6.863] Natural Language Processing
Lecture 17: Scoping outthe meaning of it all,
#3

‘I (or #42)

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

. I,t}‘dministrivia:

~ T Lab 4a out April 14
Agenda:
The lambda calculus picture

Today: beyond simple VPs; properties &
database interfaces; adjectives, prepositions

Scoping ambiguities & computation

6.8631/9.611] SP04 Lecture 17

Meaning of meaning, redux

. How can we automate process of associating
semantic representations w/ expressions of
natural language?

. How can we use semantic representations to
automate drawing inferences?

6.8633/9.611] SP04 Lecture 17

‘ YVhy compositionality?
|
\

I
. a human being can understand a possibly
infinite number of sentences never heard
before (namely by constructing their meaning
from a finite set of rules and a finite set of
known lexical meanings).

. Also, a compositional account of meaning
suggests a plausible explanation of why we
perceive a connection /n meaning between
sentences that share syntactic parts

6.8631/9.611] SP04 Lecture 17

he recipe
ol

The lexical items (i.e. the words) in a sentence

give us the basic ingredients for our
representation.

Syntactic structure tells us how the semantic
contributions of the parts of a sentence are to
be joined together.

6.8633/9.611] SP04 Lecture 17

he three tasks
o

. Specify a reasonable syntax for the natural language
fragment of interest.

. Specify semantic representations for the lexical
items.

. Specify the translation of complex expressions (i.e.
phrases and sentences) compositionally - That is, we
need to systematically specify the translation of such
expressions in terms of the translation of their parts,
“parts” here referring to the substructure given to us
by the syntax.

6.8631/9.611] SP04 Lecture 17

k ‘

Pur working vocabulary
|
|

I
Formula sequence/tree of symbols v figpl,m, ALY, 3
Model something we understand natural numbers or sets
[nterpretation maps formulae into models [three plus five] =8
logical consequence A =B, iff ar =B forall ar A
6.8633/9.611] SP04 Lecture 17
B ‘ |

. Key to building logical semantic representations

. Extension of FOPC allowing us to bind variables using
operator A

. Occurrences of variables bound by 2 are
placedholders for missing information: they explicitly
mark where we should substitute the pieces we
obtain during semantic construction

. Like a programming language devoted to task of
gluing the items together for semantic rep — a
construction kit, it's the EImer’s glue

6.8631/9.611] SP04 Lecture 17

‘ 'f'he lambda operator
|

The lambda operator marks missing
information by binding variables

E.g., a lambda expression:
AX.person(x)

The prefix Ax binds the occurrence of x in
person(x)

AX.person(x) can be read as: "I am the 1-
place predicate and I'm looking for a term to
fill my argument slot”

6.8633/9.611] SP04 Lecture 17

Jj_ambda calculus
| _‘_Ghj.eJangua.g.e_a_p.LQgLammlng_langua.g.th_a_o —a’ I " Wi

single task: gluing together items to build semantic
representations

. Way of controlling substitutions
. Instructions — B and o conversion

Functional application: B conversion
AX.person(x)@bob

. The expression Ax.person(x) is the functor
. The expression bob is the argument
. The @ operator indicates functional application = a

substitution

Fill the vars in the functor by occurrences of arg bob

6.8631/9.611] SP04 Lecture 17

‘ ﬁ&— conversion does the work
|

. \
. IActual substitution is performed by p- conversion:
From:
AX.person(x)@bob
. B- conversion produces:
person(bob)

. Throw away the Ax at the start, substitute the
argument for all occurrences of x bound by Ax

6.8633/9.611] SP04 Lecture 17

hat are A terms?
o

. They are functions

A X.P(x) : function from objects to truth
values (ind to Bool)

A P.P(john) : function from predicates to
truth values

A P. & x.P(x) : function from predicates to
functions from objects to truth values...

6.8631/9.611] SP04 Lecture 17

inlling the semantic gaps...
|

John loves Mary (S)
LOVE(JOHN,MARY)

John (NP) loves Mary (VP)
JOHN LOVE(?,MARY)
loves (TV) Mary (NP)
LOVE(?,7) MARY

6.8633/9.611] SP04 Lecture 17

‘ {\woman walks
|

p
|
. First order formula 3x (WOMAN(X) A
WALK(x))

. The verb ‘walks' contributes the predicate
symbol WALK

. The determiner must contribute the quantifier
and the pattern of the quantification

. What's the lexical template pattern? Abstract
away the variables x

6.8631/9.611] SP04 Lecture 17

‘Ia woman walks’ - general
|

B
[
AP AQ.((P@x A Q@x))
. P and Q stand for missing predicate symbols
6.8631/9.611] SP04 Lecture 17
‘ ‘\ woman
& I

i a woman (NP)
A7 T APAQIAN(P@X A Q@) @Ay WOMAN(Y) >~

/

~

- a (Det) woman (Noun) e

TTT) APAQA(P@Y A Q@) Ay. WOMAN(y)

6.8631/9.611] SP04 Lecture 17

he whole S
ol

. a woman walks (S)
77 (WPAQI(P@xAQ@x) @Ly.WOMAN(Y)) @Az WALK(Z)

_\ \I
~o _ ;
i ~——--- awoman (NP) walks (VP) __.~
_ = APAQA(P@x A Q@Y @Ay. WOMAN(V)= ~ . AZWALK(2)
/, \\
! A
! 1
\ U
Mo a (Der) woman (Noun) .7

T APAQ(P@x A Q@) A WOMAN(Y)

6.8631/9.611] SP04 Lecture 17

iSeta reductions

[°N ‘ |
(APAQ.Tx(P@xAQ@x)@Ay.WOMAN(y)) @Az.WALK(Z).

