
6.863J Natural Language Processing
Lecture 16: The meaning of it all, #2

Instructor: Robert C. Berwick
berwick@ai.mit.edu

(or #42)

6.863J/9.611J SP04 Lecture 16

The Menu Bar
• Administrivia:

• Lab 4a out April 14
Agenda:

What does this all mean?
Frege’s principle of compositionality
Representation and lambda calculus
Today: beyond simple VPs; properties &
database interfaces; adjectives, prepositions,
and more…!

6.863J/9.611J SP04 Lecture 16

Meaning of meaning, redux

• How can we automate process of associating
semantic representations w/ expressions of
natural language?

• How can we use semantic representations to
automate drawing inferences?

6.863J/9.611J SP04 Lecture 16

Meaning of meaning redux

• Our semantics:
• Truth conditional – sentence’s meaning in

the world is what world would have to be
like in order for the sentence to be true

• Compositional – meaning of whole from
parts, reflecting way the parts combine

• Model-theoretic – logical language used
distinguished from its interpretation in the
domain of ‘real world’ objects & relations

6.863J/9.611J SP04 Lecture 16

Barriers to compositionality

• Ce corps qui s’appelait e qui s’appelle encore
le saint empire romain n’etait en aucune
maniere ni saint, ni romain, ni empire.

• This body, which called itself and still calls
itself the Holy Roman Empire, was neither
Holy, nor Roman, nor an Empire -Voltaire

6.863J/9.611J SP04 Lecture 16

From sentence meanings to phrase
meanings – intermediate summary

• Sentence meanings are propositions or sets of
possible worlds or situations – those situations where
the sentence is true

• NP meanings (meanings of proper names) are
individuals

• Intransitive verb meanings are functions from
individuals to sentence meanings (propositions)

• Transitive verb meanings are functions from
individuals to intransitive verb meanings

6.863J/9.611J SP04 Lecture 16

The story so far

• Simple transitive verb sentence w/ names
• Combine with lambda-calculus to get an output

semantic representation, in the same way an
intranstive verb combines w/ name:

1. sleep(Bob)
2. love(Bob, ice-cream) or
3. (love :subj bob :obj ice-cream) or – following the

textbook:
4. ∃e present(e), act(e, loving)∧lover(e,bob)∧ lovee(e,

ice-cream)

6.863J/9.611J SP04 Lecture 16

This gives us:

S

NP VP

V NP
Bob

likes ice-cream

= λy.likes(y, ice-cream)

VP(NP)=likes (bob , , ice-cream)

ice-cream

Bob

λyλ x. likes(x, y)

6.863J/9.611J SP04 Lecture 16

Our logical language, part 1
Three major kinds of objects

1. Booleans
• Roughly, the semantic values of sentences (T/F)

2. Entities
• Values of NPs, i.e., objects
• Maybe also other types of entities, like times

3. Functions of various types
• A function returning a boolean is called a

“predicate” – e.g., frog(x), green(x)

• Functions might return other functions!
• Function might take other functions as

arguments!

6.863J/9.611J SP04 Lecture 16

Our secret weapon

• Lambda calculus lets us ‘postpone’ positions
within a FOPC expression and ‘fill’ them later, by
applying the new expression to another

• Fundamental rule for lambda calculus:
Reduction or application (substitute for var):

vp loves ice-cream: λy λx love(x,y)bob = λx love (x,bob)

6.863J/9.611J SP04 Lecture 16

Our logical language, part 2
• Lambda terms:

• A way of writing “anonymous functions”
• No function header or function name
• But defines the key thing: behavior of the function
• Just as we can talk about 3 without naming it “x”

• Let square = λp p*p
• Equivalent to int square(p) { return p*p; }
• But we can talk about λp p*p without naming it
• Format of a lambda term: λ variable expression

6.863J/9.611J SP04 Lecture 16

Logic: Lambda Expressions (terms)
• Lambda terms:

• Let square = λp p*p
• Then square(3) = (λp p*p)3 = 3*3
• Note: square(x) isn’t a function! It’s just the value x*x.
• But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

• Let even = λp (p mod 2 == 0) a predicate: returns true/false

• even(x) is true if x is even
• How about even(square(x))?
• λx even(square(x)) is true of numbers with even squares

• Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
• This happens to denote the same predicate as even does

6.863J/9.611J SP04 Lecture 16

Logic: Multiple Arguments
• All lambda terms have one argument
• But we can fake multiple arguments ...

• Claim that times(5)(6) means same as times(5,6)
• times(5) = (λx λy times(x,y)) (5) = λy times(5,y)

• If this function weren’t anonymous, what would we call it?

• times(5)(6) = (λy times(5,y))(6) = times(5,6)

• So we can always get away with 1-arg functions ...
• ... which might return a function to take the next

argument. Whoa.

