6.863] Natural Language Processing

Lecture 13: Featured attraction

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

. Iﬂ}dministrivia:

""" Lab 3b out later today - Weds; due after
vacation — April 5

Agenda:
Fillers & Gaps; I shrank the grammar!
Features & feature grammars

608631/9¢611] SP04 Lecture 13

Job 1: writing grammar rules

IThree sorts of examples to handle:
1f " Simple declarative sentences

I “Poirot solved the case
Poirot thought
Poirot sent the solution to the police
Poirot believed the detectives were incompetent
2. Auxiliary verb sentences
P. may have been solving the case

3. Unbounded dependencies: Questions and relative
clauses

Which case did Poirot solve

The solution that P. sent to the police solved the
case

6¢8631/9¢611] SP04 Lecture 13

ant to block:
A

|
. do notovergenerate

*Poirot solved; *P. may solved the case;
*Which solution did P. send which solution to
the police?

608631/9¢611] SP04 Lecture 13

‘ Irreliminaries: phrase names
|

. I said that ice-cream was on the table
I said ice-cream was on the table
. What is the structure here?

. Existence of Complementizer (COMP) before
__Sentence phrase, forming an “Sbar phrase”
(S): Shar

Sbar—(Comp) S

Comp
6¢8631/9¢611] SP04 Lecture 13

‘ .'Fbar= Comp S
. isplaced phrase -

. Also present in ‘root’ (top level) sentences (/
like ice-cream) but usually we don't *hear’ it
(unless it's filled by question or focus phrase)

. Serves as ‘landing site’ for fillers

. In embedded sentences, in English, the Comp
is optional

. If Compis filled — then that blocks things:
Who (F) do I know that John likes (G)

608631/9¢611] SP04 Lecture 13

Filler-gap examples

i Exam'nle Ordinary Filler-gap analog
‘ Sentence

Wh-question Mary saw Bill Who (F) did Mary
see (G)?

Topicalization John hates beans | Beans (F) John
hates (G)

Tough-movement| It is hard to please | John (F) is hard

John to please (G)

Relative clauses |John likes the guy | The guy (F) that

John likes (G)
Be803J/0°011J SPUT LeclTe 13

‘ fillers and gaps, redux
|

A
. IFillérs and Gaps summary: F, G
Filler is the displaced phrase

. Gap is a phonological null (unpronounced) empty category
(though it can have secondary phonological consequences:

This student (F) you want (G) to solve the problem blocks
contraction between want and to into wanna

. ? This student you wanna solve the problem

F-G relation represents displacement from canonical
semantic argument position

Many examples of this in natural language
6¢8631/9¢611] SP04 Lecture 13

I|=iIIers and gaps
|

. \
I . Since ‘gap’ is NP going to empty string, we

could just add rule, NP—¢

. But this will overgenerate- how?

. We need a way to distinguish between
. What did John eat
. Did John eat

. How did this work in the FSA case?

6¢8631/9¢611] SP04 Lecture 13

‘ .'F»o, what do we need
|

L I ‘
. A rule to expand NP as the empty symbol;
that’s easy enough: NP—¢

. A way to make sure that NP is expanded as
empty symbol iff there is a gap (in the right
place) before/after it

. A way to link the filler and the gap

. We can do all this by futzing with the rules:
Generalized Phrase Structure Grammar

(GPSG)

608631/9¢611] SP04 Lecture 13

“State-splitting” to remember wh seen (but not
heard) — need new states (cf. vowel harmony,

etc.)

I
. We could encode the two possible routes by

distinct chalns of states as foIIows

O—>O—>O—>O—’©

wha NP

- Names not very ellghtemng, so will use this
instead:

O—>@—>O—>O—’©

6¢8631/9¢611] SP04 Lecture 13

So we have to add rules with new
rponterminals to ‘name’ states...

. S/NP — NP VP/NP

. VP/NP — V NP/NP

« NP/NP—¢

. We haven't put the auxiliary verb stuff in...

. Note the ‘chain’ of slashed rules in the final
structure

- What happens computationally?

608631/9¢611] SP04 Lecture 13

‘ 4\ctua| ‘marks’ in the literature
i
. Called a ‘slash category’
. Ordinary category: Sbar, VP, NP
. Slash category: Sbar/NP, VP/NP, NP/NP
« "X/Y" is ONE atomic nonterminal

. Interpret as: Subtree X is missing a Y
(expanded as e) underneath

. Example: Sbar/NP = Sbar missing NP
underneath (see our example)

6¢8631/9¢611] SP04 Lecture 13

‘ 4\5 for slash rules...
1
. We need slash category introduction rule,
e.g., Sbar —» Comp S/NP

. We need ‘elimination’ rule NP/NP—e
. These are paired (why?)

