
6.863J Natural Language Processing
Lecture 14: Features to lambdas

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6•863J/9•611J SP04 Lecture 14

The Menu Bar
• Administrivia:

• Lab 3b out yesterday due April 12
Agenda:

Features & feature grammars
What does all this mean?

6•863J/9•611J SP04 Lecture 14

Why: recover meaning from
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)

6•863J/9•611J SP04 Lecture 14

Design advantage

• Decouple skeleton syntactic structure from
lexicon

• In fact, the syntactic structure really is a
skeleton:

6•863J/9•611J SP04 Lecture 14

From this…

NP

president
the
Det

that

N

Sbar

Comp S

NP VP

V PP

choked

NP

P NP

e

6•863J/9•611J SP04 Lecture 14

To this

president
the

that

choked
e

on

the

the..

6•863J/9•611J SP04 Lecture 14

Features are everywhere

morphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

provided α is in the set TRANSITIVE-VERBS

6•863J/9•611J SP04 Lecture 14

Better approach to factoring linguistic
knowledge

Use the superposition idea: we superimpose one set of
constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints
• S → NP VP

[Plural ?x] [Plural ?x] [Plural ?x]

the guy eats
[Plural -] [Plural -]

6•863J/9•611J SP04 Lecture 14

Checking features

S [Plural ?x]

NP [Plural ?x] VP [Plural ?x]

DT [Plural ?x] V [Plural ?x] NP

the
[Plural -]

guy
[Plural -]

N [Plural ?x]

eats
[Plural -]

6•863J/9•611J SP04 Lecture 14

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by feature-value matrix (or list)

1

2

...
n

Feature
Feature

Feature










1

2

....
n

Value
Value

Value












6•863J/9•611J SP04 Lecture 14

How to formalize?

• Let F be a finite set of feature names, let A
be a set of feature values

• Let p be a function from feature names to
permissible feature values, that is,
p: F→2A

• Now we can define a word category as a
triple <F, A, p>

• This is a partial function from feature names
to feature values

6•863J/9•611J SP04 Lecture 14

Example
• F= {CAT, PLU, PER}
• p:

p(CAT)={V, N, ADJ}
p(PER)={1, 2, 3}
p(PLU)={+, -}

sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}
Checking whether features are compatible is relatively

simple here…how bad can it get?

6•863J/9•611J SP04 Lecture 14

What sort of power do we need
here?

• We have [feature value] combinations so far
• This seems fairly widespread in language
• We call these atomic feature-value combinations
• Other examples:
1. In English:
person feature (1st, 2nd, 3rd);
Case feature (degenerate in English: nominative,

object/accusative, possessive/genitive): I know her vs.
I know she;

Number feature: plural/sing; definite/indefinite
Degree: comparative/superlative

6•863J/9•611J SP04 Lecture 14

Operations on Feature Structures

• What will we need to do to these structures?
• Check the consistency of two structures
• Merge the information in two structures

• We can do both using (simple) unification
• We say that two feature structures can be unified if

the component features that make them up are
consistent

• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]

6•863J/9•611J SP04 Lecture 14

Feature unification examples
(1) [agreement [Plural - ,

person first]]
(2) [agreement [Plural -] ,

case nominative]

• (1) and (2) can unify, producing (3):
(3) [agreement [Plural - ,

person first] ,
case nominative]

(try overlapping the graph structures corresponding to
these two)

6•863J/9•611J SP04 Lecture 14

Feature unification examples
1) [agreement [Plural - ,

person first]]
(2) [agreement [Plural -] ,

case nominative]
(4) [agreement [Plural - ,

person third]]
• (2) & (4) can unify, yielding (5):

(5) [agreement [Plural - ,
person third],

case nominative]
• BUT (1) and (4) cannot unify because their values

conflict on <agreement person>

6•863J/9•611J SP04 Lecture 14

Our feature structures

• NP[agr ?B] -> DET[agr ?B] N[agr ?B]
• VP[fin ?A, agr ?B] -> V2[fin ?A, agr ?B] NP

• Maria NAME[agr [person 3, plural -]]

Kimmo entry for Verb (eg, ‘coge’ after analysis):
• +e Suffix "[fin +, agr [tense pres,

mode ind, person 3, plural -]]"