AO.Ax(Ay.WOMAN (v)@x A Q@x) @Az WALK(z)

(M. WOMAN(Y) @ x AAZ.WALK(z) @x)

Iv(WOMAN(x) AWALKS(x))

6.8631/9.611] SP04 Lecture 17

Thle whole S — goal is love(bob, ice-cream)
|

|
I Bob loves ice-cream (S)
(AP P. BOB) AX Az (X. AX LOVE(z,x)) (AP P.ICE-CREAM)

Bob (NP) loves ice-cream (VP)
AP P.BOB AX Az (X. AX LOVE(z,x))

e

loves (trans verb) ice-cream (NP)
AX Az (X. AX LOVE(z,x)) AP P. ICE-CREAM

6.8633/9.611] SP04 Lecture 17

Lambda reduction
| Start with: e

o : : ;

\
(AP P. BOB) (Az (AP P.ICE-CREAM). AX LOVE(z,X))

v
(AP P. BOB) (Az (AX LfVE(z,f)-m))

r_\
(AP P. BOB) (Az LOVE(z,ice-cream))

(Az LOVE(z,ice-cream). BOB)

LOVE(BOB, ice-cream)

6.8631/9.611] SP04 Lecture 17

Il\low we can...uhm, go to town...
|

. \
| . Adjectives are properties
red: Adj: AP (Ax P(x) A red’(x))
. Prepositions are properties
in: P: Ay AP Ax (P(X) Ain'(y)(x))
. Everything is a property...!

. ...red Porsche in cambridge...

6.8633/9.611] SP04 Lecture 17

‘i...red porsche in cambridge”

D

Det N’ 2x (porsche(x) A in(cambridge)(x) A red’(x))

Adj:aP (Ax P(x) A red’(x)) N':ax (porsche(x) A in’(cambridge)(x))

| N’ porsche\PP:kP Ax (P(X) A in’(cambridge)(x))
red J/ / \

Nilporsche P:Ly AP 2x (P(X) A in'(y)(x)) NP:cambridge
porsche

What's the parse? Red (porsche in c.)

6.8631/9.611] SP04 Lecture 17

‘ Iﬁed porsche in cambridge

I
. Isn't there another parse?

. Yes: (red porsche) in cambridge

. Why doesn't this matter?

6.8633/9.611] SP04 Lecture 17

Translation to SQL — property
‘ §emantics
|

=
. Select Porsches.obj from Porsches,

locations, Red where Porsches.obj
Locations.obj AND Locations.place
‘cambridge’ AND Porsches.obj = Red.obj

. Now — let’s add 'some’, as in “some red Porsche in
cambridge”

. Some = Ax.P(x); Some(P)=yes iff 3xP(x)=yes, i.e., if
P+

6.8631/9.611] SP04 Lecture 17

‘ 'f'ranslation to SQL
|

=T
. Select Porsche.obj from Porsches,
locations, Red where Porsches.obj =
Locations.obj AND Locations.place =
‘cambridge’ AND Porsches.obj =
Red.obj having count(*)> 0

6.8633/9.611] SP04 Lecture 17

I|VIore on adjectives
|

L I |
. What's the difference?
. Red Porsche in Cambridge
. Fake Porsche in Cambridge

Is there a difference in parse now?

6.8631/9.611] SP04 Lecture 17

8

‘ @uestion answering
|
\

I
. Yes/no question: interrogate DB (not just
assert or check the fact as with a statement)

. Content question: Who loves ice-cream? is

an open proposition — which individuals make
statement true

. Need semantics for who, what, which,
how_many

6.8633/9.611] SP04 Lecture 17

&8

@uestion answering
|

. What, NP[wh]: L U. U
. Who, NP[wh]: X U A x U(x) A human(x)
- Which, Det[wh]: A P A U A x P(x) A U(x) (why

do we have the U??)

. How_many, Det[wh]: X P X U |A X P(X) A U(X) |

6.8631/9.611] SP04 Lecture 17

‘ @uestion sentence — new rules
|
\

| . Sbar: NP[wh] Aux S
. Filler: S — S-NP,
. Gaps: NP-NP,:z > e
and need a way to link fillers and gaps:
« S:azF(..z...) >S-NP,: F(...z...)

