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Meaning of meaning, redux

• How can we automate process of associating 
semantic representations w/ expressions of 
natural language?

• How can we use semantic representations to 
automate drawing inferences?
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Why compositionality?

• a human being can understand a possibly 
infinite number of sentences never heard 
before (namely by constructing their meaning 
from a finite set of rules and a finite set of 
known lexical meanings). 

• Also, a compositional account of meaning 
suggests a plausible explanation of why we 
perceive a connection in meaning between 
sentences that share syntactic parts
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The recipe

The lexical items (i.e. the words) in a sentence 
give us the basic ingredients for our 
representation.

Syntactic structure tells us how the semantic 
contributions of the parts of a sentence are to 
be joined together.
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The three tasks

• Specify a reasonable syntax for the natural language 
fragment of interest.

• Specify semantic representations for the lexical 
items.

• Specify the translation of complex expressions (i.e. 
phrases and sentences) compositionally - That is, we 
need to systematically specify the translation of such 
expressions in terms of the translation of their parts, 
“parts” here referring to the substructure given to us 
by the syntax.
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Our working vocabulary
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Lambda calculus & lambda terms

• Key to building logical semantic representations
• Extension of FOPC allowing us to bind variables using 

operator λ 
• Occurrences of variables bound by λ are 

placedholders for missing information: they explicitly 
mark where we should substitute the pieces we 
obtain during semantic construction 

• Like a programming language devoted to task of 
gluing the items together for semantic rep – a 
construction kit, it’s the Elmer’s glue 
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The lambda operator

• The lambda operator marks missing 
information by binding variables

• E.g., a lambda expression:
λx.person(x)

• The prefix λx binds the occurrence of x in 
person(x)

• λx.person(x) can be read as: “I am the 1-
place predicate and I’m looking for a term to 
fill my argument slot”
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Lambda calculus 
• Glue language – a ‘programming language’ with a 

single task: gluing together items to build semantic 
representations

• Way of controlling substitutions
• Instructions – β and α conversion 
• Functional application: β conversion 

λx.person(x)@bob
• The expression λx.person(x) is the functor
• The expression bob is the argument
• The @ operator indicates functional application = a 

substitution
• Fill the vars in the functor by occurrences of arg bob
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β− conversion does the work

• Actual substitution is performed by β− conversion:
From:

λx.person(x)@bob
• β− conversion produces:

person(bob)
• Throw away the λx at the start, substitute the 

argument for all occurrences of x bound by λx
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What are λ terms?

• They are functions
• λ x.P(x) : function from objects to truth 

values (ind to Bool)
• λ P.P(john) : function from predicates to 

truth values
• λ P. λ x.P(x) : function from predicates to 

functions from objects to truth values…
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Filling the semantic gaps…
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A woman walks

• First order formula ∃x (WOMAN(x) ∧
WALK(x))

• The verb ‘walks' contributes the predicate 
symbol WALK

• The determiner must contribute the quantifier 
and the pattern of the quantification

• What’s the lexical template pattern?  Abstract 
away the variables x
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‘a woman walks’ - general

λP.λQ.(∃(P@x ∧ Q@x))

• P and Q stand for missing predicate symbols
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A woman
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The whole S
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Beta reductions
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The whole S – goal is love(bob, ice-cream)

Bob loves ice-cream (S)
(λP P. BOB) λX λz (X. λx LOVE(z,x)) (λP P.ICE-CREAM)

Bob (NP)
λP P.BOB

loves ice-cream (VP)
λX λz (X. λx LOVE(z,x))

loves (trans verb)
λX λz (X. λx LOVE(z,x))

ice-cream (NP)
λP P. ICE-CREAM
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Lambda reduction
Start with:
(λP P. BOB) (λX λz (X. λx LOVE(z,x)) (λP P.ICE-CREAM))

(λP P. BOB) (λz (λP P.ICE-CREAM). λx LOVE(z,x))

(λP P. BOB) (λz (λx LOVE(z,x).ICE-CREAM))

(λP P. BOB) (λz LOVE(z,ice-cream))

(λz LOVE(z,ice-cream). BOB)

LOVE(BOB,ice-cream)
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Now we can…uhm, go to town…

• Adjectives are properties
red:  Adj: λP (λx P(x) ∧ red’(x))
• Prepositions are properties
in: P: λy λP λx (P(x) ∧ in’(y)(x))
• Everything is a property…!