. We'll need other slash categories, e.g.,

608631/9¢611] SP04 Lecture 13

‘ Il\leed PP/NP...
|

[
/”i") \ﬁK
Y o
pretzel | \ Z\//'D\P

that Q

P
the P. t RN
choked P NP

6¢8631/9¢611] SP04 Lectlﬁﬁ e

8

How do we do ‘slashed rules’

?ystematically & formally

. Basic categories: ‘orginary’ nonterminals N={S, VP,
NP, PP, ...}
. Slashed (derived) categories: o/B, a., B range over

. E.g., S/NP, S/VP, S/PP, NP/NP, NP/VP, NP/PP
. Interpretation: tree rooted at o, with ‘gap’ (subtree)
of type B somewhere beneath

. Step 2: form s/ashed rules from basic rules
. Basic rule: S— NP VP
. Slashed rule: SINP— NP VP/NP
. (Why not S/NP— NP/NP VP)

608631/9¢611] SP04 Lecture 13

‘ ,ﬁlso have ‘subject’ gaps

I \
Det N
tﬂz | Comp
president | Z\/

that
choted l \

6¢8631/9¢611] SP04 LectLGﬁ the pretzel

Ifiller—gap configuration

. Equivalent to notion of ‘scope’ for natural

languages (scope of variables) ~ Environment

frame in Scheme/binding environment for
‘variables’ that are empty categories

. Formally: Fillers c-command gaps
(constituent command)

. Definition of c-command:

608631/9¢611] SP04 Lecture 13

‘ Fonstraints on filler-gap relations

. Can be “unbounded” on the surface, but underlyingly

is successive cyclic (AKA — forms a chain linking filler

to gap)

. [what (F) did John think (F) that Bill said (F) that
Mary liked (G)]

. Note that this F-G distance cannot exceed 1 adjacent

S or NP boundary (in English)
. What (F) [do you wonder [who likes (G)]

. (Note: What (F) do you wonder (F) who likes (G)
is blocked)

6¢8631/9¢611] SP04 Lecture 13

‘ Fonstraints on filler-gaps
|

Obeys structural relation called c-command

True in other languages also; also true there
are multiple gaps

So, how does generalized phrase structure
grammar (GPSG) handle all this?

We covered: basic rules; derived rules
Still to cover: metarules; constraints

608631/9¢611] SP04 Lecture 13

‘ I|=iIIer-gap configuration

6¢8631/9¢611] SP04 Lecture 13

-command
i

L I |
. A phrase o c-commands a phrase B iff the

first branching node that dominates a also
dominates B (blue = filler, green = gap)

608631/9¢611] SP04 Lecture 13

B

‘ II\IaturaI for A abstraction
|
\

I Sbar

Mary see x

|

onstraints on gpsg rules
iAcross the board” constraints in conjunction

I ““The person who Mary likes (S/NP) and Sally hates
George(S) computed my tax. Compare:

The person who Mary likes (S/INP) and Sally hates
(S/NP) computed my tax

Can't join S/NP and S — different categories, akin to
John likes pizza and beer (NP and NP)
. Extracted wh-phrase must be of same type
Which book and which pencil did John buy?
? John asked who and where Bill had seen (G)

608631/9¢611] SP04 Lecture 13

8

I|VIore constraints
|

[
. English specific

*Who (F) do you believe (G) that came
*Who (F) did you wonder whether (G) came
*Who (F) did you wonder if (G) came
OK: Who is it that Mary likes

. What is going on here?

6¢8631/9¢611] SP04 Lecture 13

Iﬁightward displacement

The man (G) was ill who was here (F)

John hummed (G) and Mary sang (G), at
equal volumes (F)

Again can't be dissimilar

John offered and Harry gave Bill a Volvo (Bill
a Volvo”isn't a phrase)

Again can't be “too far”:

Harry fished in the ocean and I don't think
Mary in the sea.

608631/9¢611] SP04 Lecture 13

Some examples to help with lab —
corresponding tree structures (I
Wont leave you at bay in a sea of

S nontermlna|5)

. If you start w/ tree structures, the CF rules
write themselves (almost)

. Fido chased Mary

6¢8631/9¢611] SP04 Lecture 13

‘ .'Ftructure for this sentence

|
| - Root
S\
‘\JP/ VP-l-tnls\
ame V_+tnS l\lTP

Fido chased Name
Mary

608631/9¢611] SP04 Lecture 13

k ‘

Why do we need
|
|

I
V2?
. V2+tns?
6¢8631/9¢6113 SP04 Lecture 13
‘ i/erb subcategories
——

. You will need V1,V2, V3, V4,...