6.8633/9.611] SP04 Lecture 17

YVhat does Bob love e
|

| Sbar: AZ IOVE(Z)(boD)

NP[wh]:AU.U aux S: Az love(z)(bob)

what | wve(z)(bob)

does
NP: bob VP/NP,: love(z)

bob V: love NP/NP,: z
|

Jove |
e

6.8631/9.611] SP04 Lecture 17

B

s

Select loved from Loves where
Loves.lover = ‘bob’

Who does Bob love
Which cars does Bob love

select liked from Cars.likes where
Cars.obj = Likes.liked AND
Likes.liker = ‘bob’

Which cars does every student love

6.8633/9.611] SP04 Lecture 17

L

YVhy A calculus works
|

The process of combining two representations was perfectly uniform. We sim-
ply said which of the representations is the functor and which the argument,
whereupon combination could be carried out by applying functor to argument
and B-converting. We didn’t have to make any complicated considerations here.

The load of semantic analysis was carried by the lexicon: We used the A-calculus
to make missing information stipulations when we gave the meanings of the
words in our sentences. For this task, we had to think accurately. But we could
make our stipulations declaratively, without hacking them into the combination

Process.

6.8631/9.611] SP04 Lecture 17

[

i/Vhat you must do
|

| =
We have to locate gaps to be abstracted over in the partial formula for our lexical
item. In other words, we have to decide where to put the A-bound variables inside
our abstraction. For example when giving the representation AP.P@MARY for
the proper name ‘Mary’ we decided to stipulate a missing functor. Thus we
applied a A-abstracted variable to MARY.

We have to decide how ro arrange the A-prefixes. This is how we control in
which order the arguments have to be supplied so that they end up in the right
places after B-reduction when our abstraction is applied. For example we chose
the order AP.A(Q when we gave the representation APAQ.Tx(P@x A Q@yx) for
the indefinite determiner “a’. This means that we will first have to supply it with
the argument for the restriction of the determiner, and then with the one for the
scope.

6.8631/9.611] SP04 Lecture 17

‘\ccidental bindings (alpha reduction)
|

B

Before we can put A-calculus to use in an implementation, we still have to deal with
one rather technical point: Sometimes we have to pay a little bit of attention which
variable names we use. Suppose that the expression # in AV. is acomplex expression
containing many A operators. Now, it could happen that when we apply a functor AV. ¥
to an argument 4, some occurrence of a variable that is is free in 2 becomes bound
when we substitute it into 7 .

6.8631/9.611] SP04 Lecture 17

Xxample
BN ‘ iE!

For example when we construct the semantic representation for the verb phrase “loves
a woman’, syntactic analysis of the phrase could lead to the representation:

AP (P@)x.LOVE(y,x)) @ (AQAR.(y(Q@(v) AR@Y)) @A WOMAN (1))
B-reducing three times vields:

Ay.(AR.(Iy(WOMAN(Y) AR@y))@Ax.LOVE(y,x))

Notice that the variable y occurs A-bound as well as existentially bound in this expres-
sion. In LOVE(y,x) it is bound by Ay. while in WOMAN(y) and R it is bound by 3y.

6.8631/9.611] SP04 Lecture 17

Example — w/ problem after 1 more
“)eta reduction
|

iR |

BV OMANG) ARELOVE (s,) @)

LOVE(¥,x) has been moved inside the scope of Jy. In result, the occurence of y has
been ‘caught’ by the existential quantifier, and Ay doesn’t bind any occurence of a
variable at all any more. Now we [B-convert one last time and get:

dy-(Tv(WOoMAN(y) ALOVE(y, ¥)))

Must rename variables = o reduction

6.8631/9.611] SP04 Lecture 17

. Most work done in the lexicon

. Pattern for intransitive, transitive verbs — can
be abstracted by a ‘macro’ (eg, ‘sleep’ is like
‘walk’...)

. What about a ditransitive verb? (eg, give?)

6.8633/9.611] SP04 Lecture 17

Puzzles: Unknown vocabulary
‘ Problem
|

| | |
. Everyone is a therapist, but Cinderella isn't
. What will a logic system do?

6.8631/9.611] SP04 Lecture 17

‘ ?till some puzzles...!!
|

B

[
. Some person broke every Porsche

6.8633/9.611] SP04 Lecture 17

‘ femantic ambiguity
|

R
—
. Every student did not pass the exam (One
exam or many?)

6.8631/9.611] SP04 Lecture 17

‘ @uantifier ambiguity
1
I. VX.STUDENT(x) — —PASS(x)

2. =Vx.(STUDENT(x) — PASS(x))

1. Negation has narrow scope, det has
wide scope

2. Negation has wide scope, det has
narrow scope

6.8633/9.611] SP04 Lecture 17

‘ f‘re we done yet?
|

= |
-I Every owner of a siamese cat loves a therapist
. Three quantifiers — so, if they freely permute
. Five readings
. But... some are logically equivalent! Only 5...

6.8631/9.611] SP04 Lecture 17

ats
:

& ‘
I

Jz. THERAPIST(z) AJy.SIAMESECAT (¥) AVx.((OWNER (x) AOF(y,.x)) = LOVE(x, 2))
(A@therapist) @Lz.[(A@s_cat)hy.[(Every @Ax.[OWNER(x) A OF(y, x)]) @ Ax.LOVE(x, z)]]

6.8633/9.611] SP04 Lecture 17

ore examples

s ‘ ul
. Possibly a dog is barking

. Adverbs interact!

. But our algorithm so far is determinstic — we
get only the det wide scope reading

. Why?
. Look at the reduction enterprise...

