6.863J Natural Language Processing Lecture 14: Word semantics I

Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

- Administrivia:
- Lab 4 due April 9
- Agenda:
- Lexical semantics: the meanings of words: how hard can it be?
- Tense and time (if there's time)

Word sense

- The benevolent alien race that visits earth.
- Their great book is entitled *How to Serve Humans*

Predicate-arguments to thematic roles

- Use linking rules
- These say whether, e.g, Subject is the agent...
- Is there a theory for this?
- How do we build this knowledge?

Predicate-argument structures for lose

lose1 (Agent: animate, Patient: physical-object)

lose2 (*Agent*: animate, *Patient*: competition)

Agent<=> subjPatient<=> obj

Machine Translation Lexical Choice- Word Sense Disambiguation

Iraq lost the battle. Ilakuka centwey ciessta. [Iraq] [battle] [lost].

John lost his computer. John-i computer-lul ilepelyessta. [John] [computer] [misplaced]. Word sense disambiguation with Source Language Semantic Class Constraints (co-occurrence patterns)

lose1(*Agent, Patient*: competition) <=> ciessta

lose2 (Agent, Patient: physobj) <=> ilepelyessta

Is there enough data?

Break

Levin classes (3100 verbs)

- 47 top level classes, 150 second and third level
- Based on pairs of syntactic frames. John broke the jar. / Jars break easily. / The jar broke. John cut the bread. / Bread cuts easily. / *The bread cut. John hit the wall. / *Walls hit easily. / *The wall hit.
- Reflect underlying semantic components contact, directed motion, exertion of force, change of state
- Synonyms, syntactic patterns, relations

Another alternation example

- Another example: Causative/inchoative
- The window broke
- John broke the window
- The rabbit suddenly appeared
- *The magician appeared the rabbit
- Benefactive:
- Sue carved a toy out of wood for Hansel
- Sue carved hansel a toy out of wood
- Sue carved some wood into a toy for Hansel
- *Sue carved Hansel some wood into a toy
- Middle formation:
- The whale frightens easily
- *The whale sees easily

Alternations..

- Sue broke the vase/ The vase broke (change-of-state)
- The vase broke easily
- Conative: *Sue broke at the vase
- Bill cut the bread/ *The bread cut (change-of-state, no "telic" endpoint)
- The bread cut easily
- Bill cut at the bread
- Mary touched the cat / *The cat touched
- *The cat touched easily (no change-of-state)
- *Mary touched at the cat
- Joe kicked the tire / *The tire kicked
- *The tire kicked easily
- Joe kicked at the tire
- Alternations can be lang-specific: "break" is a causative/inchoative in English, but not Italian.

Break Levin class - *Change-of-state*

Lexical Gaps: English to Chinese

Intersective Levin classes

So we want...

Thematic Roles

- E w,x,y,z Giving (x) ^ Giver(w,x) ^ Givee(z, x) ^ Given(y,x)
 E w,x,z Breaking (x) ^ Breaker(w,x) ^
- A set of roles:
 - agent, experiencer, force, theme, result, content, instrument, beneficiary, source, goal,...

Broken(z,x)

The dog ate the cheeseburger.

What is cheeseburger?

The sniper shot his victim with a rifle.

What is rifle?

Schank's Conceptual Dependency

- Eleven predicate primitives represent all predicates
- Objects decomposed into primitive categories and modifiers
- But few predicates result in very complex representations of simple things

Ex,y Atrans(x) ^ Actor(x,John) ^
Object(x,Book) ^ To(x,Mary) ^ Ptrans(y) ^
Actor(y,John) ^ Object(y,Book) ^ To(y,Mary)

John caused Mary to die vs. John killed Mary

Selection via sortal hierarchy

- John ate a clam
- They served clams

"logical" form: ∃ x,y,e[eat(e) & eater(e,y) & eater(e,x) & john(y) & clam(x) & past(e)]

Sortal hierarchy ('ontology')

Selection via sortal hierarchy

- 1. eater([Eating],[Being])
- 2. eat([Eating])
- 3. eaten([Eating],[Food])
- 4. server([Serving],[Being])
- 5. serve₁([Serving])
- 6. served([Serving],[Food])
- 7. john([Person])
- 8. they([Person])
- 9. mussel₁([Food])
- 10. mussel₂([Creature])

• Which airlines serve Denver?