608631/9¢611] SP04 Lecture 13

‘ i\low easy to read off rules from trees
|
o | [

. S—>NP VP+TNS
. VP+TNS — V2+TNS NP
Etc...
6863]/9¢611] SP04 Lecture 13
‘ {dea 1: Wysiwyg
i i I Root

Q(uestion)

NPl ~VP+tns

Pronp+wh V2+tns NP

Who J— Name

Mary

608631/9¢611] SP04 Lecture 13

Idea 2: conform to wh-pattern of
‘ ?thers, e.g., "What did John see”
|

Sbar

Gap saw Mary
X

6¢8631/9¢611] SP04 Lecture 13

More complex syntax — simpler
‘ :[;emantics (canonical)
|

Root

I
SBAR

/ \
NP+wh S/NP
Pronp+twh NP/NP VP+tns

/T~

who e V2+tns NP
saw Mary

608631/9¢611] SP04 Lecture 13

I|=irst alternative

\ 4

ntactic structures ‘closer to the surface

hen we have to figure out semantic differences from
hacking the semantic part

. In fact, this is what GPSG does for so-called " passive’
also — it doesn’t ‘encode’ this in a change from active
sentence to passive sentence, e.g., John ate the ice-
cream — The ice-cream was eaten (by John)

. Instead, it just has two forms. Is this right?
. Which form is ‘primary”? (more fundamental)

Evidence: doesn’t seem to be cases where you have a
passive form without the corresponding active form,
but does seem to be cases the other way around
(active but no passive)

6¢8631/9¢611] SP04 Lecture 13

‘ Il\low, what if we move the object?

| Cloan

= I ‘ [avgens

§Np ——— NP

pd
Sbar/NP onj Sbar/NP

| the rabid dog

and

Mary caught e John killed e

608631/9¢611] SP04 Lecture 13

‘ ,i\nother example
B } Sbar
| |
s
Sbar on] Sbar
Mary ca_ught John killed
the rabid dog the rabid dog
6¢8631/9¢6113 SP04 Lecture 13
‘ Pesides reading off the rules...

| I |

. Why can’t we just build a machine to do this?
. We could induce rules from the structures

. But we have to know the right representations
(structures) to begin with

. Penn treebank has structures — so could use learning
program for that

. This is, as noted, a construction based approach
. We have to account for various constraints, as noted

608631/9¢611] SP04 Lecture 13

‘ Fonstraints — and language variation

= fExamptes:
‘Distance’ effects: What do you wonder who likes

(English): musthave a subject (unlike Spanish) 7
came;, vs. came

How do we want to account for these?
2 possible ways
1. More engineering: make a list

2. More scientific: look for deeper theory that has
primitives that only lets you "~ write the correct’ rules
— like automatic program construction

6¢8631/9¢611] SP04 Lecture 13

o 1
(& 1]

'S/NP\NP

/)
Sbar onj Sbar

| the rabid dog
and

‘ YVhat if we move the object?
|
\

S

Mary caught e John killed e

608631/9¢611] SP04 Lecture 13

‘ YVhy not read off the rules?

] |
. Why can't we just build a machine to do this?
. We could induce rules from the structures

But we have to know the right representations
(structures) to begin with

Penn treebank has structures — so could use learning
program for that

. This is, as noted, a construction based approach
. We have to account for various constraints, as noted

6¢8631/9¢611] SP04 Lecture 13

‘ Sﬁo what?

| I |

. What about multiple fillers and gaps?

« Which violins are these sonatas difficult to
pi§e sonatas o ywhich violins 7

608631/9¢611] SP04 Lecture 13

8

Il-low many context-free rules?

. For every displaced phrase, what do we do to

the ‘regular’ context-free rules?

. How many kinds of displaced rules are there?

Which book and Which pencil did Mary buy?
*Mary asked who and what bought

. Well, how many???

6¢8631/9¢611] SP04 Lecture 13

&8

nd then..
ot

John saw more horses than bill saw cows or
Mary talked to

. John saw more horses than bill saw cows or

mary talked to cats

. The kennel which Mary made and Fido sleeps

in has been stolen

. The kennel which Mary made and Fido sleeps

has been stolen

608631/9¢611] SP04 Lecture 13

‘ H-Iow big can the grammar get???
1
. John sleeps
They sleep
. I know her
?I know she
Agreement features
Quite systematic

6¢8631/9¢611] SP04 Lecture 13

(TrI\er languages; formalizing features
|

| I |

Two kinds:
1. Syntactic features, purely grammatical function

Example: Case in German (NOMinative, ACCusative,
DATive case) — relative pronoun must agree w/
Case of verb with which it is construed

Wer micht strak is, muss klug sein
Who not strong is, must clever be
NOM NOM

Who isn't strong must be clever

608631/9¢611] SP04 Lecture 13

B

‘ Fontinuing this example
|

Ich nehme, wen

du mir empfiehlst

I take whomever you me recommend
ACC ACC ACC

I

take whomever you recommend to me

*Ich nehme, wen du vertraust

I take whomever you trust
ACC ACC DAT

6¢8631/9¢611] SP04 Lecture 13

|

Pther class of features
|
|

2.

