6.863J Natural Language Processing
Lecture 14: Word semantics I

Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

• Administrivia:
• Lab 4 due April 9
• Agenda:
• Lexical semantics: the meanings of words: how hard can it be?
• Tense and time (if there’s time)
Word sense

• The benevolent alien race that visits earth.
• Their great book is entitled How to Serve Humans

Predicate-arguments to thematic roles

• Use linking rules
• These say whether, e.g, Subject is the agent...
• Is there a theory for this?
• How do we build this knowledge?
Predicate-argument structures for lose

\textit{lose1} (Agent: animate, Patient: physical-object)

\textit{lose2} (Agent: animate, Patient: competition)

\begin{align*}
\text{Agent} & \iff \text{subj} \\
\text{Patient} & \iff \text{obj}
\end{align*}

Machine Translation Lexical Choice - Word Sense Disambiguation

Iraq lost the battle.
Ilakuka centwey ciessta. \\
[\text{Iraq}] [\text{battle}] [\text{lost}].

John lost his computer.
John-i computer-lul ilepelyessta. \\
[\text{John}] [\text{computer}] [\text{misplaced}].
Word sense disambiguation with Source Language Semantic Class Constraints (co-occurrence patterns)

\[\text{lose1} (\text{Agent, Patient}: \text{competition}) \iff \text{ciessta} \]

\[\text{lose2} (\text{Agent, Patient}: \text{physobj}) \iff \text{ilepelyessta} \]

Is there enough data?

- Break
Levin classes (3100 verbs)

- 47 top level classes, 150 second and third level
- Based on pairs of syntactic frames.
 - John broke the jar. / Jars break easily. / The jar broke.
 - John cut the bread. / Bread cuts easily. / *The bread cut.
 - John hit the wall. / *Walls hit easily. / *The wall hit.
- Reflect underlying semantic components
 contact, directed motion, exertion of force, change of state
- Synonyms, syntactic patterns, relations

Another alternation example

- Another example: Causative/inchoative
 - The window broke
 - John broke the window
 - The rabbit suddenly appeared
 - *The magician appeared the rabbit
- Benefactive:
 - Sue carved a toy out of wood for Hansel
 - Sue carved hansel a toy out of wood
 - Sue carved some wood into a toy for Hansel
 - *Sue carved Hansel some wood into a toy
- Middle formation:
 - The whale frightens easily
 - *The whale sees easily
Alternations..

- Sue broke the vase / The vase broke (change-of-state)
- The vase broke easily
- Conative: *Sue broke at the vase

- Bill cut the bread / *The bread cut (change-of-state, no “telic” endpoint)
- The bread cut easily
- Bill cut at the bread

- Mary touched the cat / *The cat touched
- *The cat touched easily (no change-of-state)
- *Mary touched at the cat

- Joe kicked the tire / *The tire kicked
- *The tire kicked easily
- Joe kicked at the tire

Alternations can be lang-specific: “break” is a causative/inchoative in English, but not Italian.

Break Levin class - Change-of-state

- break
 - chip
 - crack
 - crash
 - crush
 - fracture
 - rip
 - tear
 - split
 - splinter
 - snap
 - smash
 - shatter

Lexical Gaps: English to Chinese

break → ?
smash → da po - irregular pieces
shatter → da sui - small pieces
snap → pie duan - line segments

Intersective Levin classes
So we want...

Thematic Roles

- E w,x,y,z Giving (x) ^ Giver(w,x) ^ Givee(z, x) ^ Given(y,x)
- E w,x,z Breaking (x) ^ Breaker(w,x) ^ Broken(z,x)

A set of roles:
- agent, experiencer, force, theme, result, content, instrument, beneficiary, source, goal,...

