
6.863J Natural Language Processing
Lecture 13: Featured attraction

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6•863J/9•611J SP04 Lecture 13

The Menu Bar
• Administrivia:

• Lab 3b out later today - Weds;  due after 
vacation – April 5

Agenda:
Fillers & Gaps; I shrank the grammar!
Features & feature grammars 



6•863J/9•611J SP04 Lecture 13

Job 1: writing grammar rules

• Three sorts of examples to handle:
1. Simple declarative sentences

Poirot solved the case
Poirot thought
Poirot sent the solution to the police
Poirot believed the detectives were incompetent

2. Auxiliary verb sentences
P. may have been solving the case

3. Unbounded dependencies: Questions and relative 
clauses
Which case did Poirot solve
The solution that P. sent to the police solved the 
case

6•863J/9•611J SP04 Lecture 13

Want to block:

• do not overgenerate
*Poirot solved; *P. may solved the case; 
*Which solution did P. send which solution to 
the police? 



6•863J/9•611J SP04 Lecture 13

Preliminaries: phrase names

• I said that ice-cream was on the table
I said ice-cream was on the table

• What is the structure here?
• Existence of Complementizer (COMP) before 

Sentence phrase, forming an “Sbar phrase” 
(S): Sbar

Comp S

Sbar→(Comp) S

6•863J/9•611J SP04 Lecture 13

Sbar= Comp S
• The Comp item can be that, which, …- or a 

displaced phrase
• Also present in ‘root’ (top level) sentences (I 

like ice-cream)  but usually we don’t ‘hear’ it 
(unless it’s filled by question or focus phrase) 

• Serves as ‘landing site’ for fillers
• In embedded sentences, in English, the Comp

is optional
• If Comp is filled – then that blocks things:

Who (F) do I know that John likes (G)



6•863J/9•611J SP04 Lecture 13

Filler-gap examples

John (F) is hard 
to please (G)

It is hard to please 
John

Tough-movement

The guy (F) that 
John likes (G)

John likes the guyRelative clauses

Beans (F) John 
hates (G)

John hates beansTopicalization

Who (F) did Mary 
see (G)?

Mary saw BillWh-question

Filler-gap analogOrdinary
Sentence

Example

6•863J/9•611J SP04 Lecture 13

Fillers and gaps, redux

• Fillers and Gaps summary: F, G
• Filler is the displaced phrase
• Gap is a phonological null (unpronounced) empty category 

(though it can have secondary phonological consequences: 

• This student (F) you want (G) to solve the problem blocks 
contraction between want and to into wanna

• ? This student you wanna solve the problem

• F-G relation represents displacement from canonical 
semantic argument position

• Many examples of this in natural language



6•863J/9•611J SP04 Lecture 13

Fillers and gaps

• Since ‘gap’ is NP going to empty string, we 
could just add rule, NP→ε

• But this will overgenerate- how?
• We need a way to distinguish between

• What did John eat
• Did John eat

• How did this work in the FSA case?

6•863J/9•611J SP04 Lecture 13

So, what do we need

• A rule to expand NP as the empty symbol; 
that’s easy enough: NP→ε

• A way to make sure that NP is expanded as 
empty symbol iff there is a gap (in the right 
place) before/after it

• A way to link the filler and the gap
• We can do all this by futzing with the rules: 

Generalized Phrase Structure Grammar 
(GPSG)



6•863J/9•611J SP04 Lecture 13

“State-splitting” to remember wh seen (but not 
heard) – need new states (cf. vowel harmony, 
etc.)

• We could encode the two possible routes by 
distinct chains of states, as follows:

• Names not very elightening, so will use this 
instead:

ε NP V NP

εwhat NP V

ε V NP

εwhat
s

s/np v/np np/np

6•863J/9•611J SP04 Lecture 13

So we have to add rules with new 
nonterminals to ‘name’ states…

• S/NP → NP VP/NP 
• VP/NP → V NP/NP  
• NP/NP→ε
• We haven’t put the auxiliary verb stuff in…
• Note the ‘chain’ of slashed rules in the final 

structure
• What happens computationally?