Syntactic features w/ meaning — example, number,
def/indef., adjective degree

Hungarian
Akart egy konyvet
He-wanted a book

-DEF -DEF

egy kényv amit akart
A book which he-wanted

-DEF -DEF

608631/9¢611] SP04 Lecture 13

'|'he trouble with tribbles
|

mbrphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,...] - thrills

projection of features up to a bigger phrase
VP[head=aq, tense=p, num=y...] » V[head=0, tense=p, num=y...] NP
provided a is in the set TRANSITIVE-VERBS

agreement between sister phrases:

S[head=aq, tense=p] - NP[num=y,...] VP[head=q, tense=B, num=y...]
provided a is in the set TRANSITIVE-VERBS

6¢8631/9¢611] SP04 Lecture 13

:f common ways to use features

morphology of a single word:
Vel‘b[head:thrill, tense=present, num=sing, person=3,...] > thrills

projection of features up to a bigger phrase
VP[head=0, tense=B, num=y...] » V[head=a, tense=p, num=y...] NP
provided a is in the set TRANSITIVE-VERBS

agreement between sister phrases:

S[head=0, tense=p] - NP[num=y,...] VP[head=q, tense=g, num=y...]
provided a is in the set TRANSITIVE-VERBS

608631/9¢611] SP04 Lecture 13

f Common Ways to Use Features

|
=B T
Vérbﬂhead=thrill, tense=present,\num=sing} person=3,...] 4>| thrills
VPlhead=0, tense=p,[num=y]..] - V[head=a, tense=p,[num=y}.] NP
Slhead=a, tense=p] - NPfnum=y]..] VP[head=0, tense=p,[num=y].]

S
(generation
perspecttve)
\ rb
num smg
A roller coaster every teenager
6986, Lecture 13

f Common Ways to Use Features
|
. Vérbﬂhead=thrill, tense=present, num=sing| person=3,...] a| thrills
VPlhead=0, tense=p,[num=y]..] - V[head=a, tense=p,[num=y}.] NP
Slhead=q, tense=p] - NPfnum=y,..] VP[head=q, tense=p,[num=y]]

S

(comprehenszon
perspecttve)

rb

num smg

A roller coaster

6986.

every teenager

Lecture 13

IBut this means huge proliferation of rules...
An alternative:

|

AN
I View terminals and non-terminals as
complex objects with associated features,

which take on different values
. Write grammar rules whose application is
constrained by tests on these features, e.g.

S - NP VP (only if the NP and VP agree in
number)

6¢8631/9¢611] SP04 Lecture 13

‘ Pesign advantage
1
. Decouple skeleton syntactic structure from
lexicon

. In fact, the syntactic structure really is a
skeleton:

608631/9¢611] SP04 Lecture 13

rom this...
ul

] L/NQ\\
/'\Q Sbar
Det N / \
tﬂe | Comp
president | j\
that |0 R
PP
e
choted I\

P N

6¢8631/9¢611] SP04 lecture 13

choked
on

608631/9¢611J SP04 Lecture Ehe ..

I|=eatures are everywhere

mbrphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,...] - thrills

projection of features up to a bigger phrase

VP[head=aq, tense=p, num=y...] » V[head=0, tense=p, num=y...] NP
provided a is in the set TRANSITIVE-VERBS

agreement between sister phrases:

S[head=aq, tense=p] - NP[num=y,...] VP[head=q, tense=B, num=y...]
provided a is in the set TRANSITIVE-VERBS
6863]/9¢611] SP04 Lecture 13

Better approach to factoring linguistic
knolwledge

Use the superposition idea: we superimpose one set
of constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints

S — NP VP
[num X] [num x] [num x]
the guy eats

[num singular] [num singular]

608631/9¢611] SP04 Lecture 13

‘ Pr in tree form:
= |

S [number x]

NP [number x] VP [number x]

A o~

DT [number x] N [number x] V [number x]

the / guy / ea/

[number singular] [number singular] [number singular]

6¢8631/9¢611] SP04 Lecture 13

alues trickle up
ot

| I |

S [number x]
NP [number x] VP [number x]

SN

DT [number sing]N [number sing] V [number Smg]NP

the guy eafs
[number singular] [number singular] [number singular]

608631/9¢611] SP04 Lecture 13

‘ Fhecking features
|

S [number x

NP [number sing] VP [number sing]

AR

DT [number singN [number sing] V [number sing]NP

the guy eafs
[number singular] [number singular] [number singular]

6¢8631/9¢611] SP04 Lecture 13

What sort of power do we need
here?