• We’ll still allow times(x,y) as syntactic sugar, though

6.863J/9.611J SP04 Lecture 16

Our logical language: constants

• Thus, have “constants” that name some of the
entities and functions (e.g., times):
• GeorgeWBush - an entity
• red – a predicate on entities

• holds of just the red entities: red(x) is true if x is red!

• loves – a predicate on 2 entities
• loves(GeorgeWBush, LauraBush)
• Question: What does loves(LauraBush) denote?

• Constants used to define meanings of words
• Meanings of phrases built from the constants

6.863J/9.611J SP04 Lecture 16

Our logical language, more formally
• A typed lambda calculus (see notes on web)
• Basic types = {Ind, Bool} (type of individuals, type of

propositions)
• The set TYP is the smallest set s.t.

1. BasTyp ⊆ TYP
2. If σ, τ ∈ TYP then (σ→τ)∈ TYP

From this we define:
VARτ = countably infinite set of variables of type τ
CONτ = set of constants of type τ
Union over these = VAR, CON

Lambda terms: collection of sets, TERM, smallest set
built from VAR, CON, and α(β), λx(α)…

6.863J/9.611J SP04 Lecture 16

Logical inference

• Once we have the predicate logic forms
• Reason on them directly, using operators

∨, ∧, ⇒, ¬
• Standard approach: relate predicates to one

another via implications, e.g.,
loves(x, y) ⇒ likes(x,y)

• These are called Meaning Postulates

6.863J/9.611J SP04 Lecture 16

Meaning postulates, II

• Relate verbs & adjectives, e.g.,
∀x, [Openv (x)⇔ Become(OpenA (x))]

We’ll have much more to say about lexical
semantics later…

How is all this stuff learned??

6.863J/9.611J SP04 Lecture 16

Interpretation: from connotation to
denotation (“meaning”)

• So far, we just have a compositional semantics –
Like a programming language though, we must
give each statement a model interpretation, ie, a
denotation – truth condition in a possible world

6.863J/9.611J SP04 Lecture 16

Models and meaning

• Model M = {Domain, [[•]] }, a pair of a
context frame w/ domains for types
(constants, functions…); and an
interpretation function [[•]]: CON→ DOM

• This gives us the denotation (“meaning”) of
semantic expressions (typed lambda forms)

6.863J/9.611J SP04 Lecture 16

Interpretation: Domains

• Denotation of a constant = an individual
• Denotation of a function = a set
• Denotation of a sentence = a truth value
• Denotation of a variable = an assignment function
• Example model:

[[bob]] = bob; [[ice-cream]] = ice-cream
[[loves]] = {(b,i), (b,b)}

Sentence has truth value of 1 since (b,i) is in [[loves]]
Mapping is not trivial! E.g., [[bob]]=[[ice-cream]]?
Bob = “that person who is referred to as bob”

6.863J/9.611J SP04 Lecture 16

Interpretation: domains and types

• We use types to make sure the proper
arguments go with the proper functions…

• Bob and ice-cream: are IND(ividuals)

• Sleep: is IND→ BOOL (this is a property)
• Love: (do you remember?) love(x,y)
• Love(x,ice-cream) is like ‘sleep’ – so bob

applied to this: IND→ BOOL;

• And ‘ice-cream’ is IND

• So whole map is: IND→ (IND→ BOOL)

6.863J/9.611J SP04 Lecture 16

What next? Interpretation = Map to
DB world

• Relations (x, y) are 2-way tables
• One table per predicate (often in practice –

indirect, e.g., red predicate could come from
table w/ objects & colors…)

• Relation love has 2 fields, indicated by arg
position, or colon keyword, or by other
predicate names

• Names are IDs in the SQL DB: b and i

6.863J/9.611J SP04 Lecture 16

DB – the ‘truth’ as SQL (Datalog…)

• Insert into Love(lover, loved) values(b, i)
• Then we can answer a question, e.g.,

Does Bob love ice-cream via the SQL:

select‘yes’ from Love where Love.lover = b
and Love.loved = i

6.863J/9.611J SP04 Lecture 16

Now we can already do some
interesting things…

• Bob kicked the bucket

kicked the bucket

VP

λx died(x)

NP

Sbar

died(Bob)

λs assert(s) •

assert(died(bob))

λx died(x) •
Bob

Sql: Insert…

S

6.863J/9.611J SP04 Lecture 16

And more

• I want a flight from NP [sem =x] to NP[sem =y]

• S [showflights(x, y)]

• Select from Flights…

6.863J/9.611J SP04 Lecture 16

Are we done?