6.8631/9.611] SP04 Lecture 17

Reduction order and scope — ‘every
‘ man loves a woman’
|

B

—
. Let every stand for

APLOVX(P(x) — Q(x))
. Let A stand for the existential. Then:
(Every @Av.MAN(v)) @((APAxP @ (Ay.LOVE(x,y))) @ (A@Aw.WOMAN(w)))

after beta reduction 1:
(Every @Av.MAN(v)) @ (Ax(A@Aw.WOMAN(w)) @ (ALy.LOVE(x,y)))

6.8633/9.611] SP04 Lecture 17

‘ YVhat is a solution?
1
. Montague: let’s raise the existential to this:
(A@Aw.WOMAN(w)) @ (Ay.(Every @ Av.MAN(v)) @ (AX.LOVE(x,Y)))
. Does this work? Why did we drag along the
ry?

6.8631/9.611] SP04 Lecture 17

‘ Fomparison
|

B

(Every @Av.MAN(v)) @ (Ax.(A@Aw.WOMAN(w)) @ (Ay.LOVE(x,Y)))
(A@Aw.WOMAN(w)) @ (Ly.(Every @ Av.MAN(v)) @ (Ax.LOVE(x, y)))

6.8633/9.611] SP04 Lecture 17

Montague’s solution (and others’
‘ folution...)
|

&
I

. Two different syntactic analyses...

. One, the familiar one

. The second: ‘A woman, every man loves her’

. This is quantifier raising (in syntax — R. May,
1977) or “quantifying in” (Montague’s phrase)

. Let's see how it works

. Consider semantics for “"Every man loves her”

. “her” = A P.P(v1)

6.8631/9.611] SP04 Lecture 17

‘ Fvery man loves her
|

B

(APLOYX.(P(x) = Q(x)) @Ay.MAN(y)) @ (ARAXR @)y.LOVE(x,y) @AP.P(v|))

Beta reduced to this...

Vx(MAN(x) — LOVE(x,v1))

Now we want to put the "a woman” in front

6.8633/9.611] SP04 Lecture 17

Fetting the scope right
|
|

Uy
|
. We have to delay processing NP ‘a woman’

until we have processed NP ‘every man’

. This lifts the existential quantifier above the
universal

6.8631/9.611] SP04 Lecture 17

his formula
ul

AOTy.(WOMAN(v) A O(v)) @ (Av Vx(MAN(x) — LOVE(x,11)))

. Beta reduces to:

Fv.(WOMAN(Y) AVX(MAN(x) — LOVE(x,y)))

6.8631/9.611] SP04 Lecture 17

Jz. THERAPIST(z) AJy.SIAMESECAT (¥) AVx.((OWNER (x) AOF(y,.x)) = LOVE(x, 2))
(A@therapist) @Lz.[(A@s_cat)hy.[(Every @Ax.[OWNER(x) A OF(y, x)]) @ Ax.LOVE(x, z)]]

6.8631/9.611] SP04 Lecture 17

fats...not!
el

Jz.THERAPIST (2) A3.SIAMESECAT (¥) AVX.((OWNER (x) AOF(y,X)) = LOVE(x,z))
(A@therapist) @1 z.[(A@s_cat)Ly.[(Every @ kx.JOWNER(x) AOF(y,x)]) @ Ax.LOVE(x, Z)]]

*VL.OWNER(x) A OF(y,x) A 3v.SIAMESECAT () — J2.THERAPIST () ALOVE(x,)

6.8631/9.611] SP04 Lecture 17

‘ readings
=
number of quantifers readings
4 14
5 42
6 132
7 429
8 1430

6.8631/9.611] SP04 Lecture 17

he picture so far
ol

N“ll

—— Syntactic Analysis | —>| Sem. Representation | |
\

Syntactic Analysis 2 ——>| Sem. Representation 2 |

6.8633/9.611] SP04 Lecture 17

ow to get readings?

‘ |
e |

A-Struct. |

- (tree rep.)

_ Solve
Syntactic Dominance [~

NL Sentence - .
Analysis Constraint

“-..._‘ .\
Solve

A-Struet, 2
(tree rep.)

6.8631/9.611] SP04 Lecture 17

‘ formulas and dominance structure
|
B]

Ve———_

\ e
—

6.8633/9.611] SP04 Lecture 17

‘ YVith lambda expressions
|

&
I

Take out shared material & convert

to a constraint graph

6.8631/9.611] SP04 Lecture 17

‘ Fonstraint graph
|

B I |

@
@ la
Every man

LOVE

6.8633/9.611] SP04 Lecture 17

Fonstraint graphs and | structures

B ‘ \I
=
. Any node that has a label in the graph must
have the same label in the A-structure.
. No two nodes that have a label in the graph
must be mapped to the same node in the A-
structure.
. Any two nodes connected with a solid edge or
a binding edge in the graph must be connected
in the same way in the A-structure.
. Whenever there is a dominance edge from a
node X to a node Y in the graph, there must be
a path from X to Y using only solid edges in the
A-structure.