. |We have [feature value] combinations so far
S This Seems tairly widespread In language
We call these atomic feature-value combinations
Other examples:
1. In English:
person feature (1st, 2nd, 3rd);

Case feature (degenerate in English: nominative,
object/accusative, possessive/genitive): I know hervs.
I know she,;

Number feature: plural/sing; definite/indefinite

Degree: comparative/superlative

608631/9¢611] SP04 Lecture 13

8

I|=eature Structures

F—Setsof feature=vatue pairs wiere:

. Features are atomic symbols

. Values are atomic symbols or feature structures
. Illustrated by attribute-value matrix

6¢8631/9¢611] SP04 Lecture 13

&8

Il-low to formalize?

Let Fbe a finite set of feature names, let A4
be a set of feature values

Let p be a function from feature names to
permissible feature values, that is,

p: F>2°

Now we can define a word category as a
triple <F, A, p>

This is a partial function from feature names
to feature values

608631/9¢611] SP04 Lecture 13

‘ anmple

B A‘— JCAT DIl DEDY
——{CATPLY-PER)
. p
KCAT) =V, N, ADJ}
HAPER)={1, 2, 3}
APLU)={+, -}
sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}

Checking whether features are compatible is relatively
simple here...how bad can it get?

6¢8631/9¢611] SP04 Lecture 13

‘ Pperations on Feature Structures
01—
. What will we need to do to these structures?
. Check the compatibility of two structures
. Merge the information in two structures

. We can do both using unification

. We say that two feature structures can be unified if
the component features that make them up are
compatible

. [Num SG] U [Num SG] = [Num SG]
. [Num SG] U [Num PL] fails!
« [Num SG] U [Num []] = [Num SG]

608631/9¢611] SP04 Lecture 13

« [Num SG] U [Pers 3] =

. ‘ Structures are compatible if they contain no

. Unification of two feature structures:
. Are the structures compatible?
. If so, return the union of all feature/value
pairs
. A failed unification attempt

6¢8631/9¢611] SP04 Lecture 13

Fa|tures, Unification and Grammars

grammars?

. Assume that constituents are objects which have
feature-structures associated with them

. Associate sets of unification constraints with
grammar rules

. Constraints must be satisfied for rule to be
satisfied

For a grammar rule B, 2> B4 ...B,
. <p,feature path> = Atomic value
- <B;feature path> = <B, feature path>

NB: if simple feat-val pairs, no arbitrary nesting, then

no need for paths
6¢8631/9¢611] SP04 Lecture 13

J eature unification examples

1) agreement: [number: singular
= person: first]]
(2) [agreement: [number: singular]

case: nominative]

. (1) and (2) can unify, producing (3):

(3) [agreement: [number: singular
person: first]
case: nominative]

(try overlapping the graph structures corresponding to
these two)

6¢8631/9¢611] SP04 Lecture 13

Feature unification examples

| 1) [agreement: [number: singular
| narcon: firct 1 7
| PeTooTs LS4 I
(2) [agreement: [number: singular]
case: nominative]
(4) [agreement: [number: singular
person: third]]
. (2) & (4) can unify, yielding (5):
(5) [agreement: [number: singular
person: third]
case: nominative]

. BUT (1) and (4) cannot unify because their values
conflict on <agreement person>

608631/9¢611] SP04 Lecture 13

. To enforce subject/verb number agreement

S > NP VP
<NP NUM> = <VP NUM>

6¢8631/9¢611] SP04 Lecture 13

‘ H-Iead Features
1
Features of most grammatical categories are

copied from head child to parent (e.g. from V to
VP, Nom to NP, N to Nom, ...)

. These normally written as ‘head’ features, e.g.
VP > VNP
<VP HEAD> = <V HEAD>
NP - Det Nom
<NP-> HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom -> N
<Nom HEAD> = <N HEAD>

608631/9¢611] SP04 Lecture 13

S

/\

P VP
)\ A

Det Vv VP

The /\ has /\

plan /\ been A

to Vv

/\ thrilling Otto

swaIIow Wanda

S— NP[n=1] VP[n=1] S xr[n=]1] —;]V[n=1] VP
n=1] - Nas

A KT

Det N [num=1] Y[num—l] VP

The /\ has
N[num—l] VP
plan /\ been /D\

to V

NP[n=1] - Det N[n=1] /\ thrilling OttO

N[n=1] - N[n=1] VP

N[n=1] - plan
swaIIow Wanda

S— NP[n=ca] VP[n=a] S xP[n:a] —F] Vin=a] VP
[n=1] - Nas

Det N [num=1] [num—l] VP

The /\ h as /\
N[num—l] VP
plan /\ been A

to Vv

NP[n=0] -» Det Nin=a] /\ thrilling Otto

N[h=a] - N[n=a] VP
N[in=1] - plan
swaIIow Wanda

Vv VP
The UM pes DR
[heeﬁ)iﬁlgﬂlan] wa] beYen [W]