• …red Porsche in cambridge…
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“…red porsche in cambridge”

NP
Det N’: λx (porsche(x) ∧ in’(cambridge)(x) ∧ red’(x)) 

Adj:λP (λx P(x) ∧ red’(x)) N’:λx (porsche(x) ∧ in’(cambridge)(x))

N’:porsche

porsche

PP:λP λx (P(x) ∧ in’(cambridge)(x))

P:λy λP λx (P(x) ∧ in’(y)(x))N:porsche

red
NP:cambridge

What’s the parse? Red (porsche in c.)
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Red porsche in cambridge

• Isn’t there another parse?
• Yes: (red porsche) in cambridge

• Why doesn’t this matter?
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Translation to SQL – property 
semantics

• Select Porsches.obj from Porsches, 
locations, Red where Porsches.obj = 
Locations.obj AND Locations.place = 
‘cambridge’ AND Porsches.obj = Red.obj

• Now – let’s add ‘some’, as in “some red Porsche in 
cambridge”

• Some = λx.P(x); Some(P)=yes iff ∃xP(x)=yes, i.e., if 
P ≠ ∅
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Translation to SQL

• Select Porsche.obj from Porsches, 
locations, Red where Porsches.obj = 
Locations.obj AND Locations.place = 
‘cambridge’ AND Porsches.obj = 
Red.obj having count(*)> 0
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More on adjectives

• What’s the difference?
• Red Porsche in Cambridge
• Fake Porsche in Cambridge

• Is there a difference in parse now?
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Question answering

• Yes/no question: interrogate DB (not just 
assert or check the fact as with a statement)

• Content question: Who loves ice-cream?  is 
an open proposition – which individuals make 
statement true

• Need semantics for who, what, which, 
how_many
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Question answering

• What, NP[wh]: λ U. U
• Who, NP[wh]: λ U λ x U(x) ∧ human(x)
• Which, Det[wh]: λ P λ U λ x P(x) ∧ U(x)   (why 

do we have the U??)
• How_many, Det[wh]: λ P λ U |λ x P(x) ∧ U(x) |
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Question sentence – new rules

• Sbar:  NP[wh] Aux  S
• Filler: S → S-NPz 

• Gaps: NP-NPz : z → e 
• and need a way to link fillers and gaps:
• S: λz F(…z…)  → S-NPz : F(…z…)
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What does Bob love e

Sbar:

NP[wh]:λU.U
what

Aux
S: λz love(z)(bob)

does
S/NPz: love(z)(bob) 

NP: bob VP/NPz: love(z)

V: love bob

love

NP/NPz: z

e

λz love(z)(bob)
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SQL

• Select loved from Loves where 
Loves.lover = ‘bob’

• Who does Bob love
• Which cars does Bob love
select liked from Cars.Likes where 
Cars.obj = Likes.liked AND 
Likes.liker = ‘bob’

• Which cars does every student love
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Why λ calculus works



6.863J/9.611J SP04 Lecture 17

What you must do

6.863J/9.611J SP04 Lecture 17

Accidental bindings (alpha reduction)
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Example
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Example – w/ problem after 1 more 
beta reduction

Must rename variables = α reduction
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So

• Most work done in the lexicon
• Pattern for intransitive, transitive verbs – can 

be abstracted by a ‘macro’ (eg, ‘sleep’ is like 
‘walk’…)

• What about a ditransitive verb? (eg, give?)
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Puzzles: Unknown vocabulary 
problem

• Everyone is a therapist, but Cinderella isn't
• What will a logic system do?
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Still some puzzles…!!

• Some person broke every Porsche
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Semantic ambiguity

• Every student did not pass the exam (One 
exam or many?)
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Quantifier ambiguity

1. Negation has narrow scope, det has 
wide scope
2. Negation has wide scope, det has 
narrow scope

6.863J/9.611J SP04 Lecture 17

Are we done yet?

• Every owner of a siamese cat loves a therapist
• Three quantifiers – so, if they freely permute
• Five readings
• But… some are logically equivalent!  Only 5…
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Cats
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More examples

• Possibly a dog is barking
• Adverbs interact!

• But our algorithm so far is determinstic – we 
get only the det wide scope reading

• Why? 
• Look at the reduction enterprise…
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Reduction order and scope – ‘every 
man loves a woman’

• Let EVERY stand for 

• Let A stand for the existential. Then:

• after beta reduction 1:
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What is a solution?

• Montague: let’s raise the existential to this:

• Does this work?  Why did we drag along the 
λ y?



6.863J/9.611J SP04 Lecture 17

Comparison
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Montague’s solution (and others’ 
solution…)

• Two different syntactic analyses…
• One, the familiar one
• The second:  ‘A woman, every man loves her’
• This is quantifier raising (in syntax – R. May, 

1977) or “quantifying in” (Montague’s phrase)
• Let’s see how it works
• Consider semantics for “Every man loves her”
• “her” = λ P.P(v1)
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Every man loves her

Beta reduced to this…

Now we want to put the “a woman” in front
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Getting the scope right

• We have to delay processing NP ‘a woman’ 
until we have processed NP ‘every man’

• This lifts the existential quantifier above the 
universal
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This formula

• Beta reduces to:
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Cats
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Cats…not!
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# readings

number of quantifers readings

4 14

5 42

6 132

7 429

8 1430
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The picture so far
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How to get readings?
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Formulas and dominance structure
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With lambda expressions

Take out shared material & convert 
to a constraint graph
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Constraint graph
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Constraint graphs and l structures

• Any node that has a label in the graph must 
have the same label in the λ-structure.

• No two nodes that have a label in the graph 
must be mapped to the same node in the λ-
structure.

• Any two nodes connected with a solid edge or 
a binding edge in the graph must be connected 
in the same way in the λ-structure.