6.8631/9.611] SP04 Lecture 17

The REALLY big picture — truth or

‘LFOI’\SEQUGI’ICGS
B

induces

NL | [

Semantics
Construction

—

6.8633/9.611] SP04 Lecture 17

ut what about...
e

—
. Some linguist speaks at most 2 languages

. Some linguist x is such that x speaks at most 2
languages

. There are at most 2 languages y s.t. some
linguist or other speaks those 2 languages y

L

6.8631/9.611] SP04 Lecture 17

8

nd in general
a

I
. (Every x: Person(x)) (love(x, ice-cream))

. In general, the second component love(...)
could be any predicate P (every person loves
parfait..., every person hates dentists), where
P is an arbitrary A form

. So, we really need this:

(Every x: Person(x)) P. x) and substitute P
Lambda abstract P:

AP (Every x: Person(x)) P. x)

6.8633/9.611] SP04 Lecture 17

&8

‘ Fognition as computation
|

—
. Computation manipulates formal symbols

. The symbols are represented
. The symbol manipulation is purely syntactic

. The symbol manipulation is semantically
invariant

6.8631/9.611] SP04 Lecture 17

‘ Pur general view
|
\

I
. Syntactic representations to...

. Semantic representations to...
. Conceptual representations...

6.8633/9.611] SP04 Lecture 17

‘ YVe know...

|
. What syntactic representations are

. We know much less about semantic or
conceptual representations, but...

. Assume: they are the representations and
vehicle for reasoning...

. So...must preserve what?
. Should be built up compositionally
. Why?

6.8631/9.611] SP04 Lecture 17

‘ Fompositionality, Turing, and all that
|

o | [
. Brown cow =

. Meaning(Brown) & Meaning(cow) & some
mode of composition

. Why?

. Cf: Purple cow

6.8633/9.611] SP04 Lecture 17

asy case
o

L il
. Bob sleeps
. Bob likes ice-cream

. Event: likes(Bob, ice-cream)

6.8631/9.611] SP04 Lecture 17

ard case
uh

|
[
(But the Accord was redesigned for the 2003 model year.)
The roomier, faster, and sleeker sedan’s sales stabilized last
year,falling by just 1,230 units -- a strong showing in a

market that saw combined total passenger car sales fall by
471,000 units.

6.8633/9.611] SP04 Lecture 17

‘ '||'he envelope please...
|

= |
thle(x'l ,e1&e38&e58&¢e7) & more’(e1,x1,y1,e2) & roomy’(e2,x1)
& more’(e3,x1,y1,e4) & fast'(e4,x1) & more’(e5,x1,y1,e6) & sleek’(e6,x1)
& sedan’(e7,x1) & poss(x1,z1) & sale(z1,x2) & Plur(z1,s1)
& stabilize’(e8,s1) & Past(e8) & at-time(e8,y2) & last(y2,u1) & year(y2)
& fall'(e9,s1) & by(e9,s2) & just(e6) & card’(e6,s2,1230) & unit(u2) & Plur(u2,s2)
& Appos(e8,e11) & a(e11,e10&e11) & strong’(e10,e11) & show’(e11,x3,x4)
& in(e10,m) & a(m,e12&e13) & market'(e12,m) & see’(e13,m,e14) & Past(e13)
& combine(x5,s3) & total(s3) & passenger(p) & nn(p,c) & car(c)
& nn(c,z2) & sale(z2,x6) & Plur(z2,s3)
& fall'(e14,s3) & by(e14,s4) & card(s4,471000) & unit(u3) & Plur(u3,s4)

6.8631/9.611] SP04 Lecture 17

Why: recover meaning from structure —
svnltax—directed translation

= \
/) VP(NP)dikes (Bob, ice-cream)
Bob N
T NP Wﬂeam)
‘ Vv / NP icecream
Bob ‘ WX likesK, Y) ‘ ¢
likes ice-cream
6.8631/9.611] SP04 Lecture 17
‘ H-Iow: function application
|
\

L
I

S VP(NP)dlikes (Bob ice-cream)

Bob | P/\ p= Ay.likes(y,ice-cream)

\ NP icecream
Bob ‘Mx likesg, Y) ‘ ¢
likes ice-cream

6.8631/9.611] SP04 Lecture 17

What's meaning? What's semantics —
‘ehds of the spectrum

Answer 1: whatever it is, it's mapping (translation)
between representations

And it depends on a// of the text

. Answer 2: whatever it is, our answer depends on a
much more focused task-specific question, viz.,
information extraction from texts

Perhaps call this ‘natural language engineering’

. These two ends of the spectrum have different
characteristics, and difft uses

Deep vs. Shallow?

6.8633/9.611] SP04 Lecture 17

What Counts as Understanding?
some notions

truth

. What are exact conditions under which it would be true?
. necessary + sufficient

. Equivalently, derive all its consequences
. what else must be true if we accept the statement?

. Philosophers tend to use this definition

. We understand statement if we can use it to answer
questions [very similar to above — requires reasoning]

. Easy: John ate pizza. What was eaten by John?
. Hard: White’s first move is P-Q4. Can Black checkmate?

. Constructing a procedure to get the answer is enough
6.8631/9.6111 SP04 Lecture 17

What Counts as Understanding?

Be able to translate

. Depends on target language

. English to English? bah humbug!