• I wish!
• All the NPs so far are proper names, and so

‘constants’ – referring expressions
• Now we must consider lots more…
• The ice-cream, an ice-cream on the table, every

ice-cream,…so much ice-cream, so little time…
• Bob likes no ice-cream…
• Plurals, tense, adverbs, adjectives, events,…

6.863J/9.611J SP04 Lecture 16

What about determiners?

• Bob loves an ice-cream
• This doesn’t mean love(bob, ice-cream)
• Because just returns T or F – the same as

• prime(17)
• equal(4,2+2)
• love(GeorgeWBush, LauraBush)

• What about “Bob loves an ice-cream and
Sally loves an ice-cream”

6.863J/9.611J SP04 Lecture 16

The trouble with tribbles

• What would FOPC be for:

• Every person loves ice-cream, A person loves ice-cream

∀x (Person x love(x, ice-cream)
∃x (Person x & love(x, ice-cream)

Let’s try our λ trick out on this…

6.863J/9.611J SP04 Lecture 16

Quantifiers cause problems

• If we apply composition following the syntax, what do
we get?

• λy λx love(x, y) ice-cream, ∀x (Person x)
• But this yields:

love(∀x (Person x), ice-cream)
NOT WHAT WE WANT:

∀x (Person x love(x, ice-cream))
What happened to the NP ‘every person’?
Direct substitution per syntactic isomorphism DOES NOT

work
“every person” is not something like “Bob”
What to do???

6.863J/9.611J SP04 Lecture 16

With quantifiers, we lose direct
substitution/isomorphism trick

VP

ice-creamlove
λyλx love(x,y)

V NP
every person
∀x Person(x)

NP love(∀ x Person(x), ice-cream)

∀ x (person(x)→ love(x,ice-cream))

every person
∀x Person(x)

λx love(x,ice-cream)

≠

6.863J/9.611J SP04 Lecture 16

This is the same problem as this…

• Nothing is better than a life of peace and prosperity
• John Kerry is better than nothing
• John Kerry is better than a life of peace and

prosperity
• Bob sleeps = sleep(b); BUT
• No person sleeps = ¬ (∃x)(person(x) & sleep(x))

6.863J/9.611J SP04 Lecture 16

And it gets worse…

• Not only does this violate syntactic/semantic
isomorphism but

• How to extend to other phrases, like “most
students love ice-cream”?

• We’ll start by figuring out the resulting form
we want, and then working backwards from
there

6.863J/9.611J SP04 Lecture 16

Try ‘most’

• Most students like ice-cream
• (1) Most(x) (student(x)) love (x, ice-cream)
• (2) Most(x) (student(x)) & love (x, ice-cream)
• Neither gives the correct truth conditions

• The first is true: if for most things, if they are
students, they like ice-cream

• The second is true: most things are students and
like ice-cream

• We really want to quantify over students and nothing
else

6.863J/9.611J SP04 Lecture 16

A solution

• Intuitively: want to restrict the domain of the quantifier,
via a type:

• Most x: student(x) [read: most x, s.t. student(x)]
• Then we have:

(Most x : student(x)) love (x, ice-cream)
• Similarly, for ‘everbody’, ‘somebody’:

(Every x: person(x)) love (x, ice-cream)
• Semantics for Most: we need – ‘most A are B’ or:

A∩B > A - B
That will give the proper truth conditions – the question is –

how to assemble this from parts?

6.863J/9.611J SP04 Lecture 16

Working backwards by ‘division’

• Given an output form, the result of a lambda
application of a function to its argument, then
what was the function (or argument)?

• Analogously: if 6 = 2 * x, what was x ?
• Example:

Output: f(b)= love(b, ice-cream) What is f?
Input: λx love(x, ice-cream).b

6.863J/9.611J SP04 Lecture 16

Simpler case: ‘a person sleeps’

• Predicate: person (x)
• Lambda form: λx sleeps(x)
• Apply to bob: λx sleeps(x).bob & sleeps(bob)
• Now suppose the Noun has to be abstracted

over all possible predicates (person, woman,
child,…)

6.863J/9.611J SP04 Lecture 16

A person sleeps

• Output goal is this – think of it as a template
∃x (Person(x) & sleeps(x))

• Let’s do the Person(x) part – comes from ‘a’…

6.863J/9.611J SP04 Lecture 16

NP ‘a person’ – to output:

a (Det) Person (Noun)
λy PERSON(y)???

a person (NP)

Function Argument (but it is also the name
of a function!)

∃x (Person(x)&...

6.863J/9.611J SP04 Lecture 16

What is Det as a function?

• It acts as function applied to the arg (the
lambda form) associated with the Noun

• It takes as input λy PERSON(y) and outputs
λx PERSON(x)

• And more generally, takes as input a function
(a lambda form) and outputs a lambda form

• So we need at least this:

6.863J/9.611J SP04 Lecture 16

????

