.

6.863] Natural Language Processing

Lecture 14: Features to lambdas

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

Administrivia:

.‘|
B

" Lab 3b out yesterday due April 12

Agenda:

Features & feature grammars
What does all this mean?

6¢8631/9¢611] SP04 Lecture 14

Why: recover meaning from

stﬁctu re
P |
[
/ S VP(NP)= ate (john ,icecream)
john N
T NP wream)
A\ / NP ice-cream
John ‘ X Ay.atefy, X) ¢
ate ice-cream
6+8631/9¢611] SP04 Lecture 14
‘ Pesign advantage
1

. Decouple skeleton syntactic structure from
lexicon

. In fact, the syntactic structure really is a
skeleton:

6¢8631/9¢611] SP04 Lecture 14

rom this...
ul

] L/NQ\\

/'\Q Sbar
Det N / \
tﬂe | Comp

president | j\

that ||\lP /VK
PP
e
choted I\

P N

6¢8631/9¢611] SP04 lecture 14

choked
on

608631/9¢611J SP04 Lecture bhe ..

8

I|=eatures are everywhere

|
= morphology of a single word:

Verb[head=thrill, tense=present, num=sing, person=3,...] — thrills

projection of features up to a bigger phrase

VP[head=aq, tense=p, num=y...] » V[head=0, tense=p, num=y...] NP
provided a is in the set TRANSITIVE-VERBS

agreement between sister phrases:

S[head=aq, tense=p] - NP[num=y,...] VP[head=q, tense=B, num=y...]
provided a is in the set TRANSITIVE-VERBS
68631/9¢611] SP04 Lecture 14

Better approach to factoring linguistic
knolwledge

Use the superposition idea: we superimpose one set of
constraints on top of another:

1. Basic skeleton tree
2. Plus the added feature constraints

S — NP VP
[Plural ?x] [Plural ?x] [Plural ?x]
the guy eats

[Plural -] [Plural -]

6¢8631/9¢611] SP04 Lecture 14

‘ Fhecking features
|

S [Plural ?x

NT [Plural ?x] VP [Plural ?x]

A

DT [Plural ?x] N [Plural ?x] V [Plural ?x]

the guy eafs
[Plural -] [Plural - | [Plural -]

6¢8631/9¢611] SP04 Lecture 14

NP

featu re Structures
= tsof feature=vatue pairs where:

. Features are atomic symbols
. Values are atomic symbols or feature structures
. Illustrated by feature-value matrix (or list)

6¢8631/9¢611] SP04 Lecture 14

Il-low to formalize?
|

S
Let Fbe a finite set of feature names, let A4
be a set of feature values

. Let pbe a function from feature names to
permissible feature values, that is,

p: F>2A

. Now we can define a word category as a
triple <F, A, p>
This is a partial function from feature names
to feature values

6¢8631/9¢611] SP04 Lecture 14

‘ llExampIe

Ii'— JCAT DIl DPEDRY
l‘ Tl vy T oy iy

. p:
P(CAT)={V, N, ADJ}
HKPER)={1, 2, 3}
APLU)={+, -}
sleep = {[CAT V], [PLU -], [PER 1]}
sleep = {[CAT V], [PLU +], [PER 1]}
sleeps= {[CAT V], [PLU -], [PER 3]}

Checking whether features are compatible is relatively
simple here...how bad can it get?

6¢8631/9¢611] SP04 Lecture 14

What sort of power do we need
here?

. |We have [feature value] combinations so far

ST ThisS seems tairly widespread In language
We call these atomic feature-value combinations
Other examples:
1. In English:
person feature (1st, 2nd, 3rd);

Case feature (degenerate in English: nominative,
object/accusative, possessive/genitive): I know Aervs.
I know she;

Number feature: plural/sing; definite/indefinite

Degree: comparative/superlative

6¢8631/9¢611] SP04 Lecture 14

‘ ?perations on Feature Structures
|
\

| . What will we need to do to these structures?
. Check the consistency of two structures
. Merge the information in two structures
. We can do both using (simple) unification