hea wallow] [he hrlll] [head= I\@tto
NP[h=a] — Det N[h=q] |ng Otto

N[h=a] - N[h=a] VP
N[h=plan] — plan [headZSMallow] [heMlEWanda]
swallow Wanda

S

P VP

Det V VP
The [he lan] has /\
vV V
h 1
[ea#ﬂ . /\ been
to VP V NP

NP[h=a] - Det Nih=a] /\ thrilling Otto

N[h=a] - N[h=a] VP v NP

N[h=plan] - plan
swallow Wanda

[he P lan]
Det
The [

[hea#ﬂlan] Wk’w] been hea rill]

[hea Pwallow] [heﬁ 1hr111] [head= I\@tto
NP[h=a] - Det N[h=0a] rilling Otto

N[h=a] - N[h=a] VP
N[h=plan] — plan [headZSMallow] [heMlEWanda]
swallow Wanda

[he lan]

Det N
The [he lan]

heaiptan) Wlow] oo (el

to

VP V. . I\g’
[headaswallow] [head=thrill][head=Otto]
NP{h=a] - Det Nih=q] /\ thrilling' " Otto

N[h=a] - N[h=a] VP p
N[h=plan] - plan [headstallow] [heﬂl—Wanda]
swallow Wanda

[he P lan]

Det N
The [he lan]

[hea#ﬂlan] wa]

[hea Pwallow] [heﬁ 1hr111] [head= I\@tto
NP[h=a] - Det N[h=0a] rilling Otto

N[h=a] - N[h=a] VP
N[h=plan] — plan [headZSMallow] [heMlEWanda]
swallow Wanda

bee hea rill]

How do we define 3pINP?
. How does this improve over the CFG solution?
Feature values can be feature structures themselves

I Useful when certain features commonly co-occur,
e.g. number and person

. Feature path: path through structures to value

(e.q.
Agr > Num > SG

6¢8631/9¢611] SP04 Lecture 13

‘ features and grammars
|

_—r
agreement: .
number: singular

categ%
N

greement

category: N —
gory person: third _’

a
number person

singular third
6+8631/9+611] SP04 Lecture 13

‘ feature checking by unification
|

B

agreemen

*John sleep

6¢8631/9¢611] SP04 Lecture 13

Pur feature structures
|

& I ‘
NP[agr 7?B]
. VP[fin ?A, agr 7?B]
. Maria NAME[agr [person 3, plural -]]
Kimmo entry for Verb (eg, ‘coge’ after analysis):

+e Suffix "[fin +, agr [tense pres,
mode ind, person 3, plural -]]1"

-> DET[agr ?B] N[agr ?B]
-> V2[fin ?A, agr ?B] NP

608631/9¢611] SP04 Lecture 13

How can we parse with feature
strdgures?
\

Unification operator: takes 2 features structures and
returns either a merged feature structure or 7a//

. Input structures represented as DAGs
. Features are labels on edges
. Values are atomic symbols or DAGs

Unification algorithm goes through features in one
input DAG; trying to find corresponding features in
DAG; — if all match, success, else fail

. WE WILL USE MUCH SIMPLER kind of feature
structure

6¢8631/9¢611] SP04 Lecture 13

I|=eatures and Earley Parsing
G‘oal'
. Use feature structures to provide richer
representation
. Block entry into chart of ill-formed constituents
. Changes needed to Earley

. Add feature structures to grammar rules, & lexical
entries

. Add field to states containing set representing
feature structure corresponding to state of parse,

e.g.
S > « NP VP, [0,0], [], Set= [Agr [plural -1]

608631/9¢611] SP04 Lecture 13

. Add new test to Completer operation

. Recall: Completer adds new states to chart by
|_finding states whose e can be advanced (i.e.,

‘ category of next constituent matches that of
completed constituent)

. Now: Completer will only advance those states if
their feature structures unify

New test for whether to enter a state in the chart

. Now feature structures may differ, so check must
be more complex

. Suppose feature structure is more specific than
existing one tied to this state? Do we add it?