6•863J/9•611J SP04 Lecture 13

Actual ‘marks’ in the literature

• Called a ‘slash category’
• Ordinary category:  Sbar, VP, NP
• Slash category:  Sbar/NP, VP/NP, NP/NP
• “X/Y” is ONE atomic nonterminal
• Interpret as:  Subtree X is missing a Y 

(expanded as e) underneath
• Example: Sbar/NP = Sbar missing NP 

underneath (see our example)

6•863J/9•611J SP04 Lecture 13

As for slash rules…

• We need slash category introduction rule, 
e.g., Sbar → Comp S/NP

• We need ‘elimination’ rule NP/NP→e

• These are paired (why?)

• We’ll need other slash categories, e.g.,



6•863J/9•611J SP04 Lecture 13

Need PP/NP… 

NP

pretzel
the
Det

that

N

Sbar

Comp S

NP VP
V PP

the P.
choked

NP

P NP
on e

6•863J/9•611J SP04 Lecture 13

How do we do ‘slashed rules’ 
systematically & formally

• Step 1: form slashed categories
• Basic categories: ‘orginary’ nonterminals  N={S, VP, 

NP, PP, …}
• Slashed (derived) categories: α/β, α, β range over 

N
• E.g., S/NP, S/VP, S/PP, NP/NP, NP/VP, NP/PP
• Interpretation: tree rooted at α, with ‘gap’ (subtree) 

of type β somewhere beneath
• Step 2: form slashed rules from basic rules

• Basic rule: S→ NP VP
• Slashed rule: S/NP→ NP VP/NP
• (Why not S/NP→ NP/NP VP)



6•863J/9•611J SP04 Lecture 13

Also have ‘subject’ gaps

NP

president
the
Det

that

N

Sbar

Comp S

NP VP
V PP

choked

NP

P NP
on the pretzel

e

6•863J/9•611J SP04 Lecture 13

Filler-gap configuration

• Equivalent to notion of ‘scope’ for natural 
languages (scope of variables) ≈ Environment 
frame in Scheme/binding environment for 
‘variables’ that are empty categories

• Formally: Fillers c-command gaps 
(constituent command)

• Definition of c-command:



6•863J/9•611J SP04 Lecture 13

Constraints on filler-gap relations

• Can be “unbounded” on the surface, but underlyingly 
is successive cyclic (AKA – forms a chain linking filler 
to gap)

• [what (F) did John think (F) that Bill said (F) that 
Mary liked (G)]

• Note that this F-G distance cannot exceed 1 adjacent 
S or NP boundary (in English)

• What (F) [ do you wonder [who likes (G)]
• (Note: What (F) do you wonder (F) who likes (G)

is blocked)

6•863J/9•611J SP04 Lecture 13

Constraints on filler-gaps

• Obeys structural relation called c-command
• True in other languages also; also true there 

are multiple gaps
• So, how does generalized phrase structure 

grammar (GPSG) handle all this?
• We covered: basic rules; derived rules
• Still to cover: metarules; constraints



6•863J/9•611J SP04 Lecture 13

Filler-gap configuration 

NP

e

S
S

e

NP

6•863J/9•611J SP04 Lecture 13

C-command

• A phrase α c-commands a phrase β iff the 
first branching node that dominates α also 
dominates β  (blue = filler, green = gap)

Yes
Yes

Yes No No



6•863J/9•611J SP04 Lecture 13

Natural for λ abstraction

Sbar

did Mary see what

what

S

Sbar

Mary  see     x

λx

6•863J/9•611J SP04 Lecture 13

Constraints on gpsg rules
• “Across the board” constraints in conjunction

The person who Mary likes (S/NP) and Sally hates 
George(S) computed my tax.  Compare:

The person who Mary likes (S/NP) and Sally hates 
(S/NP) computed my tax

Can’t join S/NP and S – different categories, akin to
John likes pizza and beer (NP and NP)

• Extracted wh-phrase must be of same type
Which book and which pencil did John buy?
? John asked who and where Bill had seen (G)



6•863J/9•611J SP04 Lecture 13

More constraints

• English specific
*Who (F) do you believe (G) that came
*Who (F) did you wonder whether (G) came
*Who (F) did you wonder if (G) came
OK: Who is it that Mary likes

• What is going on here?