. We say that two feature structures can be unified if
the component features that make them up are
consistent

. [Num SG] U [Num SG] = [Num SG]
. [Num SG] U [Num PL] fails!
« [Num SG] U [Num []] = [Num SG]

6¢8631/9¢611] SP04 Lecture 14

eature unification examples
1)4 agreement [Plural - ,

= person first]]
(2) [agreement [Plural -] ,
case nominative]

. (1) and (2) can unify, producing (3):

(3) [agreement [Plural - ,
person first],
case nominative]

(try overlapping the graph structures corresponding to
these two)

6¢8631/9¢611] SP04 Lecture 14

Feature unification examples

| |1) [agreement [Plural -,

narcon firct 1 1
T IVTT rmrJu J

14

I(2) [agreement [Plural -],
case nominative]

(4) [agreement [Plural -,
person third]]
. (2) & (4) can unify, yielding (5):

J

(5) [agreement [Plural -,
person third],
case nominative]

. BUT (1) and (4) cannot unify because their values
conflict on <agreement person>

6¢8631/9¢611] SP04 Lecture 14

Pur feature structures
|

. NP[agr ?B] -> DET[agr ?B] N[agr 7?B]
. VP[fin ?A, agr ?B] -> V2[fin ?A, agr ?B] NP

. Maria NAME[agr [person 3, plural -]]

Kimmo entry for Verb (eg, ‘coge’ after analysis):
. +e Suffix "[fin +, agr [tense pres,
mode ind, person 3, plural -]]1"

6¢8631/9¢611] SP04 Lecture 14

Parsing with features — hook from
‘ Ifimmo to earley
|

. Features written in this form (in Kimmo)

.- +as Suffix "[fin +, agr [tense pres, mode
ind, person 2, plural -]]1"

In general:
[feature value, feature [feature val, ..., feature val]]

6¢8631/9¢611] SP04 Lecture 14

here wolf

NP[wh -]
NAME

Bil
@[ow]

Start
S[fin +]
AUX[fin +1/*
BEP DET[wh
BE a
| @[2w]
is

@[1w]

N Piwh -]
-] NBAR[wh -]
|
N
|
werewolf
@[3w]

6¢8631/9¢611] SP04 Lecture 14

.,

NP[agr (person 3, plural -], wh -]

VPlagr [mode

AME(age (porson 3, plural -], wh -V2lagr (mode ind, person 3, plural -, te

B[ow]

eolete

ind, person 3, plural -,

nse pres], £in +]

DET[age [plucal

los

6¢8631/9¢611] SP04 Lecture 14

tense pres], fin +)

¥P{age [plural +], wh -]

1. wh -] NBAR[agr [plucal +], wh -]
Nlagr [plural +]]

1'pizes

I|=eatures and Earley Parsing
Goal:

]
. Use feature structures to provide richer
representation

. Block entry into chart of ill-formed constituents
Changes needed to Earley

. Add feature structures to grammar rules, & lexical
entries

. Add field to states containing set representing
feature structure corresponding to state of parse,

e.g.
S > « NP VP, [0,0], [1, Set= [Agr [plural -]]

6¢8631/9¢611] SP04 Lecture 14

**Add new test to Completer operation

|Reca||: Completer adds new states to chart by finding
States whose e can be advanced (i.e., category of

Aext constituent matches that of completed
constituent)

. Now: Completer will only advance those states if
their feature structures are consistent

** Add New test for whether to enter edge in the
chart

. Now feature structures may differ, so check must
be more complex

. Suppose feature structure is more specific than
existing one tied to this state? Do we add it?