6•863J/9•611J SP04 Lecture 14

Parsing with features – hook from
kimmo to earley

• Features written in this form (in Kimmo)

• +as Suffix "[fin +, agr [tense pres, mode
ind, person 2, plural -]]”

• In general:
[feature value, feature [feature val, …, feature val]]

6•863J/9•611J SP04 Lecture 14

Where wolf

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

Features and Earley Parsing
• Goal:

• Use feature structures to provide richer
representation

• Block entry into chart of ill-formed constituents
• Changes needed to Earley

• Add feature structures to grammar rules, & lexical
entries

• Add field to states containing set representing
feature structure corresponding to state of parse,
e.g.

S • NP VP, [0,0], [], Set= [Agr [plural -]]

6•863J/9•611J SP04 Lecture 14

• **Add new test to Completer operation
• Recall: Completer adds new states to chart by finding

states whose • can be advanced (i.e., category of
next constituent matches that of completed
constituent)

• Now: Completer will only advance those states if
their feature structures are consistent

• ** Add New test for whether to enter edge in the
chart

• Now feature structures may differ, so check must
be more complex

• Suppose feature structure is more specific than
existing one tied to this state? Do we add it?

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

6•863J/9•611J SP04 Lecture 14

Feature extensions to other parts
of syntax

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=1] → Det N[n=1]

N[n=1] → N[n=1] VP
N[n=1] → plan

VP[n=1] → V[n=1] VP
V[n=1] → has

S→ NP[n=1] VP[n=1]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

[num=1]

[num=1]

[num=1]

[num=1]

[num=1]

NP[n=α] → Det N[n=α]

N[n=α] → N[n=α] VP
N[n=1] → plan

VP[n=α] → V[n=α] VP
V[n=1] → has

S→ NP[n=α] VP[n=α]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Morphology (e.g.,word endings)

N[h=plan,n=1] → plan
N[h=plan,n=2+] → plans
V[h=thrill,tense=prog] → thrilling
V[h=thrill,tense=past] → thrilled
V[h=go,tense=past] → went

Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]Subcategorization (i.e.,
transitive vs. intransitive)
When is VP → V NP ok?
VP[h=α] → V[h=α] NP

restrict to α ∈ TRANSITIVE_VERBS

When is N → N VP ok?
N[h=α] → N[h=α] VP

restrict to α ∈ {plan, plot, hope,…}

Why use heads?

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

NP[h=α] → Det N[h=α]

N[h=α] → N[h=α] VP
N[h=plan] → plan

[head=plan]

[head=plan]

[head=plan]

[head=swallow] [head=Wanda]

[head=Otto][head=swallow]

[head=swallow]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]

[head=thrill]
Selectional restrictions
VP[h=α] → V[h=α] NP
I.e., VP[h=α] → V[h=α] NP[h=β]

Don’t fill template in all ways:
VP[h=thrill] → V[h=thrill] NP[h=Otto]

*VP[h=thrill] → V[h=thrill] NP[h=plan]

Why use heads?

leave out, or low prob

Equivalently: keep the template
but make prob depend on α,β

6•863J/9•611J SP04 Lecture 14

Important question

• Do features have to be more complicated
than this?

• More: hierarchically structured (feature
structures) (directed acyclic graphs, DAGs, or
even beyond)

• Then checking for feature compatibility
amounts to unification

• Example

6•863J/9•611J SP04 Lecture 14

• [Num SG] U [Pers 3] =

• Structures are compatible if they contain no
features that are incompatible

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value

pairs
• A failed unification attempt

3
Num SG
Pers

 
 
 
 
  

1
3

1

Num SGAgr
Pers

Subj Agr

  
  
  
  

  
       

3

3

Num PlAgr
Pers

Num PLSubj Agr
Pers

  
  
  
  
  
 

   
   
   
   
     

∪

6•863J/9•611J SP04 Lecture 14

More complex feature structure in
the lexical entries

Telescope:
[lex: telescope

cat: N
gloss: `telescope
head: [agr: [3sg: +1]

number: SG
pos: N
proper: -

verbal: -]
root_pos N]