- You ate glass on an empty stomach
- Metonomy: What airlines fly to Boston?

But how can we/computer learn this?

- Two parts: pred-arg linking to thematic roles – which verbs do what
- Selectional restrictions

pour vs. fill

- Different linking entails semantic difference when in Object position, the Goal seems "affected" in a way not so in the PP
- Fill: Cause X to become full of Y by means of causing Y to be in X
- *Pour*: Cause X to go in a downward stream into Y
- Fill has two events: a state change (the glass) and a location change (the water)
- *Pour* has one event: location change
- The Main-change argument gets Old-Info structure and main event status. Main event of *Fill*: state change of glass

The Problem of Ambiguity

Possible Hypotheses

- Rabbit (whole object)
 - Animal (superordinate)
 - Flopsie (individual)
 - Furry (property)
 - Ear (part)

•

- Walk by (activity)
- Undetached rabbit parts ...

Two Bootstrapping Proposals

- Children use syntactic cues to verb meaning (Gleitman 1990)
- Children use (verb) meaning to figure out how its arguments are realized in the syntax of the language (Pinker 1989)

Semantic Bootstrapping

(Pinker 1984)

Semantic Bootstrapping involves the pairing of a situational context with some syntactic pattern.

- Kids learn syntax by first learning the semantic argument structure of the verb.
 - SWIM = one participant (the "swimmer")
 - EAT = two participants ("eater", "eatee")
 - TAKE = two/three participants ("taker", "takee", and "person taken from"...)

Gleitman: Not So Fast, Pinker...

CAN SYNTAX OVERRIDE "SALIENCES" IN THE SCENE?

Temporal ambiguity

Situation ambiguity

Mental unobservable!

... more than just real-world observation...

Syntactic Bootstrapping

(Landau and Gleitman 1986, Naigles 1990)

Verbs Classes Grouped by Cause Feature

- *H_i* Verb Class
- H₁ Externally Caused (touch, load)
 F1: He touched the glass.
 * F0: The glass touched.
 - Internally Caused (laugh gli
- H₀ Internally Caused (laugh, glimmer)
 * F1: He laughed the child.
 F0: He laughed.
- *H*∗ Externally Causable (open, break)
 F1: He opened the door. F0: The door opened.

Hypothesis space H Hi in H Evidence \mathbf{x} in $\mathbf{X} = \{0, 1\}$

One-shot learning

within a Bayesian framework.

Learning Value of Verbs Cause Feature

	Synta	actic Evidenc	e X:				
		ipped the ballo					
	/X goi	rped Y/, /X gorp	ed Y/				
		bed Y/, /Y sebbe					
		efed Y/ ⁵ , /Y meej	fed/				
Syntactic Th	/Y foo heorv:	med/°					
$\mathbf{H} = \{H_1, H_0, H_0, H_0, H_0, H_0, H_0, H_0, H_0$		ian Lanau					
Prior $p(H_i)$							
	<i>Prior</i> $p(H_i)$ <i>Likelihood</i> $p(x/H_i)$						
Linethiood p	$(\mathcal{X} 1_{i})$						
	Acquired Syntactic Knowledge						
Lexicon:	Evidence X	$\overline{p(H_1 X)}$	$p(H_0 X)$	$p(H_* X)$			
/glip/	<i>F1</i>	.633	.033	.333			
/gorp/	F1, F1	.781	.002	.217			
/seb/	F1, F0	.137	.137	.724			
/meef/	F1 ⁵ , F0	.712	5e-6	.288			
/foom/	$F0^6$	2e-8	.979	.021			
8 of 17	6.863J/9.611J Le	ecture 14 Sp03					

Bayesian Learning at the Syntax-Semantics Interface

Acquired Lexicon p(Hi/x)						
	p(POUR x)	p(FILL x)	p(MOVE x)			
/gorp/	.880	.000	.101			
/pilk/	.001	.989	.000			
/jeb/	.463	.463	.005			
	6.8	63J/9.611J Lect	ure 14 Sp03			

How to get 'real semantics' in?