The dog ate the cheeseburger.
What is cheeseburger?
The sniper shot his victim with a rifle.
What is rifle?
Schank's Conceptual Dependency

- Eleven predicate primitives represent all predicates
- Objects decomposed into primitive categories and modifiers
- But few predicates result in very complex representations of simple things

Ex, y Atrans(x) ▹ Actor(x, John) ▹ Object(x, Book) ▹ To(x, Mary) ▹ Ptrans(y) ▹ Actor(y, John) ▹ Object(y, Book) ▹ To(y, Mary)

John caused Mary to die vs. John killed Mary

Selection via sortal hierarchy

- John ate a clam
- They served clams

“Logical” form: ∃ x, y, e[eat(e) & eater(e, y) & eaten(e, x) & john(y) & clam(x) & past(e)]

- So...
Sortal hierarchy ('ontology')

Entity

- thing
- being
- state
- food
- implement

Selection via sortal hierarchy

1. eater([Eating],[Being])
2. eat([Eating])
3. eaten([Eating],[Food])
4. server([Serving],[Being])
5. serve₁([Serving])
6. served([Serving],[Food])
7. john([Person])
8. they([Person])
9. mussel₁([Food])
10. mussel₂([Creature])
But...

- Which airlines serve Denver?
- You ate glass on an empty stomach
- Metonomy: What airlines fly to Boston?

But how can we/computer learn this?

- Two parts: pred-arg linking to thematic roles – which verbs do what
- Selectional restrictions
pour vs. fill

- Different linking entails semantic difference - when in Object position, the Goal seems "affected" in a way not so in the PP
- *Fill*: Cause X to become full of Y by means of causing Y to be in X
- *Pour*: Cause X to go in a downward stream into Y
- *Fill* has two events: a state change (the glass) and a location change (the water)
- *Pour* has one event: location change
- The Main-change argument gets Old-Info structure and main event status. Main event of *Fill*: state change of glass

KEY HUMAN COMPETENCE:
- One-shot integration of syntax & semantics
The Problem of Ambiguity

Possible Hypotheses
- Rabbit (whole object)
- Animal (superordinate)
- Flopsie (individual)
- Furry (property)
- Ear (part)
- Walk by (activity)
- Undetached rabbit parts

“Gavagai!”

Two Bootstrapping Proposals

- Children use syntactic cues to verb meaning (Gleitman 1990)
- Children use (verb) meaning to figure out how its arguments are realized in the syntax of the language (Pinker 1989)
Semantic Bootstrapping
(Pinker 1984)

Semantic Bootstrapping involves the pairing of a situational context with some syntactic pattern.

• Kids learn syntax by first learning the semantic argument structure of the verb.

 • SWIM = one participant (the “swimmer”)
 • EAT = two participants (“eater”, “eatee”)
 • TAKE = two/three participants (“taker”, “takee”, and “person taken from”...)

Gleitman: Not So Fast, Pinker...

... more than just real-world observation...

Temporal ambiguity Situation ambiguity Mental unobservable!
Syntactic Bootstrapping
(Landau and Gleitman 1986, Naigles 1990)

Syntactic frames provide evidence for meaning:

\[H_I: \text{arm wheel} \]

\[H_J: \text{cause to squat} \]

\[X \text{ and } Y \text{ are gorping!} \]

\[\text{Look, gorping!} \]

\[X \text{ is gorping } Y! \]

Verbs Classes Grouped by Cause Feature

<table>
<thead>
<tr>
<th>(H_i)</th>
<th>Verb Class</th>
<th>(F_1)</th>
<th>(F_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_I)</td>
<td>Externally Caused (touch, load)</td>
<td>He touched the glass.</td>
<td>The glass touched.</td>
</tr>
<tr>
<td>(H_I)</td>
<td>Internally Caused (laugh, glimmer)</td>
<td>He laughed the child.</td>
<td>He laughed.</td>
</tr>
<tr>
<td>(H_0)</td>
<td>Externally Causable (open, break)</td>
<td>He opened the door.</td>
<td>The door opened.</td>
</tr>
</tbody>
</table>

Hypothesis space \(H \)

Evidence \(x \) in \(X = \{0, 1\} \)

6.863J/9.611J Lecture 14 Sp03
One-shot learning

within a Bayesian framework.