• Whenever there is a dominance edge from a 
node X to a node Y in the graph, there must be 
a path from X to Y using only solid edges in the 
λ-structure.
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The REALLY big picture – truth or 
consequences
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But what about…

• Some linguist speaks at most 2 languages
• Some linguist x is such that x speaks at most 2 

languages
• There are at most 2 languages y s.t. some 

linguist or other speaks those 2 languages y
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And in general

• (Every x: Person(x)) (love(x, ice-cream))
• In general, the second component love(…) 

could be any predicate P (every person loves 
parfait…, every person hates dentists), where 
P is an arbitrary λ form

• So, we really need this:
(Every x: Person(x)) P. x)  and substitute P

Lambda abstract P:
λP (Every x: Person(x)) P. x)
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Cognition as computation

• Computation manipulates formal symbols
• The symbols are represented
• The symbol manipulation is purely syntactic
• The symbol manipulation is semantically 

invariant
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Our general view

• Syntactic representations to…
• Semantic representations to…
• Conceptual representations…
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We know…

• What syntactic representations are
• We know much less about semantic or 

conceptual representations, but…
• Assume: they are the representations and 

vehicle for reasoning…
• So…must preserve what?
• Should be built up compositionally
• Why?
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Compositionality, Turing, and all that

• Brown cow 
• Meaning(Brown) & Meaning(cow)  & some 

mode of composition
• Why?

• Cf: Purple cow
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Easy case

• Bob sleeps
• Bob likes ice-cream

• Event: likes(Bob, ice-cream)
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Hard case

(But the Accord was redesigned for the 2003 model year.)

The roomier, faster, and sleeker sedan’s sales stabilized last 
year,falling by just 1,230 units -- a strong showing in a 
market that saw combined total passenger car sales fall by 
471,000 units.
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The envelope please…

the(x1,e1&e3&e5&e7) & more’(e1,x1,y1,e2) & roomy’(e2,x1) 

& more’(e3,x1,y1,e4) & fast’(e4,x1) & more’(e5,x1,y1,e6) & sleek’(e6,x1) 

& sedan’(e7,x1) & poss(x1,z1) & sale(z1,x2) & Plur(z1,s1) 

& stabilize’(e8,s1) & Past(e8) & at-time(e8,y2) & last(y2,u1) & year(y2) 

& fall’(e9,s1) & by(e9,s2) & just(e6) & card’(e6,s2,1230) & unit(u2) & Plur(u2,s2) 

& Appos(e8,e11) & a(e11,e10&e11) & strong’(e10,e11) & show’(e11,x3,x4) 

& in(e10,m) & a(m,e12&e13) & market’(e12,m) & see’(e13,m,e14) & Past(e13) 

& combine(x5,s3) & total(s3) & passenger(p) & nn(p,c) & car(c) 

& nn(c,z2) & sale(z2,x6) & Plur(z2,s3) 

& fall’(e14,s3) & by(e14,s4) & card(s4,471000) & unit(u3) & Plur(u3,s4)
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Why: recover meaning from structure –
syntax-directed translation

S

NP VP

V NP
Bob

likes ice-cream

= λy.likes(y, ice-cream)

VP(NP)=likes (Bob , , ice-cream)

ice-cream

Bob

λyλ x. likes(x, y)

6.863J/9.611J SP04 Lecture 17

How: function application

S

NP VP

V NP
Bob

likes ice-cream

= λy.likes(y, ice-cream)

VP(NP)=likes (Bob , , ice-cream)

ice-cream

Bob

λyλ x. likes(x, y)
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What’s meaning? What’s semantics –
2 ends of the spectrum

• Answer 1: whatever it is, it’s mapping (translation) 
between representations 
And it depends on all of the text

• Answer 2: whatever it is, our answer depends on a 
much more focused task-specific question, viz., 
information extraction from texts

• Perhaps call this ‘natural language engineering’

• These two ends of the spectrum have different 
characteristics, and difft uses

• Deep vs. Shallow?
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What Counts as Understanding?
some notions

• We understand statement if we know how to determine its 
truth

• What are exact conditions under which it would be true?
• necessary + sufficient

• Equivalently, derive all its consequences 
• what else must be true if we accept the statement?

• Philosophers tend to use this definition
• We understand statement if we can use it to answer 

questions  [very similar to above – requires reasoning]

• Easy: John ate pizza.  What was eaten by John?
• Hard: White’s first move is P-Q4.  Can Black checkmate?
• Constructing a procedure  to get the answer is enough



6.863J/9.611J SP04 Lecture 17

What Counts as Understanding?

• Be able to translate
• Depends on target language
• English to English? bah humbug!

• English to French? reasonable

• English to Chinese? requires deeper understanding

• English to logic? deepest 

all humans are mortal     =    ∀x [human(x) ⇒mortal(x)]

• Assume we have logic-manipulating rules to tell us how to 
act, draw conclusions, answer questions … 
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Answer 1: translation – from ‘syntactic’ rep to 
‘semantic’ rep, aka “Deep”

• Mirrors the progamming language approach
• When is it used?
• DB Q&A (but answer 2 can be used 

here…when and how?)
• Text understanding:  when all the text is 

relevant - voice, inference, paraphrase, 
important

• Intentions, beliefs, desires (non-extensional= 
not just sets of items)
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What  requirements must meaning 
representations fulfill?