. English to French? reasonable

. English to Chinese? requires deeper understanding
. English to /logic? deepest

all humans are mortal = Vvx [human(x) =mortal(x)]

. Assume we have logic-manipulating rules to tell us how to
act, draw conclusions, answer questions ...

6.8633/9.611] SP04 Lecture 17

Answer 1: translation — from ‘syntactic’ rep to
‘selniantic’ rep, aka “Deep”

Mirrors the progamming language approach
When is it used?

DB Q&A (but answer 2 can be used
here...when and how?)

Text understanding: when a//the text is
relevant - voice, inference, paraphrase,
important

Intentions, beliefs, desires (non-extensional=
not just sets of items)

6.8631/9.611] SP04 Lecture 17

What requirements must meaning
representations fulfill?

b Veririability: 1he system should allow us to
compare representations to facts in a
Knowledge Base (KB)

. Cat(Huey)

. Ambiguity: The system should allow us to
represent meanings unambiguously

. ‘German teachers’ has 2 representations

. Vagueness: The system should allow us to
represent vagueness

. He lives somewhere in the south of France.

6.8633/9.611] SP04 Lecture 17

‘ Iﬁequirements: Canonical Form

I
. Inputs that mean the same thing have the same
representation.

. Huey eats kibble.
. Kibble, Huey will eat.
. What Huey eats is kibble.
. It's kibble that Huey eats.
. Alternatives
. Four different semantic representations

. Store all possible meaning representations in
Knowledge Base

6.8631/9.611] SP04 Lecture 17

8

‘ Iﬁequirements: Semantic Ambiguity
|
\

I
. Parallel to syntactic ambiguity

. Happy [cats and dogs] live on the farm

. [Happy cats] and dogs live on the farm
. Independent of syntactic structure

. Every boy loves a dog

. “all boys love a single dog”

. “foreach boy, there is a dog he loves”

6.8633/9.611] SP04 Lecture 17

&8

‘ Iﬁequirements: Inference
|
\

. Draw valid conclusions based on the meaning

representation of inputs and its store of
background knowledge.

Does Huey eat kibble?
thing(kibble)
Eat(Huey,x) ~ thing(x)

6.8631/9.611] SP04 Lecture 17

8

‘ YVord Senses & Ambiguity
|
[

Q: Can the basic unit of meaning rep be a
word?

. A: No, words have different senses

. Example: go has many senses (to move,
depart, pass, vanish, reach, extend, ...)

. Senses are organized into an ontology

6.8633/9.611] SP04 Lecture 17

&8

‘ Iﬁequirements: Word Senses
|
\

I
. Ontology

. Example: Aristotle’s classes
. substance (physical objects)
. quantity (e.g., numbers)
. quality (e.g., being red)
. Others: relation, place, time, position, state,

action, affection
. Important: actions, events

. Provide a structure for organizing the
interpretation of sentences

6.8631/9.611] SP04 Lecture 17

‘ Iﬁequirements: Actions and Events
1
. We lifted the box. It was hard work.

. The pronoun /trefers to the whole action
(not just the box)

- We lifted the box. It was heavy.
. The pronoun /trefers to the box

6.8633/9.611] SP04 Lecture 17

NeTq some kind of logical calculus
|
e

. Not ideal as a meaning representation and
doesn't do everything we want - but close

. Supports the determination of truth
. Supports compositionality of meaning

. Supports question-answering (via
variables)

. Supports inference
. What are its elements?
. What else do we need?

6.8631/9.611] SP04 Lecture 17

‘ Irogical Form Language
|

| | [
. Similar to first-order predicate calculus
(FOPC)

. Constants: word senses

. Terms: constants that describe objects in the
world

. Predicates: constants that describe relations
or properties

. Propositions: predicate + terms

6.8633/9.611] SP04 Lecture 17

First order predicate calculus (FOPC)

Propositional logic: Don'’t look inside propositions: P, Q, R, ...
| First-order logic: Look inside propositions: p(x,y), like(J,M), ...
L
| |
Constants: John1, Sam1, ..., Chair-46, ..., 0,1, 2, ...
Variables: x, Y, z,
Predicate symbols: p, q, r, ..., like, hate, ...
Function symbols: motherOf, sumOf, ...
All the logical connectives of propositional logic.

Predicates and functions apply to a fixed number of arguments:
Predicates: like(John1,Mary1), hate(Mary1,George1), tall(Sue3), ...
Functions: motherOf(Sam1) = Mary1, sumOf(2,3) =5, ...

In the expression: 3/+2 > 4

function predicate

Predicates applied to arguments are propositions and yield True or False.
Functions applied to arguments yield entities in the domain.

6.8631/9.611] SP04 Lecture 17

redicates
uf

B | [
. Fido is a dog

(DOG1 FIDO1)
unary predicate

. Sue loves Jack
(LOVES SUE1 JACK1) or LOVES(Sue, Jack)
binary predicate

. We shall place this into an event structure:

Event(Lovesl :Agent Suel :Patient Jackl
Time: present)

6.8633/9.611] SP04 Lecture 17

‘ Fxtension of a predicate
|

&
[—=
The semantics of a unary predicate is the set of all
entities in the domain for which the predicate is true.