6•863J/9•611J SP04 Lecture 14

Features and grammars

agreement: person: third
number: singularagreement:

agreement

personnumber

singular third

category

category: N

N

6•863J/9•611J SP04 Lecture 14

Feature checking by unification

agreement

personnumber

singular third

agreement

personnumber

thirdplural

agreement

personnumber

thirdCLASH

John sleep

*John sleep

6•863J/9•611J SP04 Lecture 14

Evidence that you don’t need this
much power

• Linguistic evidence: looks like you just check whether
features are nondistinct, rather than equal or not –
variable matching, not variable substitution

• Full unification lets you generate unnatural languages:
ai, s.t. i a power of 2 – e.g., a, aa, aaaa, aaaaaaaa, …
why is this ‘unnatural’ – another (seeming) property of
natural languages:

Natural languages seem to obey a constant growth
property

6•863J/9•611J SP04 Lecture 14

Constant growth property

Claim: ∃ Bound k on the ‘distance gap’ between
any two consecutive sentences in this list,
which can be specified in advance (fixed)

• ‘Intervals’ between valid sentences cannot
get too big – cannot grow w/o bounds

• We can do this a bit more formally

6•863J/9•611J SP04 Lecture 14

Constant growth
• Dfn. A language L is semilinear if the number of

occurrences of each symbol in any string of L is a linear
combination of the occurrences of these symbols in some
fixed, finite set of strings of L.

• Dfn. A language L is constant growth if there is a constant
c0 and a finite set of constants C s.t. for all w∈L, where
|w|> c0 ∃ w’ ∈L s.t. |w|=|w’|+c, some c ∈C

• Fact. (Parikh, 1971). Context-free languages are semilinear,
and constant-growth

• Fact. (Berwick, 1983). The power of 2 language is non
constant-growth

6•863J/9•611J SP04 Lecture 14

General feature grammars – how
violate these properties

• Take example from so-called “lexical-
functional grammar” but this applies as well
to any general unification grammar

• Lexical functional grammar (LFG): add
checking rules to CF rules (also variant HPSG)

6•863J/9•611J SP04 Lecture 14

Example LFG

• Basic CF rule:
S→NP VP

• Add corresponding ‘feature checking’
S→ NP VP

(↑ subj num)= ↓ ↑ = ↓
• What is the interpretation of this?

6•863J/9•611J SP04 Lecture 14

Applying feature checking in LFG

S

NP VP
(↑ subj num)= ↓ ↑ = ↓

Whatever features from
below

Copy up above

V ↑ = ↓

[subj [num singular]]

N
[num singular]

sleepsguys
[num plural]

6•863J/9•611J SP04 Lecture 14

Alas, this allows non-constant
growth, unnatural languages

• Can use LFG to generate power of 2 language
• Very simple to do
• A→ A A

(↑ f) = ↓ (↑ f) = ↓
 A → a
 (↑ f) =1
Lets us `count’ the number of embeddings on the

right & the left – make sure a power of 2

6•863J/9•611J SP04 Lecture 14

Example
A

A A

A A A A

a a a a
Checks ok (↑ f) =1 (↑ f) =1 (↑ f) =1 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f[f =1]]]

 [f[f =1]]
(↑ f) = ↓ (↑ f) = ↓

6•863J/9•611J SP04 Lecture 14

If mismatch anywhere, get a feature
clash…

A

A A

A A

a a
a

Fails! (↑ f) =1 (↑ f) =1
 (↑ f) =1

 [f =1]

 [f[f =1]]

 [f[f[f =1]]]

 [f =1]

 [f[f =1]]

 [f =1]
(↑ f) = ↓

Clash!

6•863J/9•611J SP04 Lecture 14

Conclusion then

• If we use too powerful a formalism, it lets us
write ‘unnatural’ grammars

• This puts burden on the person writing the
grammar – which may be ok.

• However, child doesn’t presumably do this
(they don’t get ‘late days’)

• We want to strive for automatic programming
– ambitious goal

6•863J/9•611J SP04 Lecture 14

Example of what we might do: text
understanding via q-answering

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6•863J/9•611J SP04 Lecture 14

Example of what we might do
athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6•863J/9•611J SP04 Lecture 14

what

• The nature (representation) of meaning
representations vs/ how these are assembled

6•863J/9•611J SP04 Lecture 14

Analogy w/ prog. language

• What is meaning of 3+5*6?
• First parse it into 3+(5*6)

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

6•863J/9•611J SP04 Lecture 14

Interpreting in an Environment

• How about 3+5*x?
• Same thing: the meaning

of x is found from the
environment (it’s 6)

• Analogies in language?