6¢8631/9¢611] SP04 Lecture 14

arse Tree I [=] |
Sitart =
Sffitn +]
k NP[agr [person ‘3 plural -. wih -] VPlaor [mode ind. person 3, plural -, tense pres]. fin +]
NAME[aar [DEISDI"\ 3, plural 1. wh -] %2[agr [mode ind, person 3, plural -, tense pres], fin +] NP[aar [plural +], wh -]
haria colete DET[agr [plural +]. wh -] NEAR[agr [plural +], wh]
@(in] @l \ \
los M[agr [plural +]]
@20 |
|"piz+s
@S]
7] Bk
Piev | Mest | Print to Postscipt | Done | Tree 1 o 1
6¢8631/9¢611] SP04 Lecture 14
NP[agr [plural +], wh -]
DET[agr [plural +], wh -]
Maria' ‘toge’ ‘los! 1*pizt
S EERAR ALK YR 1 SN COMJ MNP “AF HBAR *
S[fin +] VP[fin 7A] NP[%\&[8, wh -] NBA?!WII 1 NBAR[wh -]
* QHAR VP *WIAP * NAME * FACT SBAR +MNBAR FP
S[fin +] VP[fn 7A] HP[agr 7B, wh 74] HBAR]agr [plural -], wh -] NBﬂgwh -1
& QHAR ALK VP &4 ADVP « DET NBAR MNe * AF MNBAR
S[fin ?B]i7A VP[fin 7A] NP[%h 24] AP[wh +] NBAF!wh 1
* 2 CONJ S o PP *PRO * SFEC AP +FACT SBAR
S[fin +177A VP[fin 7A] NP[wh ?4] AP[wh -] MBAR[fin +]/24
NP VP “CVENF EP TOTEAR N O
Sffin 2A] VP[fin 7] NP[%h 24] APlwh] fin 7A]
* NP ALK WP W7 MP NP *NF R .p ALK VP
S[fin ?4] VP[fn 7A] HP[agr [plural +]. wh -] ﬂP[gh -1 MBARJfin +]
& NP ALK &3 SHAR DET s MNBAR . AR A &
Sffin 2A] VP[fin 7] NBARfagr 7B, wh] AP[wh ?B]i7A AUX[fin 7A)*
* NP ALK NP EEE I * AP CONJ AP * MODALP
S[fin ?4] VP[fin 7A] NBAR[wh -] AP[wh ?4] AUX[fin A1
-NBAUXAP 10 OBAR -NEAR FP ADVE A & MODALP HAVEP
Sffin 2A] VP[fin 7] NBAR[wh] AP[wh 7] AUX[fin 7A)*
* NP ALK PP 11 NP QBAR * AF MNBAR * AP WVBAR +MODALP BEP
S[fin ?A]7B VP[fin 7A] HBAR[wh -] HBAR[wh -] AUX[fin AL
& NP ALK WP *132 PP QBAR *FACT SBAR NBAR & FP * MODALP HAVEF BEP

NP[agr [plul 1 wh -]
DET[agr [plural +], wh -] NBAR[a.g-f ?B,wh]
‘Maria' ‘coge’ ‘lns’' ‘I*piz'
0 1 2 3 4
Maria coJete los *piz PPwh ?A]
0 o . . *F NP
Staq coge DET[agr [plural +], wh -] N[agr [plural -] PPwh -]
.5 . log' s iz . * PP
NAME[agr [person 3, plural -], whVP[agr [mode ind, person 3, plurdiR whs# pres], fin +] NBnE!agr 7B, wh -] VBARIfin 7B]/7A
Maria’ « ‘code+e’ ¢ » ANBAR *"THAN S * +VBAR CONJ WYBAR
S[fin +] VP[fin 7A] HP[wh -] NBAR[wh -] \BARIfin ZA]7B
* SEAR VP %17 NF PP PP * A NBAR *THAN S * NBAR PP s AUXVP
S[fin +] VP[fin 7A] NP[wh ?B]/74 NBAR[wh -] NBAE!BQ[?B,wh]
* SBAR ALK VP 1 * NP CORJ MP * AP MNBAR *
S[fin +] VP[fin 7A] NP[%\&[2?8, wh -] NBﬂ?!wh -1 NBAR[wh -]
* QHAR VP =Y AP * NAME * FACT SBAR * WBAR PP
S[fin +] VP[fin 7A] NP[agr 7B, wh ZA] NBAR[agr [plural -, wh | NBAR[wh -]
* QHAR ALK VP * w4 ADVP *DET NBAR M= + AP NBAR
S[fin ?B]/?A VP[fin 7A] NP[%h 24] AP[wh +] NBﬂP!wh -1
* S COR S *Y5 PP *PRO * SPEC AP * FACT SBAR
S[fin +177A VP[fin 7A] HP[wh ?4] AP[wh -] MBAR[fin +]/74
* MNP VP *WB NP PP * NBAR * il
S[fin ?4] VP[fin 7A] NP[%h 24] APIHh -1 VBARIfin 7A]
* NP ALK WP %7 MNP NP sHF R A ALK VR
f =10l x|
Maria' ‘toge’ ‘los' Mpices
0 1 2 3 4 =
Maria code+e los 14piz+s
. . . .
coge 1~pices
_
. .
Run parserl Slnpl Etepriew parse Ireasl Show \ugl F\esetl ¥ Shaw tree while parsing

