] AP[wh +] NBAF!wh 1
* 2 CONJ S o PP *PRO * SFEC AP +FACT SBAR
S[fin +177A VP[fin 7A] NP[wh ?4] AP[wh -] MBAR[fin +]/24
NP VP “CVENF EP TOTEAR N O
Sffin 2A] VP[fin 7] NP[%h 24] APlwh] fin 7A]
* NP ALK WP W7 MP NP *NF R .p ALK VP
S[fin ?4] VP[fn 7A] HP[agr [plural +]. wh -] ﬂP[gh -1 MBARJfin +]
& NP ALK &3 SHAR DET s MNBAR . AR A &
Sffin 2A] VP[fin 7] NBARfagr 7B, wh] AP[wh ?B]i7A AUX[fin 7A)*
* NP ALK NP EEE I * AP CONJ AP * MODALP
S[fin ?4] VP[fin 7A] NBAR[wh -] AP[wh ?4] AUX[fin A1
-NBAUXAP 10 OBAR -NEAR FP ADVE A & MODALP HAVEP
Sffin 2A] VP[fin 7] NBAR[wh] AP[wh 7] AUX[fin 7A)*
* NP ALK PP 11 NP QBAR * AF MNBAR * AP WVBAR +MODALP BEP
S[fin ?A]7B VP[fin 7A] HBAR[wh -] HBAR[wh -] AUX[fin AL
& NP ALK WP *132 PP QBAR *FACT SBAR NBAR & FP * MODALP HAVEF BEP

DET[agr [plural +], wh -]

NP[agr [plul 1 wh -]

NBAR[agr 7B, wh]

‘Maria' ‘coge’ ‘lns’' ‘I*piz'
0 1 2 3 4
Maria coJete los *piz PPwh ?A]
- - - - P NP
Staq coge DET[agr [plural +], wh -] N[agr [plural -] PPwh -]
.5 . log' s iz . * PP
NAME[agr [person 3, plural -], whVP[agr [mode ind, person 3, plurdiR whs# pres], fin +] NBnE!agr 7B, wh -] [fin 7B]/7A
Maria’ « ‘code+e’ ¢ » ANBAR *"THAN S * +VBAR CONJ WYBAR
S[fin +] VP[fin 7A] HP[wh -] NBAR[wh -] [fin ZA]78
« SHAR VP «\17 NP PP PP © A NBAR "THAN S «NBAR PP ~AUX P
S[fin +] VP[fin 7A] NP[wh ?B]/74 NBAR[wh -] NBAE!B[;[?B,wh]
* SBAR ALK VP 1 * NP CORJ MP * AP MNBAR *
S[fin +] VP[fin 7A] NP[%\&[2?8, wh -] NBﬂ?!wh -1 NBAR[wh -]
* QHAR VP =Y AP * NAME * FACT SBAR * WBAR PP
S[fin +] VP[fin 7A] NP[agr 7B, wh ZA] NBAR[agr [plural -, wh | NBAR[wh -]
* QHAR ALK VP * w4 ADVP *DET NBAR M= + AP NBAR
S[fin ?B]/?A VP[fin 7A] NP[%h 24] AP[wh +] NBﬂP!wh -1
* S COR S *Y5 PP *PRO * SPEC AP * FACT SBAR
S[fin +177A VP[fin 7A] HP[wh ?4] AP[wh -] MBAR[fin +]/74
* MNP VP *WB NP PP * NBAR .l]
S[fin ?4] VP[fin 7A] NP[%h 24] ﬂP[ﬂh -1 [fin ZA]
* NP ALK WP %7 MNP NP sHF R A ALK VR
=10l x|
Start 2|
Sffin +]
& == MPlaqr [person 2. plural -], wh -] WPlagr [mode ind, person 3, plural -, tense pres], fin +]
MAME[agr [persoi'v 3. plural -], wh -] V2[aar [mode ind, person 3‘ plural -, tense pres), fin +] MP[aar [plural -]. vh -]
Maria colete DETlaar [plural -], wh -] NBAR[agr [phural -], wh -]
@lin] @l [
el Nlagr [phral -]
@[2w]
1"piz
E[3w]
K| >
Piese| st | Pint to Postsssipt | Done | Tree 1o 1

6¢8631/9¢611] SP04 Lecture 12

‘ Fonstant growth property
|

Claim: 3 Bound k on the ‘distance gap’ between

any two consecutive sentences in this list,
which can be specified in advance (fixed)

. ‘Intervals’ between valid sentences cannot
get too big — cannot grow w/o bounds

. We can do this a bit more formally

6¢8631/9¢611] SP04 Lecture 12

i:onstant growth
Lo n. A language L is semilinear if the number of
occurrences of each symbol in any string of L is a linear

combination of the occurrences of these symbols in some
fixed, finite set of strings of L.

. Dfn. A language L is constant growth if there is a constant
¢, and a finite set of constants Cs.t. for all we L, where
|Wm> c,3 wel s.t. |W=|wl+c some ceC

. Fact. (Parikh, 1971). Context-free languages are semilinear,
and constant-growth

. Fact. (Berwick, 1983). The power of 2 language is non
constant-growth

6¢8631/9¢611] SP04 Lecture 12

General feature grammars — how

i :)IPte these properties
|

. \
. Take example from so-called “lexical-

functional grammar” but this applies as well
to any general unification grammar

. Lexical functional grammar (LFG): add
checking rules to CF rules (also variant HPSG)

6¢8631/9¢611] SP04 Lecture 12

‘ llExampIe LFG
1
. Basic CF rule:
S—NP VP
. Add corresponding ‘feature checking’
S—» NP VP

(T subjnum)=4 T=1
. What is the interpretation of this?

6¢8631/9¢611] SP04 Lecture 12

Applying feature checking in LFG

| [subj [num singular]]
I Copy Up avoove

NP VP

(T subj r}lm)= \’ /\ =

Vol
N

T [num singular] Whatever features from
gUYSs sleeps below

[num plural]
6863]/9¢611] SP04 Lecture 12

Alas, this allows non-constant
gr|oyvth, unnatural languages
|

S

. ‘Can use LFG to generate power of 2 language
Very simple to do

A-> A A
(Th=4 (TH=1
A—a
(Tf)=1

Lets us " count’ the number of embeddings on the
right & the left — make sure a power of 2

6¢8631/9¢611] SP04 Lecture 12

Checks ok

6¢8631/9¢611] SP04 Lecture 12

If mismatch anywhere, get a feature

cralsh...

= Clash!
[£[f[f =11]] » A f=1]]
7/ \A £=1]
(9 |
[f= Alf =1]

Fails!

6¢8631/9¢611] SP04 Lecture 12

8

‘ Fonclusion then
|

. If we use too powerful a formalism, it lets us

write ‘unnatural’ grammars

. This puts burden on the person writing the

grammar — which may be ok.

However, child doesn't presumably do this
(they don't get ‘late days’)

We want to strive for automatic programming
— ambitious goal

6¢8631/9¢611] SP04 Lecture 12