Verb meanings are logic programs (LPs):

General: One args x:

Two args x,y: (if cause(e)=1) cause(e)

move(x), rotate(x), move-dn(x), move-up(x)
supported(x), liquid(x), container(x)

contact(x,y), support(x,y), attach(x,y)

Verb Logic Program

/lower/ 1 1*101** 11*

- /raise/ 1 1*011** 11*
- /rise/ 01*01***
- /fall/ 0 1*10***

Hypothesis space H: All LPsEvidence X: Bit Vector Examples(e.g. 1 1010100 110)

Learning Semantic Features

10 of 17

But... what are the possible arguments?

- Predicate-arguments can be complicated...can we crank it out?
- Argument structure is syntax
- There are no specialized mechanisms of 'thematic role assignment'
- Everything is really predication

Hale-Keyser: arguments are syntax

The basic form

H & K: The framework

- There are only three places a verb argument can come from
 - The complement or specifier of a "basic" lexical item
 - An external "addition"
 - As for "basic lexical items" there are four types: N, V, A, P
 - Why so few thematic roles? Because so few basic lexical items (entity/instance, event, state, relation)

- N takes no arguments
- V are predicational, and take one argument, a complement.
- P are relational, and take two arguments
- A are predicational, and take one argument, but require some help; thus an A is always the complement of a verb, which then projects for an external arg.

Hale-Keyser Incorporation

• 4 Fundamental Primitives Yield Different Argument Structures

6.863J/9.611J Lecture 14 Sp03

HK Allows Us to Discard Thematic Roles

 Agent, Patient, Theme, Instrument, Goal, ... derived from positions in structural configurations.
 V-N:
 V-A
 V-P

^{6.863}J/9.611J Lecture 14 Sp03

What can N get us?

• Intransitive verbs:

Nouns cannot project arguments. A noun (run, laugh, play, cough, snore, burp) <u>incorporates</u> into the verb. An external argument is adjoined to *v*. Thus, rather than having cognate N and V copies in the lexicon, verbs are derived by *syntax*.

Unergatives vs. Simple Transitives

- Unergatives: no external agent *The child laughed*
 - [NP [*v* [V+N (N)]]]
- No verbs like * The clown laughed the child / *The alfalfa sneezed the colt (The N complement to V has incorporated, where would the "object NP" reside?)
 - [NP [V+N (N) NP?]]
- Simple transitive (non-creation) *The clown made the child laugh*
 - [NP [*v* [NP [V+N (N)]]]
 - Extensions : *get+A* (*I got drunk*, *I got Josh drunk*)
 - But not for get+N (I got the measles, *I got Josh the measles)

Explaining Gaps in the Lexicon

- *It cowed a calf, *It dusted the horses blind, *It machined the wine into bottles (cf. The cow had a calf, the dust made the horses blind, the machines put the wine into bottles)
- The above items would be the result of the external subject incorporating into the verb, which is ruled out by the syntax elsewhere (items raise & incorporate up, but not down)
- If all "denominal" verbs are the result of incorporation of the complement to the V head, rather than unconstrained "category change", these non-verbs are predicted

V: Verbs of Creation: The simple case

 bake a cake, make trouble, build a house, have puppies

 V has a complement NP(=DP). External argument is projected and adjoined to v.

P gives *put*-type Verbs

 The P frame has a specifier and complement. The whole P-complex is a verb complement. An external argument is projected and adjoined.

P gives locatum-type verbs

 With a bare N as the PP complement, the N conflates with the P, which conflates with the V, giving saddled the horse, boxed the gift, roofed the house (all have P-meaning)

^{6.863}J/9.611J Lecture 14 Sp03

Implementation

```
(define-verb-class "PUT VERBS: put verbs (Section 9.1)"
 "putting entity at some location (but not to or from)"
 '(arrange immerse install lodge mount place position put set
  situate sling stash stow)
 (list '((* the water put into a bowl))
     '((+ he put the water into the bowl)
      (vp ()
         (v* (v put (feature CAUSE))
            (pp (n the water)
               (p* (p into (feature MOVELOCATION))
                  (n a bowl)))))))))
```

Argument Structure: The Moral

- No specialized mechanism of "thematic role assignment". Everything is predication.
- Do these mechanisms of derived verbs happen in the syntax with everything else, or "prior to lexical insertion", e.g. "in the lexicon"? What do you think? Should this distinction matter?