6¢8631/9¢611] SP04 Lecture 14

6.863 Earley Par:

=Tk

Nlagr [plural +]]

ta

‘ Maria' ‘coge’ ‘

coge
e ————————————
.

I*pices
.
MAME[agr [person 3, plural -], wh -]

DET[agr [plural +], wh -]
‘Maria’ s

N[agr [plural +]]
e
e "piz+s' .

\2[agr [mode ind, nersuﬂ , plural -, tense pres], fin +]

‘tole+e’ e

Run parserl Slopl Steprlew parse lreesl Show \ogl F\esetl

‘los* "pices’
0 1 2 3 4 =l
Maria coJe+e los 1*piz+s
. . .

I

¥ Show tres while parsing

6¢8631/9¢611] SP04 Lecture 14

MP[agr [person 3, plural -], wh]

WPlagr [mode ind, person 3, plural -, tense pres], fin +]

MAME[agr [persoi'v 3. plural -], wh -] V2[aar [mode ind, person 3. plural -, tense pres), fin +] MP[aar [plural -]. vh -]

Maria cole+e DET[aar [plural -, wh -] MBAR[aqr [plural -], wh -]
@l0w] @] |
el Nlagr [plural -]
@(2u]
1"piz
([3]

1|

Piese| st | Pint to Postsssipt | Done |

=1k

il

Tiee1of 1

6¢8631/9¢611] SP04 Lecture 14

Start
Slfin +]
MP[agr [person 3, plural -], wh -] WP[agr [mode ind, person 3, plural -, terse pres), fin +]
NAME [aqr [person 3, plural -], wh -] W2[agr [mode ind, persan E)‘ plural -, tense pres]. fin +] NP[agr [plural +], wh -]
Iaria colete DET[aar [plural +], wh -] - NBAR[agr [plural +], wh -]
@(0w] @[1u] |
log Mlagr [phural +]]
2]
"piz+s
@3]

Pres | Hert Print 10 Postscipt | Dans |

-l x]

2l

Tiee1of 1

6¢8631/9¢611] SP04 Lecture 14

Feature extensions to other parts
of syntax

6¢8631/9¢611] SP04 Lecture 14

S— NP[n=1] VP[n=1] S xP[n=1] —;]V[n=1] VP
[n=1] - Nas

Det N [num=1] [num—l] VP

The /\ h as /\
N[num—l] VP
plan /\ been A

to Vv

NP[n=1] - Det N[n=1] /\ thrilling OttO

N[n=1] - N[n=1] VP
N[in=1] - plan
swaIIow Wanda

S— NP[n=0] VP[n=a] S xf[n:]a] T]V[n=u] VP
n=1] - NAas

A KD

Det N [num=1] Y[num—l] VP

The /\ has
N[num—l] VP
plan /\ been /D\

to V

NP[n=a] - Det Nin=o] /\ thrilling Otto

N[n=a] - N[n=a] VP

N[n=1] - plan
swaIIow Wanda

Vv VP
The [head™Rlan] has W]
[he%c,gﬁlan] Wlow] W

to

[hea VPwallow] [heﬁd i rill] [head I\@[to
NP[h=a] - Det N[h=a]