6•863J/9•611J SP04 Lecture 13

Rightward displacement
• Harry caught, and Mary killed, the rabid dog
• The man (G) was ill who was here (F)
• John hummed (G) and Mary sang (G), at 

equal volumes (F)
• Again can’t be dissimilar

John offered and Harry gave Bill a Volvo (Bill 
a Volvo” isn’t a phrase)

• Again can’t be “too far”:
Harry fished in the ocean and I don’t think 

Mary in the sea.



6•863J/9•611J SP04 Lecture 13

Some examples to help with lab –
corresponding tree structures (I 
won’t leave you at bay in a sea of 
nonterminals)

• If you start w/ tree structures, the CF rules 
write themselves (almost)

• Fido chased Mary

6•863J/9•611J SP04 Lecture 13

Structure for this sentence

Root

S
NP VP+tns

Name V__+tns NP

NamechasedFido
Mary



6•863J/9•611J SP04 Lecture 13

Why do we need

• V2?
• V2+tns?

6•863J/9•611J SP04 Lecture 13

Verb subcategories

• You will need V1,V2, V3, V4,…



6•863J/9•611J SP04 Lecture 13

Now easy to read off rules from trees

• S→NP VP+TNS
• VP+TNS → V2+TNS NP
Etc…

6•863J/9•611J SP04 Lecture 13

Idea 1: Wysiwyg
Root

Q(uestion)

NP+wh

Pronp+wh

VP+tns

V2+tns NP

Namesaw
Mary

Who



6•863J/9•611J SP04 Lecture 13

Idea 2: conform to wh-pattern of 
others, e.g., “What did John see”

Sbar

Who saw Mary

who

S

Sbar

Gap  saw Mary

λx

x

6•863J/9•611J SP04 Lecture 13

More complex syntax – simpler 
semantics (canonical)

Root

SBAR

NP+wh S/NP

Pronp+wh NP/NP VP+tns

V2+tns NPwho e

saw Mary



6•863J/9•611J SP04 Lecture 13

First alternative
• Syntactic structures ‘closer to the surface’
• Then we have to figure out semantic differences from 

hacking the semantic part
• In fact, this is what GPSG does for so-called `passive’ 

also – it doesn’t  ‘encode’ this in a change from active 
sentence to passive sentence, e.g., John ate the ice-
cream → The ice-cream was eaten (by John)

• Instead, it just has two forms.  Is this right?
• Which form is ‘primary’? (more fundamental)
• Evidence: doesn’t seem to be cases where you have a 

passive form without the corresponding active form, 
but does seem to be cases the other way around 
(active but no passive)

6•863J/9•611J SP04 Lecture 13

Now, what if we move the object?

S/NP

Sbar/NP Sbar/NPConj

and

Mary caught e John killed e

Sbar

the rabid dog

NP



6•863J/9•611J SP04 Lecture 13

Another example

S

Sbar SbarConj

and

Mary caught
the rabid dog

John killed
the rabid dog

Sbar

6•863J/9•611J SP04 Lecture 13

Besides reading off the rules…

• Why can’t we just build a machine to do this?
• We could induce rules from the structures
• But we have to know the right representations 

(structures) to begin with
• Penn treebank has structures – so could use learning 

program for that
• This is, as noted, a construction based approach
• We have to account for various constraints, as noted



6•863J/9•611J SP04 Lecture 13

Constraints – and language variation

• Examples:
‘Distance’ effects: What do you wonder who likes
(English): must have a subject (unlike Spanish)  I 
came;  vs. came

• How do we want to account for these?
• 2 possible ways
1. More engineering: make a list
2. More scientific: look for deeper theory that has 

primitives that only lets you `write the correct’ rules 
– like automatic program construction

6•863J/9•611J SP04 Lecture 13

What if we move the object?