• Verifiability: The system should allow us to 
compare representations to facts in a 
Knowledge Base (KB)
• Cat(Huey)

• Ambiguity: The system should allow us to 
represent meanings unambiguously
• ‘German teachers’ has 2 representations

• Vagueness: The system should allow us to 
represent vagueness
• He lives somewhere in the south of France.
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Requirements: Canonical Form

• Inputs that mean the same thing have the same 
representation.

• Huey eats kibble.
• Kibble, Huey will eat.
• What Huey eats is kibble.
• It’s kibble that Huey eats.

• Alternatives
• Four different semantic representations
• Store all possible meaning representations in 

Knowledge Base
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Requirements: Semantic Ambiguity

• Parallel to syntactic ambiguity
• Happy [cats and dogs] live on the farm
• [Happy cats] and dogs live on the farm

• Independent of syntactic structure
• Every boy loves a dog
• “all boys love a single dog”
• “foreach boy, there is a dog he loves”
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Requirements: Inference

• Draw valid conclusions based on the meaning 
representation of inputs and its store of 
background knowledge.
Does Huey eat kibble?
thing(kibble)
Eat(Huey,x) ^ thing(x)
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Word Senses & Ambiguity

• Q: Can the basic unit of meaning rep be a 
word?

• A: No, words have different senses
• Example: go has many senses (to move, 

depart, pass, vanish, reach, extend, …)
• Senses are organized into an ontology
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Requirements: Word Senses

• Ontology
• Example: Aristotle’s classes

• substance (physical objects)
• quantity (e.g., numbers)
• quality (e.g., being red)
• Others: relation, place, time, position, state, 

action, affection
• Important: actions, events 

• Provide a structure for organizing the 
interpretation of sentences
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Requirements: Actions and Events

• We lifted the box. It was hard work.
• The pronoun it refers to the whole action 

(not just the box)
• We lifted the box. It was heavy.

• The pronoun it refers to the box
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Need some kind of logical calculus

• Not ideal as a meaning representation and 
doesn't do everything we want - but close
• Supports the determination of truth
• Supports compositionality of meaning
• Supports question-answering (via 

variables)
• Supports inference

• What are its elements?
• What else do we need?
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Logical Form Language

• Similar to first-order predicate calculus 
(FOPC)

• Constants: word senses
• Terms: constants that describe objects in the 

world
• Predicates: constants that describe relations 

or properties
• Propositions: predicate + terms
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First order predicate calculus (FOPC) 
Propositional logic:  Don’t look inside propositions:  P, Q, R, ...
First-order logic:  Look inside propositions:  p(x,y), like(J,M), ...

Constants:  John1, Sam1, ..., Chair-46, ..., 0, 1, 2, ...
Variables:  x, y, z, ....
Predicate symbols:  p, q, r, ..., like, hate, ...
Function symbols: motherOf, sumOf, ...
All the logical connectives of propositional logic.

Predicates and functions apply to a fixed number of arguments:
Predicates:  like(John1,Mary1),  hate(Mary1,George1), tall(Sue3), ...
Functions: motherOf(Sam1) = Mary1, sumOf(2,3) = 5, ...

In the expression:   3 + 2  >  4

function predicate

Predicates applied to arguments are propositions and yield True or False.
Functions applied to arguments yield entities in the domain.
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Predicates

• Fido is a dog
(DOG1 FIDO1)
unary predicate

• Sue loves Jack
(LOVES SUE1 JACK1) or LOVES(Sue, Jack)
binary predicate

• We shall place this into an event structure:
Event(Loves1  :Agent Sue1  :Patient Jack1 

Time: present)

6.863J/9.611J SP04 Lecture 17

Extension of a predicate

The semantics of a unary predicate is the set of all 
entities in the domain for which the predicate is true.

The predicate  dog the set of all dogs (in the real 
world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes 
dog-ness depend on ‘accidental’ historically 
contingent properties of the world
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Possible Worlds
Possible world:  A technical device in logic for handling
“possible”

And a very powerful tool for analyzing some concepts.

You can use them without believing in them.
Duality between possible worlds and propositions:

A proposition can be viewed as the set of all possible worlds
in which the proposition is true.

A possible world can be viewed as the set of all propositions 
that are true in it.