N[h=a] - N[h=a] VP p
N[h=plan] - plan [headstallow] [heﬂl—Wanda]
swallow Wanda

/S\
[he P lan] /VP\
Det N \Y VP

VP Vv \Y
h 1
[e%%ﬂ anl /\ been /D\

to VP \' NP

NP[h=0] > Det Nih=q] /\ thrilling ~ Otto

N[h=a] - N[h=a] VP Vv NP

N[h=plan] — plan
swallow Wanda

[he P lan]
Det
The ¢

[heac,}lzﬂlan] me] been hea rill]

[hea I:)wallow] [heﬁd ihrlll] [head= I\y)?[to
NP[h=a] - Det N[h=a] Otto

N[h=a] - N[h=a] VP p
N[h=plan] - plan [headstallow] [heﬂl—Wanda]
swallow Wanda

[he Plan]
Det
The ¢
[heaﬁl}! lan] [hea Pwallow
p a?n

to

[hea VPwallow] [heﬁ \ﬁhrlll] [head= I\@tto
NP[h=a] - Det N[h=qa] /\ rilling Otto

N[h=a] - N[h=a] VP
N[h=plan] — plan [headZSMallow] [heMlEWanda]
swallow Wanda

[he P lan]

Det N
The [he lan]

[heac’i\lﬂlan] Wlow]

[hea I:)wallow] [heﬁd ihrlll] [head= I\y)?[to
NP[h=a] - Det N[h=a] Otto

N[h=a] - N[h=a] VP p
N[h=plan] - plan [headstallow] [heﬂl—Wanda]
swallow Wanda

hea rill]

been

Important question

. Do features have to be more complicated
than this?

. More: hierarchically structured (feature
structures) (directed acyclic graphs, DAGs, or
even beyond)

. Then checking for feature compatibility
amounts to wnification

. Example

6¢8631/9¢611] SP04 Lecture 14

« [Num SG] U [Pers 3] =

. ‘ Structures are compatible if they contain no

. Unification of two feature structures:
. Are the structures compatible?
. If so, return the union of all feature/value
pairs
. A failed unification attempt

6¢8633/9¢611] SP04 Lecture 14

More complex feature structure in
the lexical entries

Telescope:
[lex: telescope
cat: N
gloss: “telescope
head: [agr: [3sg: +1]
number: SG
pos: N
proper: -
verbal: -]

root_pos N]

6¢8631/9¢611] SP04 Lecture 14

‘ features and grammars
|

B | |
category: N —)
agreement: person: th!rd _’
number: singular
categ%
N
agreement
number person
singular third
698631/9611] SP04 Lecture 14
‘ feature checking by unification
| | |
| | |

agreement] lagreemen

\ / sleep
~

agreemen

*John sleep

6¢8631/9¢611] SP04 Lecture 14

Evidence that you don't need this
rr!ulch power
|
R

. Linguistic evidence: looks like you just check whether
features are nondistinct, rather than equal or not —
variable matching, not variable substitution

. Full unification lets you generate unnatural languages:
a, s.t.iapowerof2-e.q., a aa, aaaa, aaaaaaaa, ...

why is this ‘unnatural’ — another (seeming) property of
natural languages:

Natural languages seem to obey a constant growth
property

6¢8631/9¢611] SP04 Lecture 14

‘ Fonstant growth property
|

L I ‘
Claim: 3 Bound k on the ‘distance gap’ between

any two consecutive sentences in this list,
which can be specified in advance (fixed)

. ‘Intervals’ between valid sentences cannot
get too big — cannot grow w/o bounds

. We can do this a bit more formally

6¢8631/9¢611] SP04 Lecture 14

‘ fonstant growth

Dfn. A language L is semilinear if the number of

I occurrences of each symbol in any string of L is a linear
combination of the occurrences of these symbols in some
fixed, finite set of strings of L.