The predicate dog —> the set of all dogs (in the real
world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes
dog-ness depend on ‘accidental’ historically
contingent properties of the world

6.8631/9.611] SP04 Lecture 17

rossible Worlds

“possible”
And a very powerful tool for analyzing some concepts.
You can use them without believing in them.

Duality between possible worlds and propositions:

A proposition can be viewed as the set of all possible worlds
in which the proposition is true.

A possible world can be viewed as the set of all propositions
that are true in it.

Add another proposition that has to be true
<> Make the set of possible worlds smaller
6.8631/9.611] SP04 Lecture 17

Possible worlds to define ‘intension’
‘ ?f a predicate
|

L
|
Intension: Map the predicate dog into a mapping from all possible
worlds to the set of dogs in that possible world.

the predicate dog > [F: possible world w - the set of dogs in w

Given a predicate and a possible world, the intension will tell you
the set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.

6.8631/9.611] SP04 Lecture 17

‘ 4\ simple semantics for sentences

I
. Assuming that meaning of sentence is the proposition
p expressed by sentence

. Simply its ‘truth conditional’ content, I.e,
p:w=> {0,1} (w= ‘a possible world’)

This function (the proposition p expressed by s) may be
viewed as:

. The truth conditions of a sentence s
. Assigning the values 0 or 1 for any given w

. Or as the set of possible worlds or situations
where sis true

6.8633/9.611] SP04 Lecture 17

From syntactic structures to semantic
‘ §tructures

I
. We know what the structure of a simple
subject-predicate sentence is

. We also know its meaning: the proposition of
set of (all possible, not just actual) situations
given by {s/t | Peter sleeps in sit;

. Or: where individual denoted by “Peter” is in
the extension of the predicate sleeps, I.e., in
the set of all individuals that sleep

6.8631/9.611] SP04 Lecture 17

?yntax to semantics
|

B —
S
/\ — > SLEEP(Bob)
NP V|P
Bo|b sleeps
6.8631/9.611] SP04 Lecture 17
‘ '||'he master principles

I

p

Co'mpositionality

. In a structure like this:

S, S*

/N

NP, NP* VP, VP*

. The meaning of the S is computed as the function

application of the meaning of the VP to the meaning of the
NP: S*=VP*(NP*)

. Intuitively: the concept expressed by the VP is asserted of

the object to which the NP refers

6.8631/9.611] SP04 Lecture 17

he Principles
ul

|
[
Rule-to-rule hypothesis (Frege): semantic
interpretation guided by syntactic structure;

For each syntactic rule, there is a corresponding rule of
semantic interpretation

Compositionality

We assume that the meaning of a complex expression
is determined by the meaning of its parts

6.8633/9.611] SP04 Lecture 17

‘ \-Iow to execute?
i |
[l
. Composition as function composition, I.e.,
function application

. We'll need a way to express this...

. Also need a way to express predicates
generally...

6.8631/9.611] SP04 Lecture 17

‘ II\IP meanings
P |
[
. If just a common noun (CN), e.g., "Bob”,
“ice-cream”, then it’s like a constant

(i.e., picks out all the “Bobs” in the world...)

. We'll see how to express this in a moment...

6.8633/9.611] SP04 Lecture 17

P meanings
a

L
I

. VP - sleeps (as intransitive)

. The meaning of the VP sleeps, then, is a
function ffrom an individual xinto a
proposition (or a set of situations)

Ax) = {situation | x sleeps in situation}

How can we express this function?

6.8631/9.611] SP04 Lecture 17

‘ ﬁi.OOl to the rescue
1
. The function fcan be given by the i-
expression
Ax SLEEPS(x)

. When this function is applied to the argument
‘Bob’, as usual this binds the variable x:

»Xx SLEEPS(x)Bob - SLEEPS(Bob)

6.8633/9.611] SP04 Lecture 17

‘ 1» Abstraction to the rescue
|

. SLEEPS(BOB) is composed of the VP meaning

which is the function Ax SLEEPS(x), applied to
an argument, the NP meaning, which is Bob

. Execution: associate with each context-free
rule a corresponding semantic rule

6.8631/9.611] SP04 Lecture 17

8

‘ Fontext-free semantics
|

\
Item or rule Semantic translation

S > NP VP S*: apply VP*(NP*)
VP >sleeps VP*: kx SLEEPS(X)
NP - CN NP*: Ax.Xx

CN = Bob CN*: '‘Bob’ (ie, a constant)

6.8633/9.611] SP04 Lecture 17

&8

i

t all works...
|

\
S*: apply VP*(NP*)
Ax SLEEPS(x) AX.X ‘Bob’

Ax SLEEPS(x).Bob

SLEEPS(BJ)B)

6.8631/9.611] SP04 Lecture 17

OK, the next step... meaning of a
‘ l'rransitive verb

|
. Bob likes ice-cream

. We already know the meaning of a VP likes
sleeps, so we know the meaning of, e.q., ‘likes
ice-cream

. But what is the meaning of likes?