Add another proposition that has to be true 
Make the set of possible worlds smaller
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Possible worlds to define ‘intension’ 
of a predicate

Intension:  Map the predicate dog into a mapping from all possible 
worlds to the set of dogs in that possible world.

the predicate dog [F: possible world w the set of dogs in w

Given a predicate and a possible world, the intension will tell you 
the  set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.
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A simple semantics for sentences

• Assuming that meaning of sentence is the proposition 
p expressed by sentence

• Simply its ‘truth conditional’ content, I.e, 
p:w {0,1}  (w= ‘a possible world’)

This function (the proposition p expressed by s) may be 
viewed as:

• The truth conditions of a sentence s
• Assigning the values 0 or 1 for any given w
• Or as the set of possible worlds or situations 

where s is true 
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From syntactic structures to semantic 
structures

• We know what the structure of a simple 
subject-predicate sentence is

• We also know its meaning: the proposition of 
set of (all possible, not just actual) situations 
given by {sit | Peter sleeps in sit}

• Or: where individual denoted by “Peter” is in 
the extension of the predicate sleeps, I.e., in 
the set of all individuals that sleep
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Syntax to semantics

S

NP VP

Bob sleeps 

SLEEP(Bob)
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The master principles

• Compositionality
• In a structure like this:

• The meaning of the S is computed as the function 
application of the meaning of the VP to the meaning of the 
NP:  S*=VP*(NP*)

• Intuitively: the concept expressed by the VP is asserted of 
the object to which the NP refers

S , S*

NP, NP* VP, VP*
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The Principles

• Rule-to-rule hypothesis (Frege): semantic 
interpretation guided by syntactic structure;

For each syntactic rule, there is a corresponding rule of 
semantic interpretation

• Compositionality

We assume that the meaning of a complex expression 
is determined by the meaning of its parts
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How to execute?

• Composition as function composition, I.e., 
function application

• We’ll need a way to express this…

• Also need a way to express predicates 
generally…
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NP meanings

• If just a common noun (CN), e.g., “Bob”,  
“ice-cream”, then it’s like a constant

(i.e., picks out all the “Bobs” in the world…)

• We’ll see how to express this in a moment…
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VP meanings

• VP  - sleeps (as intransitive)
• The meaning of the VP sleeps, then, is a 

function f from an individual x into a 
proposition (or a set of situations)

f(x) =  {situation | x sleeps in situation}

How can we express this function?
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6.001 to the rescue

• The function f can be given by the λ-
expression

λx SLEEPS(x)
• When this function is applied to the argument 

‘Bob’, as usual this binds the variable x:
λx SLEEPS(x)Bob SLEEPS(Bob)
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λ Abstraction to the rescue

• SLEEPS(BOB) is composed of the VP meaning
which is the function λx SLEEPS(x), applied to
an argument, the NP meaning, which is Bob

• Execution: associate with each context-free 
rule a corresponding semantic rule
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Context-free semantics

Item or rule Semantic translation
S NP VP  S*: apply VP*(NP*)
VP sleeps VP*: λx SLEEPS(x)
NP CN NP*: λx.x
CN Bob CN*: ‘Bob’ (ie, a constant)
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It all works…

S*: apply VP*(NP*)

λx SLEEPS(x)        λx.x   ‘Bob’

λx SLEEPS(x).Bob

SLEEPS(BOB)
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OK, the next step… meaning of a 
transitive verb

• Bob likes ice-cream
• We already know the meaning of a VP likes 

sleeps, so we know the meaning of, e.g., ‘likes 
ice-cream’

• But what is the meaning of likes?
• {situation | Bob likes ice-cream in situation }
• We need a function that combines w/ ice-cream 

Goal: yield an intransitive VP meaning, as above,
• Intransitive: λx Likes-ice-cream(x)
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Transitive verb meaning

• Intransitive: λx Likes-ice-cream(x)
• λy g(y) LIKES(ice-cream)
• Lambda abstract:

λy LIKES(y) for the VP
• Replace this in Likes-ice-cream(x):

λx (λy LIKES(x, y))  or to fix order
λy λx LIKES(x, y). ice-cream . Bob 

This is the meaning of likes
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Quantifier Ambiguities

Every person loves some desert.
==>  (A p)(E i) love(p,d) i.e., chocolate cake
==> (E d)(A p) love(p,d) i.e., parfait

Most politicians in most countries can fool most of the people on most issues 
most of the time.

This has 120 possible readings, all distinct.
e.g., different issues for each country, or same issues?

different people for each issue, or same people?
Do we need to generate each separate reading?
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The solution next time…!

• But there is a lot more to do…
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What can we represent with this 
machinery?

• Is it enough?
• Is it too much?
• We have to look at natural language!

• Here are some ‘classic’ semantics and NL core 
issues
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Representing Arguments 
Jenny pushed the chair  from the living room to the dining room for Sam yesterday

Agent Theme Source Goal Benefactor TimeArg:

Could represent this like 
push(Jenny, Chair1, LR, DR, Sam, 21Jan04, ...)

Or like
push’(e) & Agent(Jenny,e) & Theme(Chair1,e) & Source(LR,e) & Goal(DR,e)

& Benefactor(Sam,e)  & atTime(e, 21Jan04)

Or like
push’(e, Jenny, Chair1) & from(e, LR) & to(e, DR) & for(e, Sam) 

& yesterday(e, ...)

from complements
from adjuncts

Equivalence of these:  (A e,x,y)[push’(e,x,y) --> Agent(x,e) & Theme(y,e)]
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Space, Time, Tense, and Manner 

John ran.
run’(e,J) & Past(e)

John ran on Tuesday.
run’(e,J) & Past(e) & onDay(e,d) & Tuesday(d)

John ran in Chicago.
run’(e,J) & Past(e) & in(e,Chicago)

John ran slowly.
run’(e,J) & slow(e)

John ran reluctantly.
run’(e,J)  &  reluctant(J,e)

tense
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Attributives 

Some attributive adjectives have an implicit comparison set or scale:

A small elephant is bigger than a big mosquito.