6¢8631/9¢611] SP04 Lecture 13

Evidence that you don't need this

nIUICh power
|
B

Linguistic evidence: looks like you just check whether
features are nondistinct, rather than equal or not -
variable matching, not variable substitution

Full unification lets you generate unnatural languages:
a, s.t.iapowerof2—e.q., a aa, aaaa, aaaaaaaa, ...

why is this ‘unnatural’ — another (seeming) property of
natural languages:

Natural languages seem to obey a constant growth
property

608631/9¢611] SP04 Lecture 13

Parsing with features — hook from
‘ ‘(immo to earley
|

B

[
. Features written in this form (in Kimmo)

+as Suffix "[fin +, agr [tense pres, mode
ind, person 2, plural -]]1"

. In general:
[feature value, feature [feature val, ..., feature val]]

6¢8631/9¢611] SP04 Lecture 13

YVhere wolf
|
|

& ‘
I

Start
S[fin +]
NPwh -] AUX[fin +)/* NP[wh -]
NAME BEP DET[wh -] NBAR[wh -]
| | | |
1 | |
Bill B:E a N
@[ow] é @[2w] é
is werewolf
@[1w] @[3w]

608631/9¢611] SP04 Lecture 13

start

& |

¥P[agr [person 3, plural =], wh =]

#[ow]
los Hlagr [plural +]]
Blaw |
1'pizes

6¢8631/9¢611] SP04 Lecture 13

Starl : ;I
tll t

Sfin +]

NF[agr [person 3, plural -], wh -]

MAME[aar [person 3. plural -], wh -] V2[agr [mode ind, person ?i plural -, tense pres], fin +]

VP[aar [mode ind, person 3, plural -, tense pres], fin +]

MP[aar [plural +], wh -]

Maria
@[]

FlEVl Nexll Frint ta Poslscnpll Dunel

colete
@fTv]

DET[agr [plural +]. vh -]

los

@[2w]

MB&R[ag [p‘lural +]. wh-]

Mlagr [plural +]]

|
P pizes

@3]

2l

Tree 1 of 1

6¢8631/9¢611] SP04 Lecture 13

DET[agr [plural +], wh -]

NBAR[agr 7B, wh]

‘Maria' ‘coge’ ‘lns’' ‘I*piz'

[SSEAR ALK YP =~ TSP COR NP AT NBAR oo

S[fin +] VP[fin 7A] NP[agr ?B, wh -] &ﬂAﬂwh -1 NBAR[wh -]

& QHAR VP s WIAP & NAME s« FACT SBAR « NHAR PP

S[fin +] VP[fin 7A] NP[agr ?B, wh ZA] NBAR[agr [plural -], wh -] NBAR[wh -]

* QHAR ALK WP 4 ADVP = DET NBAR M * AP NEBAR

S[fin ?B]?A VP[fin 7A] w ?4] AP[wh +] &.ﬂAﬂwh -1

«SCONIS sY5 PP sPRO » SPEC AP »FACT SBAR
S[fin +177A VP[fin 7A] HP[wh ?4] ﬂvw -1 MBAR[fin +]/74

* HP VR B MNP PP = [NBAR .]

S[fin 24 VP[fin 74 HP[wh 24 AP[wh - [fin 24

-[N AJ}(VP -\5 NPI!JP -_ISNFR : -_:\ML ' AU P :

S[fin ?4] VP[fin 7A] MP[agr [plural +], wh -] AP[wh -] [fin +]

* NP ALK * W2 SBAR DET = MBAR SAFA i

Sifin 24] VP[fin 74] MBARjayr 78, wh-| AP[wh ?B]74 AUX[fin 28"

» NP ALK NP o485 s s AP COMNJAP * MODALP

S[fin 74] VP[fin 74] NBAR[wh -] AP[wh 74] AUX[fin 78"

* NP AL AP 10 QBAR * NBAR PP * ADVP A * WMODALP HAVEP
S[fin ?4] VP[fin 7A] HBAR[wh -] AP[wh ?4] AUX[fin ?AL*"

» NP ALK PP =411 NP GBAR = AP NBAR = APYBAR * MODALP BEP
S[fin ?A17R VP[fin 7A] NBAR[wh] NBAR[wh] AUX[fin 201"

* NP ALK WP *12 PP QBAR *FACT SBAR MNEBAR «FP * MODALP HAVEP BEP

NP[agr [plural +], wh -]
DET[agr [plural +], wh -]
Maria' ‘toge’ ‘los! 1*pizt

0 1 2 3 4

Maria coJe+e los ~piz PPlwh 74]

. . . . «P NP
ﬂ coge DET[agr [plural +], wh -] N[agr [plural -]] PP%I -1

*5 . e izt e -

NAME[agr [person 3, plural -], whVR[agr [mode ind, person 3, plurdiR kehsé pres], fin +] magr 7B, wh -] [fin ?B]/7A
Maria’ e tode+a’ s ©ATBAR *THAN 5 s & VHAR COMNJ VYBAR
S[fin +] VP[fin 7A] HP[wh -] HBAR[wh -] [fin ZA]7B