. Dfn. A language L is constant growth if there is a constant
¢, and a finite set of constants Cs.t. for all wel, where
|m> ¢,3wel s.t. \m=|wl+¢ some ceC

. Fact. (Parikh, 1971). Context-free languages are semilinear,
and constant-growth

. Fact. (Berwick, 1983). The power of 2 language is non
constant-growth

6¢8631/9¢611] SP04 Lecture 14

General feature grammars — how
i olFte these properties

. Take example from so-called “lexical-
functional grammar” but this applies as well
to any general unification grammar

. Lexical functional grammar (LFG): add
checking rules to CF rules (also variant HPSG)

6¢8631/9¢611] SP04 Lecture 14

xample LFG
o

. Basic CF rule:

S—NP VP
. Add corresponding ‘feature checking’
S—» NP VP

(Tsubjnum)=4 T=1
. What is the interpretation of this?

6¢8631/9¢611] SP04 Lecture 14

Applying feature checking in LFG
l | [subj [num singular]]
B Copy ip ibove
NP VP
(T subj num)={ /\ =
/ Vr-l)
N
[num singular] Whatever features from
gUYs sleeps below
[num plural]
6¢8631/9¢611] SP04 Lecture 14

Alas, this allows non-constant
gr|oyvth, unnatural languages
|

S

. Can use LFG to generate power of 2 language
Very simple to do

A— A A
TH=y (TH=1
A—a
(Tf) =1

Lets us " count’ the number of embeddings on the
right & the left — make sure a power of 2

6¢8631/9¢611] SP04 Lecture 14

Checks ok

6¢8631/9¢611] SP04 Lecture 14

If mismatch anywhere, get a feature

Fails!

6¢8631/9¢611] SP04 Lecture 14

‘ Fonclusion then
|

. If we use too powerful a formalism, it lets us
write ‘unnatural’ grammars

. This puts burden on the person writing the
grammar — which may be ok.

. However, child doesn’t presumably do this
(they don't get ‘late days’)

. We want to strive for automatic programming
— ambitious goal

6¢8631/9¢611] SP04 Lecture 14

Example of what we might do: text
u c|erstanding via g-answering

Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.

sem-interpret>Where did John see Mary
IN THE PARK.

sem-interpret>John gave Fido to Mary
OK.

sem-interpret>Who gave John Fido

I DON'T KNOW

sem-interpret>Who gave Mary Fido

JOHN

sem-interpret >John saw Fido

OK.

sem-interpret>Who did John see

FIDO AND MARY
6¢8631/9¢611] SP04 Lecture 14

IIExampIe of what we might do

1)

= =7
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see

FIDO AND MARY
6¢8631/9¢611] SP04 Lecture 14

“vhat
R

. The nature (representation) of meaning
representations vs/ Aow these are assembled

6¢8631/9¢611] SP04 Lecture 14

+

‘ {\nalogy w/ prog. language
& |
I

. What is meaning of 3+5*67? 3 X
. First parse it into 3+(5*6)

o— 2 m

6¢8631/9¢611] SP04 Lecture 14

Analogies in language?
6¢8631/9¢611] SP04 Lecture 14

Interpreting in an Environment
m—{ +33
. How about 3+5*x? 33 *30
- Same thing: the meaning 55 6x
of x is found from the
environment (it's 6) E33
. Analogies in language- E F E30
| T
3N + E F E
| add | | |
3 5'|\l mailt '|\l 6
5 6
6¢8631/9¢611] SP04 Lecture 14
C rInpiIing
|
“ T < How about 3+5*x?
. Don't know x at compile time
. "Meaning” at a node
is a piece of code, not a aEdd(3,mu|t(5,X))
number EMF\ErnUIt(SIX)
5* (x+1) -2 is a different expression 3N |+ E/|F\E
that produces equivalent code add | | |
(can be converted to the 3 '|\l mult '|\l
previous code by optimization) 55 X %

B

hat
A

. What representation do we want for

something like

John ate ice-cream —
ate(John, ice-cream)
Lambda calculus

. We'll have to posit something that will do the

work

. Predicate of 2 arguments:

AX Ay ate(y, x)

6¢8631/9¢611] SP04 Lecture 14

|

Why: recover meaning from
stﬁcture
|

S VP(NP)= ate (john ,icecream)

johnm\
NP P= Ay.ate(y,ice-cream)
$

NP ice-cream
X Ay.atefy, X)

)

ate ice-cream

John

6¢8631/9¢611] SP04 Lecture 14

What's meaning? What's semantics —

2 ‘ehds of the spectrum

. Answer 1: whatever it is, it's mapping (translation)

between representations
And it depends on a// of the text

. Answer 2: whatever it is, our answer depends on a

much more focused task-specific question, viz.,
information extraction from texts

. Perhaps call this ‘natural language engineering’

. These two ends of the spectrum have different

characteristics, and difft uses

. Deep vs. Shallow?