Syntactic Evidence

Linguistic Theory

\[H = \{ H_1, H_2, \ldots \} \]

Prior: \(p(H_i) \)

Likelihood \(p(x|H_i) \)

Semantic Evidence

Acquired Lexicon

\(p(H_1|x) = \frac{p(x|H_1)p(H_1)}{p(x)} \)

\(p(H_0|x) = \frac{p(x|H_0)p(H_0)}{p(x)} \)

\(p(H_*|x) = \frac{p(x|H_*)p(H_*)}{p(x)} \)

Learning Value of Verbs Cause Feature

Syntactic Evidence:

/He glipped the balloon/

\(x = F1 \)

\[p(H_i) = .333 \]

Prior: \(p(H_i) \)

\[p(x|H_i) \]

\(x = F0 \)

\(x = F1 \)

\(H_1 .05 .95 \)

\(H_0 .95 .05 \)

\(H_* .50 .50 \)

Acquired Lexicon

Posterior \(p(H_i|x) \)

\(p(H_1|x = F1) = .633 \)

\(p(H_0|x = F1) = .033 \)

\(p(H_*|x = F1) = .333 \)

\[\frac{(.95)(.33)}{(.05+.95+.50)(.33)} \]
Bayesian Learning at the Syntax-Semantics Interface

Syntactic Evidence X:
/He glipped the balloon/
/X gorped Y, /X gorped Y/
/X sebbed Y, /Y sebbed/
/X meefed Y, /Y meefed/
/Y foomed/

Syntactic Theory:
\[H = \{H_1, H_0, H_*\} \]
Prior \(p(H_i) \)
Likelihood \(p(x|H_i) \)

Acquired Syntactic Knowledge

| Lexicon | Evidence X | \(p(H_1|x) \) | \(p(H_0|x) \) | \(p(H_*|x) \) |
|---------|------------|----------------|----------------|----------------|
| /glip/ | F1 | .633 | .033 | .333 |
| /gorp/ | F1, F1 | .781 | .002 | .217 |
| /seb/ | F1, F0 | .137 | .137 | .724 |
| /meef/ | F1\(^5\), F0 | .712 | 5e-6 | .288 |
| /foom/ | F0\(^6\) | 2e-8 | .979 | .021 |

Bayesian Learning at the Syntax-Semantics Interface

Syntactic Evidence
/X is gorping Y into Z/
/X is pilking Z with Y/
/Look! jebbing/!

Semantic Evidence
Person pours water into a glass, filling it
Person pours water into a glass, filling it
Person pours water into a glass, filling it

Linguistic Theory
\[H = \{H_1, H_0, \ldots\} \]
Prior: \(p(H_i) \)
Likelihood \(p(x|H_i) \)

Acquired Lexicon
\(p(H_i|x) \)

| Lexicon | \(p(POUR|x) \) | \(p(FILL|x) \) | \(p(MOVE|x) \) |
|---------|----------------|----------------|----------------|
| /gorp/ | .880 | .000 | .101 |
| /pilk/ | .001 | .989 | .000 |
| /jeb/ | .463 | .463 | .005 |

6.863J/9.611J Lecture 14 Sp03
How to get ‘real semantics’ in?

Verb meanings are logic programs (LPs):

General: cause(e)

One args x: move(x), rotate(x), move-dn(x), move-up(x)
 supported(x), liquid(x), container(x)

Two args x,y: contact(x,y), support(x,y), attach(x,y)
 (if cause(e)=1)

<table>
<thead>
<tr>
<th>Verb</th>
<th>Logic Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>/lower/</td>
<td>1 1101** 11</td>
</tr>
<tr>
<td>/raise/</td>
<td>1 1011** 11</td>
</tr>
<tr>
<td>/rise/</td>
<td>0 101**</td>
</tr>
<tr>
<td>/fall/</td>
<td>0 110**</td>
</tr>
</tbody>
</table>

Hypothesis space H: All LPs
Evidence X: Bit Vector Examples
(e.g. 1 1010100 110)
Learning Semantic Features

Semantic “Theory”: (3 bits)

- Hypothesis space \(\mathbf{H} \): 27 LPs
- Semantic Evidence:

 - /Look! Glipping!/ \(\mathbf{X}_1 = 000 \)
 - /Look! Gorping!/ \(\mathbf{X}_2 = 000, 001 \)
 - /Look! Sebbing!/ \(\mathbf{X}_3 = 000, 000, 000 \)
 - /Look! Meefing!/ \(\mathbf{X}_4 = 000, 101, 010, 111, 000 \)

Bayesian Language Acquisition Device

Acquired Semantic Knowledge

- Lexicon:
 - \(p(H_{000}|X) \) \(\mathbf{p} = .30, .15, .07, .03 \)
 - \(p(H_{001}|X) \) \(\mathbf{p} = .00, .64, .16, .04 \)
 - \(p(H_{010}|X) \) \(\mathbf{p} = .70, .09, .01, .001 \)
 - \(p(H_{011}|X) \) \(\mathbf{p} = .00, .00, .00, 1.0 \)

Priors \(p(H_i) = 1/27 \)

Likelihood \(p(x|H_i) = 2^{-q} \) if \(x \) in \(H_i \)

But... what are the possible arguments?