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

6•863J/9•611J SP04 Lecture 14

Compiling

• How about 3+5*x?
• Don’t know x at compile time
• “Meaning” at a node

is a piece of code, not a
number

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code
(can be converted to the
previous code by optimization)
Analogies in language?

6•863J/9•611J SP04 Lecture 14

What

• What representation do we want for
something like
John ate ice-cream →
ate(John, ice-cream)

• Lambda calculus
• We’ll have to posit something that will do the

work
• Predicate of 2 arguments:

λx λy ate(y, x)

6•863J/9•611J SP04 Lecture 14

Why: recover meaning from
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)

6•863J/9•611J SP04 Lecture 14

What’s meaning? What’s semantics –
2 ends of the spectrum

• Answer 1: whatever it is, it’s mapping (translation)
between representations
And it depends on all of the text

• Answer 2: whatever it is, our answer depends on a
much more focused task-specific question, viz.,
information extraction from texts

• Perhaps call this ‘natural language engineering’

• These two ends of the spectrum have different
characteristics, and difft uses

• Deep vs. Shallow?

6•863J/9•611J SP04 Lecture 14

Answer 1: translation – from ‘syntactic’ rep to
‘semantic’ rep, aka “Deep”

• Mirrors the progamming language approach
• When is it used?
• DB Q&A (but answer 2 can be used

here…when and how?)
• Text understanding: when all the text is

relevant - voice, inference, paraphrase,
important

• Intentions, beliefs, desires (non-extensional=
not just sets of items)

6•863J/9•611J SP04 Lecture 14

Answer 2 – ‘Shallow’ – information
extraction

• What do we need to know to get this task
done?

• Slot-and-filler semantics
• Limited parsing, limited predicate-arguments
• Let’s see what we need to know about

‘meaning’ by looking at an example

6•863J/9•611J SP04 Lecture 14

Example – news stories/MUC

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern
and a Japanese trading house to produce golf clubs to be shipped to Japan. The joint venture,
Bridgestone Sports Taiwan Co., capitalized at 20 million new Taiwan dollars, will start production
in January 1990 with production of 20,000 iron and "metal wood" clubs a month.
TIE-UP-1:
Relationship: TIE-UP
Entities: "Bridgestone Sports Co."

"a local concern“
"a Japanese trading house"

Joint Venture Company: "Bridgestone Sports Taiwan Co."
Activity: ACTIVITY-1
Amount: NT$20000000

ACTIVITY-1:
Activity: PRODUCTION
Company: "Bridgestone Sports Taiwan Co."
Product: "iron and `metal wood' clubs"

6•863J/9•611J SP04 Lecture 14

Vs. this task…

Person: Put the blue block on the pyramid
System: I’m going to have to clear off the

pyramid. Oops, I can’t do that – a pyramid
can’t support the block.

OK, move it onto the red block.
OK.
What supports the blue block?
The red block.

6•863J/9•611J SP04 Lecture 14

Key questions

• What do we have to know in order to get the
job done?

• And then – how do we represent this
knowledge?

• And then – how do we compute with this
representation?

• (cf. David Marr’s notions)

6•863J/9•611J SP04 Lecture 14

Answers defined in terms of characteristics
of ‘the task’

• Information extraction
• Function is communication of factual

information
• Typically only parts of the text are relevant
• Typically only part of a relevant sentence is

relevant
• Only predicate-argument structure needed

(at a superficial level)
• No modeling of author or audience

6•863J/9•611J SP04 Lecture 14

“Logical” Form

• Context-independent meaning
• Produced directly from the syntax
• Ignores the utterance context

• Example: The ball is red
• Assigning an exact (contextual) meaning

requires knowing which ball
• Logical form an intermediate step in full

meaning representation

6•863J/9•611J SP04 Lecture 14

Logical Form [2]

• Includes indexical terms
• Pronouns (e.g., I, you)
• Generic NP (e.g., a ball, the ball)
• Any term whose exact denotation can only

be determined from context
• Logical form allows compact representation of

indexical terms
• e.g. (RED1 <THE b1 BALL>) vs.