That mosquito is big.
mosquito(x) & big(x, s)

The implicit comparison set or scale,
which must be determined

from context
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Proper Names 

Proper names:

Could treat them as constants:  
Springfield is the capital of Illinois. capital(Springfield, Illinois)

But there are many Springfields; we could treat it as a predicate true
of any town named Springfield:

capital(x,y) & Springfield(x) & Illinois(y)

Or we could treat the name as a string, related to the entity by the 
predicate  name:

capital(x,y) & name(“Springfield”, x) & name(“Illinois”, y)
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Indexicals 
An indexical or deictic is a word or phrase that requires knowledge of

the situation of utterance for its interpretation.
“I”, “you”, “we”, “here”, “now”, some uses of “this”, “that”, ...

The property of being “I” is being the speaker of the current utterance

Indexicals require an argument for the utterance or the speech situation.

I(x,u):  x is the speaker of utterance u
you(x,u):  x is the intended hearer of utterance u
we(s,u):  s is a set of people containing the speaker of utterance u
here(x,u):  x is the place of utterance u
now(t,u):  t is the time of utterance u

Chris said, “I see you now.”
==>  say(Chris,u) & content(e,u) & see’(e,x,y) & I(x,u) & you(y,u)

& atTime(e,t) & now(t,u)

from the quotation marks
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Unreal Things
Herodotus worshipped Zeus.

(E e,h,z)
[worship’(e,h,z)  & Past(e) & Herodotus(h) & Zeus(z)]

Herodotus and the worshipping existed in the past.
Did Zeus?

John wants to build a boat.

(E e1,j,e2,b)
[want’(e1,j,e2) & Present(e1) & John(j) & build’(e2,j,b) & boat(b)]

The wanting exists; the building doesn’t (at least not yet).

Language talks about things that don’t exist, and have various 
modalities of existence.

(E e,h,z) ... has to mean “There exists in some universe of 
possible individuals” ...

Existence in the real world has to be asserted separately,
e.g., Present(e), Rexist(h)
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Another Approach

Use “operators” that scope over existence.

(E j)[WANT(j, (E e,b)[build’(e,j,b) & boat(b)] & John(j)]

Special operator that 
takes logical expression
as 2nd argument and 

blocks its evaluation to 
True or False

Exists only in John’s
wanting

This is a common approach to such modal concepts.
My view: unnecessarily complicates the logic, but 

mine is a minority view.
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Intensions vs. Extensions
The semantics of a unary predicate

is the set of all entities in the domain for which the predicate is true.

the predicate  dog ==>  the set of all dogs (in the real world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes dog-ness depend
only on possibly accidental facts about the real world.

Intension:  Map the predicate dog into a mapping from all possible worlds
to the set of dogs in that possible world.

the predicate dog [F: possible world w the set of dogs in w

Given a predicate and a possible world, the intension will tell you the 
set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.
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Knowledge and Belief
Joan knows George is tall.
Joan believes Michael is tall.

Possible world treatment of knowledge:

True(p, w1):  Proposition p is true in possible world w1
K(a, w1, w2): w2 is a world which is possible given what a knows 

in w1
(The w2’s are the worlds in which a could be, given what a knows)

(A a,p,w1)[True(Know(a,p), w1)  <--> (A w2)[K(a, w1, w2) --> True(p, w2)]]

A consequence of this is that you know all the logical consequences
of what you know, e.g., all of the truths of mathematics if you know
Peano’s axioms.

Knowledge  is  true, justified belief.
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Some Problems of Belief Contexts

My view:  Possible worlds treatment of knowledge and belief
complicate the logic too much.  
Joan believes Michael is tall  ==>  believe(j,e) & tall’(e,m)

However there are problems (with this and every other 
treatment of belief):

De re vs.  de dicto readings

Frege’s  problem of identity
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Frege’s Problem of Identy
Equals can be substituted for equals.

Joan believes the Evening Star is rising.

Evening Star = Morning Star (= Venus)

Joan believes the Morning Star is rising.

Possible solutions:

1.  Block substitution of equals for equals in belief contexts:
Then  believe  is an operator, not a predicate.
Problems with keeping track of coreference:

Joan believes the Evening Star is rising.  It is bright.

2.  They are not identical in all possible worlds; they just happen
to be identical in the real world.
Axiomatize “real-world-identical” in parallel with “=”.
A huge bother when dealing with coreference.

3. “The Evening Star” refers not to the real Evening Star, but to
something like the concept of the Evening Star 

Frege’s
solution

Probably
right
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Mutual Belief
A very important concept in dealing with language:

We understand each other because we have a huge set of shared
beliefs, and we build our utterances on this.
We describe the new information we wish to convey in terms 
of the mutual beliefs we share with our hearers.