Part of Det

a (Det) Person (Noun)
λy PERSON(y)λP(P.x)

a person (NP)

Function Argument (but it is also the name
of a function!)

λy Person(y).x

λy Person(y).x

Person(x), e.g., P(x)

?????λP(P.x)

6.863J/9.611J SP04 Lecture 16

Now add ∃x to
template… ∃xPerson(x)

a (Det) Person (Noun)
λy PERSON(y)λP (P.x)

a person (NP)

Function Argument

λP ∃x(P.x)

∃x λy Person(y).x

λy Person(y).x

∃x Person(x)

Function Argument
∃x

6.863J/9.611J SP04 Lecture 16

Next incorporate intrans VP ‘sleeps’

• As before, this is just λz sleep(z)
• Combines with NP, except now the NP is the

function, and the VP is the argument
• Remember the output goal template is:

∃x (Person(x) & sleeps(x)) and in general,
∃x (P(x) & Q(x))

• And so far we have filled in:
∃x (Person(x)…

• So, Q(x) must be filled in by the other predicate,
from the VP, Q(x)=λz sleep(z)

6.863J/9.611J SP04 Lecture 16

a (Det) Person (Noun)
λy PERSON(y)λPλQ∃x(P.x &Q.x)

a person (NP)

Function Argument

(λP λQ ∃x(P.x & Q.x) λy Person(y)) sleeps (VP)
λz sleep(z)

(λP λQ ∃x(P.x & Q.x) λy Person(y))(λz sleep(z))

S

Function Argument

6.863J/9.611J SP04 Lecture 16

And after lambda substitution..

• We actually get what we want!
∃x (person(x) →sleeps(x))

OK, what does this amount to?
We apply the Determiner as a function to the VP

argument to get the sentence meaning
What happens to a name like “Bob”?
Now it must be a function- like “Everyone” …How can

this be?
Bob sleeps = true iff the property ‘sleeps’ is among

Bob’s properties

6.863J/9.611J SP04 Lecture 16

Names as functions

• Instead of “Bob” referring to an individual, it refers to
the set of this individual’s properties

• Each property is a set, so this is a set of sets
• λP(P.bob) = a set of sets
• This λ can now be applied as a function to any

property as its argument e.g,
• λP P.bob .λx love(x, ice-cream) →

λx love(x, ice-cream).bob →
love(bob, ice-cream)

• So proper names and quantifiers treated uniformly
• Ice-cream = λP P.ice-cream

6.863J/9.611J SP04 Lecture 16

Derivation for “Bob loves ice-cream”

• Watch carefully – note parens
• The trick is to use the λ P’s to get the predicates

substituted
• We get a λ expression that is then ‘reduced’
• Important: (Church-Rosser thm) – the order in which

we do the applications to reduce the expression does
not matter

• So, we can build up the template at the S however
we like (from below, but in any order…)

• Plus important: this is MECHANICAL

6.863J/9.611J SP04 Lecture 16

The whole S – goal is love(bob, ice-cream)

Bob loves ice-cream (S)
(λP P. BOB) λX λz (X. λx LOVE(z,x)) (λP P.ICE-CREAM)

Bob (NP)
λP P.BOB

loves ice-cream (VP)
λX λz (X. λx LOVE(z,x))

loves (trans verb)
λX λz (X. λx LOVE(z,x))

ice-cream (NP)
λP P. ICE-CREAM

6.863J/9.611J SP04 Lecture 16

Lambda reduction
Start with:
(λP P. BOB) (λX λz (X. λx LOVE(z,x)) (λP P.ICE-CREAM))

(λP P. BOB) (λz (λP P.ICE-CREAM). λx LOVE(z,x))

(λP P. BOB) (λz (λx LOVE(z,x).ICE-CREAM))

(λP P. BOB) (λz LOVE(z,ice-cream))

(λz LOVE(z,ice-cream). BOB)

LOVE(BOB,ice-cream)

6.863J/9.611J SP04 Lecture 16

Now we can…uhm, go to town…

• Adjectives are properties
red: Adj: λP (λx P(x) ∧ red’(x))
• Prepositions are properties
in: P: λy λP λx (P(x) ∧ in’(y)(x))

• …red Porsche in cambridge…

6.863J/9.611J SP04 Lecture 16

“…red porsche in cambridge”

NP
Det N’: λx (porsche(x) ∧ in’(cambridge)(x) ∧ red’(x))

Adj:λP (λx P(x) ∧ red’(x)) N’:λx (porsche(x) ∧ in’(cambridge)(x))

N’:porsche

car

PP:λP λx (P(x) ∧ in’(cambridge)(x))

P:λy λP λx (P(x) ∧ in’(y)(x))N:porsche

red
NP:cambridge