S/NP

Sbar SbarConj

and

Mary caught e John killed e

Sbar

the rabid dog

NP



6•863J/9•611J SP04 Lecture 13

Why not read off the rules?

• Why can’t we just build a machine to do this?
• We could induce rules from the structures
• But we have to know the right representations 

(structures) to begin with
• Penn treebank has structures – so could use learning 

program for that
• This is, as noted, a construction based approach
• We have to account for various constraints, as noted

6•863J/9•611J SP04 Lecture 13

So what?

• What about multiple fillers and gaps?

• Which violins are these sonatas difficult to 
play _____ on    _____   ?these sonatas which violins



6•863J/9•611J SP04 Lecture 13

How many context-free rules?

• For every displaced phrase, what do we do to 
the ‘regular’ context-free rules?

• How many kinds of displaced rules are there?
Which book and Which pencil did Mary buy?
*Mary asked who and what bought

• Well, how many???

6•863J/9•611J SP04 Lecture 13

And then..

• John saw more horses than bill saw cows or 
Mary talked to

• John saw more horses than bill saw cows or 
mary talked to cats

• The kennel which Mary made and Fido sleeps 
in has been stolen

• The kennel which Mary made and Fido sleeps 
has been stolen



6•863J/9•611J SP04 Lecture 13

How big can the grammar get???

• John sleeps
• They sleep
• I know her
• ?I know she
• Agreement features
• Quite systematic

6•863J/9•611J SP04 Lecture 13

Other languages; formalizing features

• Two kinds:
1. Syntactic features, purely grammatical function 

Example: Case in German (NOMinative, ACCusative, 
DATive case) – relative pronoun must agree w/ 
Case of verb with which it is construed
Wer micht strak is, muss klug sein
Who not  strong is, must clever be
NOM NOM
Who isn’t strong must be clever



6•863J/9•611J SP04 Lecture 13

Continuing this example

Ich nehme, wen         du mir empfiehlst
I      take  whomever you me recommend
ACC          ACC                  ACC
I     take   whomever you recommend to me

*Ich nehme, wen      du vertraust
I      take  whomever you trust
ACC        ACC               DAT

6•863J/9•611J SP04 Lecture 13

Other class of features

2. Syntactic features w/ meaning – example, number, 
def/indef., adjective degree

Hungarian
Akart           egy könyvet
He-wanted  a    book

-DEF            -DEF
egy könyv amit     akart
A   book which     he-wanted

-DEF                   -DEF



6•863J/9•611J SP04 Lecture 13

The trouble with tribbles

morphology of a single word: 
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase 
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

provided α is in the set TRANSITIVE-VERBS

6•863J/9•611J SP04 Lecture 13

3 common ways to use features

morphology of a single word: 
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase 
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

provided α is in the set TRANSITIVE-VERBS



6•863J/9•611J SP04 Lecture 13

3 Common Ways to Use Features

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

num=sing

num=singnum=sing

(generation
perspective)

thrills

6•863J/9•611J SP04 Lecture 13

3 Common Ways to Use Features

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

num=singnum=sing

(comprehension
perspective)

num=sing

thrills



6•863J/9•611J SP04 Lecture 13

• But this means huge proliferation of rules…
• An alternative:

• View terminals and non-terminals as 
complex objects with associated features, 
which take on different values

• Write grammar rules whose application is 
constrained by tests on these features, e.g.
S NP VP (only if the NP and VP agree in 

number)

6•863J/9•611J SP04 Lecture 13

Design advantage

• Decouple skeleton syntactic structure from 
lexicon

• In fact, the syntactic structure really is a 
skeleton:



6•863J/9•611J SP04 Lecture 13

From this…

NP

president
the
Det

that

N

Sbar

Comp S

NP VP

V PP

choked

NP

P NP

e

6•863J/9•611J SP04 Lecture 13

To this

president
the

that

choked
e

on

the

the..