6¢8631/9¢611] SP04 Lecture 14

Answer 1: translation — from ‘syntactic’ rep to
‘selniantic’ rep, aka “Deep”

Mirrors the progamming language approach
When is it used?

DB Q&A (but answer 2 can be used
here...when and how?)

Text understanding: when a//the text is
relevant - voice, inference, paraphrase,
important

Intentions, beliefs, desires (non-extensional=
not just sets of items)

6¢8631/9¢611] SP04 Lecture 14

Answer 2 — ‘Shallow’ — information
eTt[action
= |

- What do we need to know to get this task
done?

Slot-and-filler semantics
. Limited parsing, limited predicate-arguments

Let’'s see what we need to know about
‘meaning’ by looking at an example

6¢8631/9¢611] SP04 Lecture 14

Example — news stories/MUC

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern
and a Japanese trading house to produce golf clubs to be shipped to Japan. The joint venture,
Bridgestone Sports Taiwan Co., capitalized at 20 million new Taiwan dollars, will start production
in January 1990 with production of 20,000 iron and "metal wood" clubs a month.
TIE-UP-1:
Relationship: TIE-UP
Entities: "Bridgestone Sports Co."

"a local concern*

""a Japanese trading house"
Joint Venture Company: "Bridgestone Sports Taiwan Co."

Activity: ACTIVITY-1

Amount: NT$20000000

ACTIVITY-1:

Activity: PRODUCTION

Company: "Bridgestone Sports Taiwan Co."
Product: "iron and “metal wood' clubs"

60863J/9¢611J SP04 Lecture 14

8

Ys. this task...
|
\

Person: Put the blue block on the pyramid

System: I'm going to have to clear off the
pyramid. Oops, I can't do that —a pyramid
can’t support the block.

OK, move it onto the red block.
OK.

What supports the blue block?
The red block.

6¢8631/9¢611] SP04 Lecture 14

&8

Ifey guestions
|
|

. What do we have to knowin order to get the
job done?

. And then — how do we represent this
knowledge?

. And then — how do we compute with this
representation?

. (cf. David Marr’s notions)

6¢8631/9¢611] SP04 Lecture 14

Answers defined in terms of characteristics
of‘ ‘trle task’

|
. Information extraction

. Function is communication of factual
information

. Typically only parts of the text are relevant

. Typically only part of a relevant sentence is
relevant

. Only predicate-argument structure needed
(at a superficial level)

. No modeling of author or audience

6¢8631/9¢611] SP04 Lecture 14

A\Y

‘Logical" Form

. Context-independent meaning
. Produced directly from the syntax
. Ignores the utterance context

. Example: The ball is red

. Assigning an exact (contextual) meaning
requires knowing which ball

. Logical form an jntermediate step in full
meaning representation

6¢8631/9¢611] SP04 Lecture 14

‘ lrogical Form [2]
|

. Includes /ndexical terms
. Pronouns (e.qg., 1, you)
. Generic NP (e.q., a ball, the ball)

. Any term whose exact denotation can only
be determined from context

. Logical form allows compact representation of
indexical terms

. e.g. (RED1 <THE b1 BALL>) vs.
(OR bl b4 b12 b45 ..

6¢8631/9¢611] SP04 Lecture 14

‘ llEvents

L I ‘
. To retrieve an exact meaning, we must
combine LF with a particular context or event
. An event might be represented as a set of

objects and relations:

{(BALL B0005), (PERSON P86), (OWNS P86
BO0O5)}

6¢8631/9¢611] SP04 Lecture 14

8

‘ YVord Senses & Ambiguity
|
\

I
. Q: Can the basic unit of LF be a word?