More than “common belief” (i.e., beliefs we both have);
we have to believe we each believe the beliefs, and so on.

I believe you believe I believe Bush believes he is president.

The properties of mutual belief:
mb(s,p):  The set of agents s believes proposition p

mb(s,p) & member(a,s) --> believe(a,p)

mb(s,p) --> mb(s, mb(s, p))

These rules and the rules of logic are mutually believed.
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Properties
Joan is taller than Mary more(J, M, tall)

i.e. treat predicates as individuals that can be arguments to other predicates

But what about

Joan is a better student than Mary, but Mary is a better tennis player.
more(J,M,good-student) & more(M,J,good-tennis-player)

These can get
arbitrarily complexLambda abstraction:

λ x [(E y)[good(x) & play(x,y) & tennis(y)]]

where  [λ x p(x)](a) = p(a)

This allows us to represent arbitrarily complex predicates,
but it takes us beyond first-order logic.
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Other Uses of Properties
Opaque adjectives:

a toy car  =/=>  toy(x) & car(x)
a former president =/=>  former(x) & president(x)
a fake diamond =/=>  fake(x) & diamond(x)

More like:  toy(car)(x); former(president)(x);  fake(diamond)(x)

My notation:  toy(e) & car’(e,x)
The adjective modifies the property of the head noun, not the 

referent of the head noun.

Verb phrase ellipsis:

John called his mother, and George did too.

λ x [call’(e,x,y) & mother(y,x)]

Functional mapping
a predicate into 

another predicate
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“the” and “a”Conventional notation:

A car arrives.  ==>   (E x)[car(x) & arrive(x)]

The car arrives.  ==>  arrive( ι x [car(x)])

iota operator:  the x such that car(x)

But “the” and “a” convey information:
“the”:  the entity referred to by the NP is mutually identifiable in context via

the property conveyed by the rest of the NP.
The car is in the driveway.              Known entity

“a”:  the entity referred to by the NP is not mutually identifiable in context via
the property conveyed by the rest of the NP.

A car is in the driveway.                   New entity
John Kerry is a tall man.                   New property

My approach:  the man  the(x,e) & man’(e,x)
a man  a(x,e) & man’(e,x)

Highly idiosyncratic
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Sets and Plurals

Joan saw numerous old friends at the conference.

describes the set

describes the 
representative member

of the set

describes the 
property “friend”

Plurals require both a set and a representative or typical member of the set.

Past(e1) & see’(e, j, x) & numerous(s) & old(e) & friend’(e,x) & Plur(x,s)

Or:

(E s)[numerous(s) & (A x)[member(x,s) --> old(friend)(x,j) & see(j,x)]

the set the representative member

Lots of technical
problems
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Quantifier Ambiguities
Every person loves some desert.

==>  (A p)(E i) love(p,d) i.e., mint fudge
==> (E d)(A p) love(p,d) i.e., parfait

Most politicians in most countries can fool most of the people on most issues 
most of the time.

This has 120 possible readings, all distinct.
e.g., different issues for each country, or same issues?

different people for each issue, or same people?
Do we need to generate each separate reading?
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Monotone Decreasing Quantifiers
Quantifiers can be monotone increasing:

every man works hard  ==>  every man works
most men work hard  ==>  most men work
some men work hard  ==>  some men work

Or monotone decreasing:

few men work hard  =/=>  few men work
no men work hard  =/=>  no men work

Rather,

few men work  ==>  few men work hard
no men work  ==>  no men work hard

Make the predication
more general,

it’s still true

Make the predication
more general,

it’s not necessarily true

Make the predication
more specific,

it’s still true

To make the flat notation work, we must interpret 
Few men work

as
The men who work are few.
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Donkey Sentences

Every man who owns a donkey beats it.

(A x)[(E y)[own(x,y) & donkey(y)] --> beat(x,y)]

But this reaches 
inside scope of 

existential quantifier

Concerns of sentences like this, and how to extend quantifiers
beyond single sentences, have led to developments in 
semantics including 
Discourse Representation Theory (DRT)
Dynamic logic 



6.863J/9.611J SP04 Lecture 17

Negation
The car doesn’t work. 

~work(c) vs.   not(e) & work’(e,j)

The car almost doesn’t work.
ALMOST(~work(c)) vs.  almost(e1) & not’(e1,e) & work’(e,c)

In fact, in not(e), e is really a representative element of a set

John didn’t go to class.                  (yesterday)

To properly interpret negation, we have to figure out that set.

An operator,
not first-order
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Whew…

• That’s how hard it can get…
• Let’s go back to the simple case.
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Why: recover meaning from 
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)
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“Logical” Form

• Context-independent meaning
• Produced directly from the syntax
• Ignores the utterance context

• Example: The ball is red
• Assigning an exact (contextual) meaning 

requires knowing which ball
• Logical form an intermediate step in full 

meaning representation
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Logical Form [2]

• Includes indexical terms
• Pronouns (e.g., I, you)
• Generic NP (e.g., a ball, the ball)
• Any term whose exact denotation can only 

be determined from context
• Logical form allows compact representation of 

indexical terms
• e.g. (RED1 <THE b1 BALL>) vs.