6•863J/9•611J SP04 Lecture 13

Features are everywhere

morphology of a single word: 
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase 
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

provided α is in the set TRANSITIVE-VERBS

6•863J/9•611J SP04 Lecture 13

Better approach to factoring linguistic 
knowledge

• Use the superposition idea: we superimpose one set 
of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints
• S → NP VP

[num x] [num x] [num x]

the guy eats
[num singular] [num singular]



6•863J/9•611J SP04 Lecture 13

Or in tree form:

S [number x]

NP [number x] VP [number x]

DT [number x] V [number x] NP

the
[number singular]

guy
[number singular]

N [number x]

eats
[number singular]

6•863J/9•611J SP04 Lecture 13

Values trickle up

S [number x]

NP [number x] VP [number x]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]



6•863J/9•611J SP04 Lecture 13

Checking features

S [number x]

NP [number sing] VP [number sing]

DT [number sing] V [number sing]NP

the
[number singular]

guy
[number singular]

N [number sing]

eats
[number singular]

6•863J/9•611J SP04 Lecture 13

What sort of power do we need 
here?

• We have [feature value] combinations so far
• This seems fairly widespread in language
• We call these atomic  feature-value combinations
• Other examples: 
1. In English: 
person feature (1st, 2nd, 3rd); 
Case feature (degenerate in English: nominative, 

object/accusative, possessive/genitive): I know her vs. 
I know she; 

Number feature: plural/sing; definite/indefinite
Degree: comparative/superlative



6•863J/9•611J SP04 Lecture 13

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix

1

2

...
n

Feature
Feature

Feature










1

2

....
n

Value
Value

Value












6•863J/9•611J SP04 Lecture 13

How to formalize?

• Let F be a finite set of feature names, let A 
be a set of feature values

• Let p be a function from feature names to 
permissible feature values, that is, 
p: F→2A

• Now we can define a word category as a 
triple <F, A, p> 

• This is a partial function from feature names 
to feature values



6•863J/9•611J SP04 Lecture 13

Example 
• F= {CAT, PLU, PER}
• p: 

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep =    {[CAT V], [PLU -], [PER 1]}
sleep =    {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is relatively 

simple here…how bad can it get?

6•863J/9•611J SP04 Lecture 13

Operations on Feature Structures

• What will we need to do to these structures?
• Check the compatibility of two structures
• Merge the information in two structures

• We can do both using unification
• We say that two feature structures can be unified if 

the component features that make them up are 
compatible

• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]



6•863J/9•611J SP04 Lecture 13

• [Num SG] U [Pers 3] =

• Structures are compatible if they contain no 
features that are incompatible 

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value 

pairs
• A failed unification attempt

3
Num SG
Pers

 
 
 
 
  

1
3

1

Num SGAgr
Pers

Subj Agr

  
  
  
  

  
       

3

3

Num PlAgr
Pers

Num PLSubj Agr
Pers

  
  
  
  
  
 

   
   
   
   
     

∪

6•863J/9•611J SP04 Lecture 13

Features, Unification and Grammars
• How do we incorporate feature structures into our 

grammars?
• Assume that constituents are objects which have 

feature-structures associated with them
• Associate sets of unification constraints with 

grammar rules 
• Constraints must be satisfied for rule to be 

satisfied
• For a grammar rule β0 β1 …βn

• <βi feature path> = Atomic value
• <βi feature path> = <βj feature path>

• NB: if simple feat-val pairs, no arbitrary nesting, then 
no need for paths



6•863J/9•611J SP04 Lecture 13

Feature unification examples
(1) [ agreement: [ number: singular 

person: first ]  ]
(2) [ agreement: [ number: singular] 

case: nominative  ]  

• (1) and (2) can unify, producing (3):
(3) [ agreement: [ number: singular 

person: first ]  
case: nominative  ]

(try overlapping the graph structures corresponding to 
these two)