* 5BAR VP *17 NP FP PP * 4 NBAR *THAN 5 * NHAR PP * ALK VP

S[fin + VP[fin 74 HP[wh ?B]?4 HBAR[wh -] NBAR[agr ?B, wh -
-[a A]RAUXVF‘ -_\51L ! -r[q con]u P Al NBAR]' -_Nﬂ g '
S[fin +] VP[fin 7A] HP[agr 7B, wh -] &.ﬂA&wh -1 NBAR[wh -]

* GHAR VP *WIAP * NAME *FACT SBAR +NBAR FP

S[fin +] VP[fin 7A] NP[agr 7B, wh 28] NBARJagr [plural -], wh -] NBAR[wh -]

& QHAR ALK VP W4 ADVP s DET NBAR Ns * AP NBAR

S[fin ?B]/7A VP[fn 7A] w ?4] AP[wh +] &.ﬂAﬂwh -1

* 5 COM S 5 PP *FPRO * 5FEC AP +FACT SBAR
S[fin +1/7A VP[fin 7a] NP[wh ?4] ﬂlﬂLh 1 VBAR[fin +]/24

s NP VP «'E NP PP = NHAR sk B

S[fin ?4] VP[in 74 HP[wh 74 AP[wh - [fin 74

-[N AJ}(VP -\5 NPI!JP -_Svr?a : -_p:w’ ' VAUK VP :

=lolx|
St?rl ;I
Sffiry +]
k == MPlaar [persan 3, plural -], wh -] WPlagr [mode ind, person 3, plural -, tense pres], fin +] o
NAME [agr [persuiw 3, plual -], wh -] V2[agr [mode ind, person 3‘ plural -, tense pres], fin +] NP[agr [plural -], wh -]
Maria colede DET[aar [plural -] wh -] MBAR[agr [plural -1 wh -]
@[] @] [
el M[agr [phral -]]
@[2] |
I"piz.
@[3w]
] =]
Plevl Nextl Print to Postscriptl Donel Tiee 1 of1

6¢8631/9¢611] SP04 Lecture 13

‘ Fonstant growth property
|

|
|
Claim: 3 Bound k on the ‘distance gap’ between

any two consecutive sentences in this list,
which can be specified in advance (fixed)

. ‘Intervals’ between valid sentences cannot
get too big — cannot grow w/o bounds

. We can do this a bit more formally

608631/9¢611] SP04 Lecture 13

‘ fonstant growth

Dfn. A language L is semilinear if the number of

I occurrences of each symbol in any string of L is a linear
combination of the occurrences of these symbols in some
fixed, finite set of strings of L.

. Dfn. A language L is constant growth if there is a constant
¢, and a finite set of constants Cs.t. for all wel, where
|m> ¢,3wel s.t. \m=|wl+¢ some ceC

. Fact. (Parikh, 1971). Context-free languages are semilinear,
and constant-growth

. Fact. (Berwick, 1983). The power of 2 language is non
constant-growth

6¢8631/9¢611] SP04 Lecture 13

General feature grammars — how
i olFte these properties

. Take example from so-called “lexical-
functional grammar” but this applies as well
to any general unification grammar

. Lexical functional grammar (LFG): add
checking rules to CF rules (also variant HPSG)

608631/9¢611] SP04 Lecture 13

xample LFG
o

. Basic CF rule:

S—NP VP
. Add corresponding ‘feature checking’
S—» NP VP

(Tsubjnum)=4 T=1
. What is the interpretation of this?

6¢8631/9¢611] SP04 Lecture 13

Applying feature checking in LFG
l | [subj [num singular]]
B Copy ip ibove
NP VP
(T subj num)={ /\ =
/ Vr-l)
N
[num singular] Whatever features from
gUYs sleeps below
[num plural]
608631/9¢611] SP04 Lecture 13

Alas, this allows non-constant
gr|oyvth, unnatural languages
|

S

. Can use LFG to generate power of 2 language
Very simple to do

A— A A
TH=y (TH=1
A—a
(Tf) =1

Lets us " count’ the number of embeddings on the
right & the left — make sure a power of 2

6¢8631/9¢611] SP04 Lecture 13

Checks ok

608631/9¢611] SP04 Lecture 13

If mismatch anywhere, get a feature

Fails!

6¢8631/9¢611] SP04 Lecture 13

‘ Fonclusion then
|

. If we use too powerful a formalism, it lets us
write ‘unnatural’ grammars

. This puts burden on the person writing the
grammar — which may be ok.

. However, child doesn’t presumably do this
(they don't get ‘late days’)

. We want to strive for automatic programming
— ambitious goal

6¢8631/9¢611] SP04 Lecture 13