(OR b1 b4 b12 b45 …)
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Word Senses & Ambiguity

• Q: Can the basic unit of LF be a word?
• A: No, words have different senses
• Example: go has many senses (to move, 

depart, pass, vanish, reach, extend, …)
• Senses are organized into an ontology
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Logical Form Language

• Similar to first-order predicate calculus 
(FOPC)

• Constants: word senses
• Terms: constants that describe objects in the 

world
• Predicates: constants that describe relations 

or properties
• Propositions: predicate + terms
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Predicates

• Fido is a dog
(DOG1 FIDO1)
unary predicate

• Sue loves Jack
(LOVES1 SUE1 JACK1)
binary predicate

• We shall place this into an event structure:
Event(Loves1  :Agent Sue1  :Patient Jack1 

Time: present)
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Word Senses

• Proper names: terms
JACK1

• Common nouns: unary predicates
(DOG1 <>)

• Verbs: n-ary predicates (really n?)
(BREAK1 <> <>)
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Operators

• Logical Operators
• not, or, and, if, only if, …

• Logical form supports two kinds of operators:
• as word senses (if the operator is part of 

the utterance)
• as logical operators (if the operator isn’t 

part of the utterance)
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Operators [2]

• Examples
• Jack loves Sue or Jack loves Mary

(OR1 (LOVES1 JACK1 SUE1)(LOVES1 
JACK1 MARY1))

• Jack loves Sue, Bill loves Mary
(& (LOVES1 JACK1 SUE1)(LOVES1 BILL1 
MARY1))
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Quantifiers

• FOPC: only universal and existential 
quantifiers: ∀, ∃

• English: much larger range: (Is this true?)
• all, some, most, many, a few, the, …

• Generalized Quantifiers
(<quantifier> <variable> : <restriction-
proposition>
<body-proposition>)
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Quantifiers [2]

• Most dogs bark
(MOST1 d1:(DOG1 d1)(BARKS1 d1))

• Most barking things are dogs
(MOST1 d1:(BARKS d1)(DOG1 d1))

• The dog barks
(THE x:(DOG1 x)(BARKS1 x))
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Plural Forms [2]

• Distributive reading
The dogs bark
“There is a set of dogs, and each one barks”

• Collective reading
The dogs met at the corner
“*There is a set of dogs, and each one met at 
the corner”
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Ambiguous Plurals

• Some sentences allow both collective and 
distributive readings

Two guys bought a stereo
“Each guy bought a stereo”
“The two guys bought a stereo together”

6.863J/9.611J SP04 Lecture 17

This gets complex
• John ate an ice-cream in a booth

• Event representation
• ∃e past(e), act(e,eating), eater(e,John), 

exists(ice-cream, eatee(e)), exists(booth, 
location(e))

• John ate an ice-cream in every booth
• ∃e past(e), act(e,eating), eater(e,John), 

exists(ice-cream, eatee(e)), all(booth, 
location(e)), 

∃g ice-cream(g), eatee(e,g) ∀b booth(b)⇒location(e,b)
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So this means..

• This means ∃e ∀b which means same event for every 
booth 

• False unless John can be in every booth during his 
eating of a single ice-cream

• Which order do we want?
• ∃b ∀e: “for all booths b, there was such an event in 

b”

• Figuring this out requires a notion of scope (and so, 
structure…)

• But wait, there’s more… what about all, none, …
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Beliefs, Desires and Intentions

• How do we represent internal speaker states like 
believing, knowing, wanting, assuming, imagining..?

• Not well modeled by a simple DB lookup approach
• Truth in the world vs. truth in some possible world
George imagined that he could dance.
Geroge believed that he could dance.

• Augment FOPC with special modal operators that 
take logical formulae as arguments, e.g. believe, 
know
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Intensions vs. Extensions
Last time talking about models, we said the semantics of a unary predicate

is the set of all entities in the domain for which the predicate is true.

the predicate  dog ==>  the set of all dogs (in the real world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes dog-ness depend
only on possibly accidental facts about the real world.

Intension:  Map the predicate dog into a mapping from all possible worlds
to the set of dogs in that possible world.

the prediate dog ==>  [F: possible world w ==> the set of dogs in w

Given a predicate and a possible world, the intension will tell you the 
set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.
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Intensional Arguments
• John wants a unicorn (cf., John wants an ice-cream)

• “there is a unicorn u that Willy wants”
• here the wantee is an individual entity
• “Willy wants any entity u that satisfies the unicorn predicate”
• here the wantee is a type of entity 

• Problem 
• ‘unicorn’ is defined by the set of unicorns – its extension
• BUT this set is empty
• All empty sets are equal (but some are more equal than others…)
• So, John wants a unicorn ≡ John wants a dodo 
• What’s wanted (wantee) should be intension or criteria for being a 

unicorn
• (One) solution: possible world semantics:

• Can imagine other worlds where set of unicorn ≠ set of dodos