6•863J/9•611J SP04 Lecture 13

Feature unification examples
1) [ agreement: [ number: singular 

person: first ]  ]
(2) [ agreement: [ number: singular] 

case: nominative  ]  
(4) [ agreement: [ number: singular 

person: third]  ]
• (2) & (4) can unify, yielding (5):
(5) [ agreement: [ number: singular 

person: third]  
case: nominative  ]

• BUT (1) and (4) cannot unify because their values 
conflict on <agreement person>



6•863J/9•611J SP04 Lecture 13

• To enforce subject/verb number agreement

S NP VP
<NP NUM> = <VP NUM>

6•863J/9•611J SP04 Lecture 13

Head Features

• Features of most grammatical categories are 
copied from head child to parent (e.g. from V to 
VP, Nom to NP, N to Nom, …)

• These normally written as ‘head’ features, e.g.
VP V NP
<VP HEAD> = <V HEAD>
NP Det Nom
<NP HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom N
<Nom HEAD> = <N HEAD>



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=1] → Det N[n=1]

N[n=1] → N[n=1] VP
N[n=1] → plan

VP[n=1] → V[n=1] VP
V[n=1] → has

S→ NP[n=1]  VP[n=1]



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=α] → Det N[n=α]

N[n=α] → N[n=α] VP
N[n=1] → plan

VP[n=α] → V[n=α] VP
V[n=1] → has

S→ NP[n=α]  VP[n=α]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Morphology (e.g.,word endings)

N[h=plan,n=1] → plan
N[h=plan,n=2+] → plans
V[h=thrill,tense=prog] → thrilling
V[h=thrill,tense=past] → thrilled
V[h=go,tense=past] → went

Why use heads?



Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]Subcategorization (i.e., 
transitive vs. intransitive)
When is VP → V NP ok?
VP[h=α] → V[h=α] NP

restrict to α ∈ TRANSITIVE_VERBS

When is N → N VP ok?
N[h=α] → N[h=α] VP

restrict to α ∈ {plan, plot, hope,…}

Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Selectional restrictions
VP[h=α] → V[h=α] NP
I.e., VP[h=α] → V[h=α] NP[h=β]

Don’t fill template in all ways:
VP[h=thrill] → V[h=thrill] NP[h=Otto]

*VP[h=thrill] → V[h=thrill] NP[h=plan]

Why use heads?

leave out, or low prob

Equivalently: keep the template
but make prob depend on α,β



6•863J/9•611J SP04 Lecture 13

• How do we define 3plNP?
• How does this improve over the CFG solution?

• Feature values can be feature structures themselves
• Useful when certain features commonly co-occur, 

e.g. number and person

• Feature path: path through structures to value 
(e.g. 

Agr Num SG

Cat

Agr









3

NP
Num SG
Pers



          

6•863J/9•611J SP04 Lecture 13

Features and grammars

agreement: person: third
number: singularagreement:

agreement

personnumber

singular third

category

category: N

N



6•863J/9•611J SP04 Lecture 13

Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep

6•863J/9•611J SP04 Lecture 13

Our feature structures

• NP[agr ?B] -> DET[agr ?B] N[agr ?B]
• VP[fin ?A, agr ?B] -> V2[fin ?A, agr ?B] NP
• Maria NAME[agr [person 3, plural -]]

Kimmo entry for Verb (eg, ‘coge’ after analysis):
• +e Suffix "[fin +, agr [tense pres, 

mode ind, person 3, plural -]]"



6•863J/9•611J SP04 Lecture 13

How can we parse with feature 
structures?

• Unification operator: takes 2 features structures and 
returns either a merged feature structure or fail

• Input structures represented as DAGs
• Features are labels on edges
• Values are atomic symbols or DAGs

• Unification algorithm goes through features in one 
input DAG1 trying to find corresponding features in 
DAG2 – if all match, success, else fail

• WE WILL USE MUCH SIMPLER kind of feature 
structure

6•863J/9•611J SP04 Lecture 13

Features and Earley Parsing
• Goal:

• Use feature structures to provide richer 
representation

• Block entry into chart of ill-formed constituents
• Changes needed to Earley

• Add feature structures to grammar rules, & lexical 
entries

• Add field to states containing set representing 
feature structure corresponding to state of parse, 
e.g.