. A: No, words have different senses

. Example: go has many senses (to move,
depart, pass, vanish, reach, extend, ...)

. Senses are organized into an ontology

6¢8631/9¢611] SP04 Lecture 14

&8

ord Senses [2]
.

I
. Ontology

. Example: Aristotle’s classes
. substance (physical objects)
. quantity (e.g., numbers)
. quality (e.g., being red)
. Others: relation, place, time, position, state,

action, affection
. Important: actions, events

. Provide a structure for organizing the
interpretation of sentences

6¢8631/9¢611] SP04 Lecture 14

‘ 4\ctions and Events
= |
. We lifted the box. It was hard work.

. The pronoun /trefers to the whole action
(not just the box)

- We lifted the box. It was heavy.
. The pronoun /trefers to the box

6¢8631/9¢611] SP04 Lecture 14

‘ .'Femantic Ambiguity
|

= \

I . Parallel to syntactic ambiguity
. Happy [cats and dogs] live on the farm
. [Happy cats] and dogs live on the farm

. Independent of syntactic structure

. Every boy loves a dog
. “all boys love a single dog”
. “foreach boy, there is a dog he loves”

6¢8631/9¢611] SP04 Lecture 14

‘ lrogical Form Language

. Similar to first-order predicate calculus
(FOPC)

. Constants: word senses

. Terms: constants that describe objects in the
world

. Predicates: constants that describe relations
or properties

. Propositions: predicate + terms

6¢8631/9¢611] SP04 Lecture 14

‘ Irredicates

L I ‘
. Fido is a dog

(DOG1 FIDO1)
unary predicate

. Sue loves Jack
(LOVES1 SUE1 JACK1)
binary predicate

. We shall place this into an event structure:

Event(Lovesl :Agent Suel :Patient Jackl
Time: present)

6¢8631/9¢611] SP04 Lecture 14

S

ord Senses
K

Proper names: terms
JACK1

. Common nouns: unary predicates
(DOG1 <>)

. Verbs: n-ary predicates (really n?)
(BREAK1 <> <>)

6¢8631/9¢611] SP04 Lecture 14

perators
o

I . Logical Operators
. not, or, and, if, only If, ...
. Logical form supports two kinds of operators:
. as word senses (if the operator is part of
the utterance)

. as logical operators (if the operator isn't
part of the utterance)

6¢8631/9¢611] SP04 Lecture 14

8

perators [2]
o

I
. Examples

. Jack loves Sue or Jack loves Mary
(OR1 (LOVES1 JACK1 SUE1)(LOVES1
JACK1 MARY1))

. Jack loves Sue, Bill loves Mary
(& (LOVES1 JACK1 SUE1)(LOVES1 BILL1
MARY1))

6¢8631/9¢611] SP04 Lecture 14

&8

uantifiers
o

|
. FOPC: only universal and existential
quantifiers: Vv, 3

. English: much larger range: (Is this true?)
. all, some, most, many, a few, the, ...

. Generalized Quantifiers
(<quantifier> <variable> : <restriction-
proposition>
<body-proposition>)

6¢8631/9¢611] SP04 Lecture 14

8

uantifiers [2]
X

Most dogs bark
(MOST1 d1:(DOG1 d1)(BARKS1 d1))

. Most barking things are dogs

(MOST1 d1:(BARKS d1)(DOG1 d1))

. The dog barks

(THE x:(DOG1 x)(BARKS1 x))

6¢8631/9¢611] SP04 Lecture 14

&8

‘ Irlural Forms [2]
|

. Distributive reading

The dogs bark
“There is a set of dogs, and each one barks”

. Collective reading

The dogs met at the corner
“*There is a set of dogs, and each one met at
the corner”

6¢8631/9¢611] SP04 Lecture 14

B

,i\mbiguous Plurals
|
\

Some sentences allow both collective and
distributive readings

Two guys bought a stereo

“Each guy bought a stereo”
“The two guys bought a stereo together”

6¢8631/9¢611] SP04 Lecture 14