- Predicate-arguments can be complicated...can we crank it out?
- Argument structure is syntax
- There are no specialized mechanisms of ‘thematic role assignment’
- Everything is really predication
Hale-Keyser: arguments are syntax

The basic form
H & K: The framework

- There are only three places a verb argument can come from
 - The complement or specifier of a “basic” lexical item
 - An external “addition”
 - As for “basic lexical items” there are four types: N, V, A, P
- Why so few thematic roles? Because so few basic lexical items (entity-instance, event, state, relation)

N, V, A, P

- N takes no arguments
- V are predicational, and take one argument, a complement.
- P are relational, and take two arguments
- A are predicational, and take one argument, but require some help; thus an A is always the complement of a verb, which then projects for an external arg.
Hale-Keyser Incorporation

- 4 Fundamental Primitives Yield Different Argument Structures

V-N V-A V-P V-P-N

V-N: V-A: V-P:
V /glow/ V /book/ V /be-log/
N /door/ A /open/ P /on/

HK Allows Us to Discard Thematic Roles

- Agent, Patient, Theme, Instrument, Goal, ... derived from positions in structural configurations.
- V-N: V-A: V-P:
V /glow/ V /book/ V /be-log/
N /shelf/ P /on/ N /shelf/

theme goal
What can N get us?

• Intransitive verbs:

```
  VP
    \ \
   V   N
```

Nouns cannot project arguments. A noun (run, laugh, play, cough, snore, burp) incorporates into the verb. An external argument is adjoined to \(v \). Thus, rather than having cognate N and V copies in the lexicon, verbs are derived by syntax.

Unergatives vs. Simple Transitives

• Unergatives: no external agent The child laughed
 • \([\text{NP} \ [v \ [V+N (N)]]]\)
• No verbs like *The clown laughed the child / *The alfalfa sneezed the colt (The N complement to V has incorporated, where would the “object NP” reside?)
 • \([\text{NP} \ [V+N (N) \ \text{NP}]]\)
• Simple transitive (non-creation) The clown made the child laugh
 • \([\text{NP} \ [v \ [\text{NP} \ [V+N (N)]]]]\)
 • Extensions: get+A (I got drunk, I got Josh drunk)
 • But not for get+N (I got the measles, *I got Josh the measles)
Explaining Gaps in the Lexicon

• *It cowed a calf, *It dusted the horses blind, *It machined the wine into bottles (cf. The cow had a calf, the dust made the horses blind, the machines put the wine into bottles)
• The above items would be the result of the external subject incorporating into the verb, which is ruled out by the syntax elsewhere (items raise & incorporate up, but not down)
• If all “denominal” verbs are the result of incorporation of the complement to the V head, rather than unconstrained “category change”, these non-verbs are predicted

V: Verbs of Creation:
The simple case

• bake a cake, make trouble, build a house, have puppies

• V has a complement NP(=DP). External argument is projected and adjoined to v.
P gives put-type Verbs

- The P frame has a specifier and complement. The whole P-complex is a verb complement. An external argument is projected and adjoined.

P gives locatum-type verbs

- With a bare N as the PP complement, the N conflates with the P, which conflates with the V, giving saddled the horse, boxed the gift, roofed the house (all have P-meaning)
Implementation

(define-verb-class "PUT VERBS: put verbs (Section 9.1)"
"putting entity at some location (but not to or from)"
'(arrange immerse install lodge mount place position put set situate sling stash stow)
(list '(* the water put into a bowl))
 '((+ he put the water into the bowl)
 (vp ()
 (v* (v put (feature CAUSE))
 (pp (n the water)
 (p* (p into (feature MOVELOCATION))
 (n a bowl))))))
Argument Structure: The Moral

• No specialized mechanism of “thematic role assignment”. Everything is predication.

• Do these mechanisms of derived verbs happen in the syntax with everything else, or “prior to lexical insertion”, e.g. “in the lexicon”? What do you think? Should this distinction matter?