S • NP VP, [0,0], [], Set= [Agr [plural -]]



6•863J/9•611J SP04 Lecture 13

• Add new test to Completer operation
• Recall: Completer adds new states to chart by 

finding states whose • can be advanced (i.e., 
category of next constituent matches that of 
completed constituent)

• Now: Completer will only advance those states if 
their feature structures unify

• New test for whether to enter a state in the chart
• Now feature structures may differ, so check must 

be more complex
• Suppose feature structure is more specific than 

existing one tied to this state?  Do we add it?

6•863J/9•611J SP04 Lecture 13

Evidence that you don’t need this 
much power

• Linguistic evidence: looks like you just check whether 
features are nondistinct, rather than equal or not –
variable matching, not variable substitution

• Full unification lets you generate unnatural languages:
ai,  s.t. i a power of 2 – e.g., a, aa, aaaa, aaaaaaaa, …
why is this ‘unnatural’ – another (seeming) property of 
natural languages:

Natural languages seem to obey a constant growth
property



6•863J/9•611J SP04 Lecture 13

Parsing with features – hook from 
kimmo to earley

• Features written in this form (in Kimmo)

• +as Suffix "[fin +, agr [tense pres, mode 
ind, person 2, plural -]]”

• In general:  
[feature value,  feature [feature val, …, feature val]]

6•863J/9•611J SP04 Lecture 13

Where wolf



6•863J/9•611J SP04 Lecture 13

6•863J/9•611J SP04 Lecture 13



6•863J/9•611J SP04 Lecture 13

6•863J/9•611J SP04 Lecture 13



6•863J/9•611J SP04 Lecture 13

6•863J/9•611J SP04 Lecture 13

Constant growth property

Claim: ∃ Bound k on the ‘distance gap’ between 
any two consecutive sentences in this list, 
which can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot 
get too big – cannot grow w/o bounds

• We can do this a bit more formally



6•863J/9•611J SP04 Lecture 13

Constant growth
• Dfn. A language L is semilinear if the number of 

occurrences of each symbol in any string of L is a linear 
combination of the occurrences of these symbols in some 
fixed, finite set of strings of L.  

• Dfn. A language L is constant growth if there is a constant 
c0 and a finite set of constants C s.t. for all w∈L, where 
|w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c, some c ∈C

• Fact. (Parikh, 1971). Context-free languages are semilinear, 
and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is non 
constant-growth

6•863J/9•611J SP04 Lecture 13

General feature grammars – how 
violate these properties

• Take example from so-called “lexical-
functional grammar” but this applies as well 
to any general unification grammar

• Lexical functional grammar (LFG): add 
checking rules to CF rules (also variant HPSG)



6•863J/9•611J SP04 Lecture 13

Example LFG

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP                          VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?

6•863J/9•611J SP04 Lecture 13

Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[subj [num singular]]

N
[num singular]

sleepsguys
[num plural]



6•863J/9•611J SP04 Lecture 13

Alas, this allows non-constant 
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A                  A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the 

right & the left – make sure a power of 2

6•863J/9•611J SP04 Lecture 13

Example
A

A A

A A A A

a a a a
Checks ok (↑ f) =1  (↑ f) =1  (↑ f) =1  (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓



6•863J/9•611J SP04 Lecture 13

If mismatch anywhere, get a feature 
clash…

A

A A

A A

a a
a

Fails! (↑ f) =1  (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!

6•863J/9•611J SP04 Lecture 13

Conclusion then

• If we use too powerful a formalism, it lets us 
write ‘unnatural’ grammars

• This puts burden on the person writing the 
grammar – which may be ok.

• However, child doesn’t presumably do this 
(they don’t get ‘late days’)

• We want to strive for automatic programming 
– ambitious goal