(OR b1 b4 b12 b45 …)

6•863J/9•611J SP04 Lecture 14

Events

• To retrieve an exact meaning, we must
combine LF with a particular context or event

• An event might be represented as a set of
objects and relations:
{(BALL B0005), (PERSON P86), (OWNS P86
B0005)}

6•863J/9•611J SP04 Lecture 14

Word Senses & Ambiguity

• Q: Can the basic unit of LF be a word?
• A: No, words have different senses
• Example: go has many senses (to move,

depart, pass, vanish, reach, extend, …)
• Senses are organized into an ontology

6•863J/9•611J SP04 Lecture 14

Word Senses [2]

• Ontology
• Example: Aristotle’s classes

• substance (physical objects)
• quantity (e.g., numbers)
• quality (e.g., being red)
• Others: relation, place, time, position, state,

action, affection
• Important: actions, events

• Provide a structure for organizing the
interpretation of sentences

6•863J/9•611J SP04 Lecture 14

Actions and Events

• We lifted the box. It was hard work.
• The pronoun it refers to the whole action

(not just the box)
• We lifted the box. It was heavy.

• The pronoun it refers to the box

6•863J/9•611J SP04 Lecture 14

Semantic Ambiguity

• Parallel to syntactic ambiguity
• Happy [cats and dogs] live on the farm
• [Happy cats] and dogs live on the farm

• Independent of syntactic structure
• Every boy loves a dog
• “all boys love a single dog”
• “foreach boy, there is a dog he loves”

6•863J/9•611J SP04 Lecture 14

Logical Form Language

• Similar to first-order predicate calculus
(FOPC)

• Constants: word senses
• Terms: constants that describe objects in the

world
• Predicates: constants that describe relations

or properties
• Propositions: predicate + terms

6•863J/9•611J SP04 Lecture 14

Predicates

• Fido is a dog
(DOG1 FIDO1)
unary predicate

• Sue loves Jack
(LOVES1 SUE1 JACK1)
binary predicate

• We shall place this into an event structure:
Event(Loves1 :Agent Sue1 :Patient Jack1

Time: present)

6•863J/9•611J SP04 Lecture 14

Word Senses

• Proper names: terms
JACK1

• Common nouns: unary predicates
(DOG1 <>)

• Verbs: n-ary predicates (really n?)
(BREAK1 <> <>)

6•863J/9•611J SP04 Lecture 14

Operators

• Logical Operators
• not, or, and, if, only if, …

• Logical form supports two kinds of operators:
• as word senses (if the operator is part of

the utterance)
• as logical operators (if the operator isn’t

part of the utterance)

6•863J/9•611J SP04 Lecture 14

Operators [2]

• Examples
• Jack loves Sue or Jack loves Mary

(OR1 (LOVES1 JACK1 SUE1)(LOVES1
JACK1 MARY1))

• Jack loves Sue, Bill loves Mary
(& (LOVES1 JACK1 SUE1)(LOVES1 BILL1
MARY1))

6•863J/9•611J SP04 Lecture 14

Quantifiers

• FOPC: only universal and existential
quantifiers: ∀, ∃

• English: much larger range: (Is this true?)
• all, some, most, many, a few, the, …

• Generalized Quantifiers
(<quantifier> <variable> : <restriction-
proposition>
<body-proposition>)

6•863J/9•611J SP04 Lecture 14

Quantifiers [2]

• Most dogs bark
(MOST1 d1:(DOG1 d1)(BARKS1 d1))

• Most barking things are dogs
(MOST1 d1:(BARKS d1)(DOG1 d1))

• The dog barks
(THE x:(DOG1 x)(BARKS1 x))

6•863J/9•611J SP04 Lecture 14

Plural Forms [2]

• Distributive reading
The dogs bark
“There is a set of dogs, and each one barks”

• Collective reading
The dogs met at the corner
“*There is a set of dogs, and each one met at
the corner”

6•863J/9•611J SP04 Lecture 14

Ambiguous Plurals

• Some sentences allow both collective and
distributive readings

Two guys bought a stereo
“Each guy bought a stereo”
“The two guys bought a stereo together”