. {situation | Bob likes ice-cream in situation }

. We need a function that combines w/ ice-cream
Goal: yield an intransitive VP meaning, as above,

. Intransitive: Ax Likes-ice-cream(x)

6.8633/9.611] SP04 Lecture 17

Transitive verb meaning
: ‘IW
Ay g(y) = LIKES(ice-cream)
. Lambda abstract:
Ay LIKES(y) for the VP
. Replace this in Likes-ice-cream(x):
Ax (Ay LIKES(X, y)) or to fix order
Ay Ax LIKES(X, y). ice-cream . Bob
This is the meaning of likes

6.8631/9.611] SP04 Lecture 17

Quantifier Ambiguities

Every person loves some desert.
==> (A p)(E i) love(p,d) i.e., chocolate cake
==> (E d)(A p) love(p,d) i.e., parfait

Most politicians in most countries can fool most of the people on most issues
most of the time.

This has 120 possible readings, all distinct.
e.g., different issues for each country, or same issues?
different people for each issue, or same people?
Do we need to generate each separate reading?

6.8633/9.611] SP04 Lecture 17

‘ i’he solution next time...!
|

| | |

. But there is a lot more to do...

6.8631/9.611] SP04 Lecture 17

What can we represent with this
‘ inachinery?

1
. Is it enough?
. Is it too much?
. We have to look at natural language!

. Here are some ‘classic’ semantics and NL core
issues

6.8633/9.611] SP04 Lecture 17

Eresentmg Arguments

ed the chair from the living room to the dining room for Sam yesterday

! \

Mrg | l-}gent I'neme Source Goal beneracior I'me

Je nyr

Could represent this like
push(Jenny, Chair1, LR, DR, Sam, 21Jan04, ...)

Or like
push’(e) & Agent(Jenny,e) & Theme(Chair1,e) & Source(LR,e) & Goal(DR,e)
& Benefactor(Sam,e) & atTime(e, 21Jan04)

Or like
push’(e, Jenny, Chair1) & from(e, LR) & to(e, DR) & for(e, Sam)
& yesterday(e, ...)

from complements .
from adjuncts

Equivalence of these: (A e, x,y)[push’(e,x,y) --> Agent(x,e) & Theme(y,e)]
6.8633/9.611] SP04 Lecture 17

§pace, Time, Tense, and Manner
|

k ‘
I

l John ran. r'd tense

run’(e,J) & Past(e)

John ran on Tuesday.
run’(e,J) & Past(e) & onDay(e,d) & Tuesday(d)

John ran in Chicago.
run’(e,J) & Past(e) & in(e,Chicago)

John ran slowly.
run’(e,J) & slow(e)

John ran reluctantly.
run’(e,J) & reluctant(J,e)

6.8633/9.611] SP04 Lecture 17

& ‘
I

{\ttributives
|
|

Some attributive adjectives have an implicit comparison set or scale:
A small elephant is bigger than a big mosquito.

That mosquito is big.
mosquito(x) & big(x, s)

The implicit comparison set or scale,
which must be determined
from context

6.8631/9.611] SP04 Lecture 17

PIoper Names
|

S | |
Proper names:
Could treat them as constants:
Springfield is the capital of lllinois. = capital(Springfield, Illinois)
But there are many Springfields; we could treat it as a predicate true
of any town named Springfield:
capital(x,y) & Springfield(x) & lllinois(y)
Or we could treat the name as a string, related to the entity by the
predicate name:
capital(x,y) & name(“Springfield”, x) & name(“lllinois”, y)
6.8631/9.611] SP04 Lecture 17
lndexma IS
A Iindexical or deictic is a word or phrase that requires knowledge of
L

thesituatiorof utterance for ftsnterpretatior.

» o« n o« » o« n o«

“I", “you”, “we”, “here”, “now”, some uses of “this”, “that’, ...

ulu

The property of being “I” is being the speaker of the current utterance

Indexicals require an argument for the utterance or the speech situation.

I(x,u): x is the speaker of utterance u
you(x,u): x is the intended hearer of utterance u
we(s,u): s is a set of people containing the speaker of utterance u
here(x,u): x is the place of utterance u
now(t,u): tis the time of utterance u
from the quotation marks
Chris said, “I see you now.”
==> say(Chris,u) & content(e,u) & see’(e,x,y) & I(x,u) & you(y,u)
& atTime(e,t) & now(t,u)

6.8631/9.611] SP04 Lecture 17

Unreal Things

Herodotus worshipped Zeus.

(E e,h,2)

| [worship’(e,h,z) & Past(e) & Herodotus(h) & Zeus(z)]

Herodotus and the worshipping existed in the past.
Did Zeus?

John wants to build a boat.

(E e1,j,e2,b)
[want'(e1,j,e2) & Present(e1) & John(j) & build’(e2,j,b) & boat(b)]

The wanting exists; the building doesn’t (at least not yet).

Language talks about things that don’t exist, and have various
modalities of existence.

(E e,h,z) ... has to mean “There exists in some universe of
possible individuals” ...
Existence in the real world has to be asserted separately,
e.g., Present(e), Rexist(h)
6.8631/9.611] SP04 Lecture 17

& ‘
I

{\nother Approach
|
|

Use “operators” that scope over existence.

(E)IWANT(, (E e,b)[build’(e,j,b) & boat(b)] & John(j)]

AN

Special operator that Exists only in John’s
takes logical expression wanting
as 2nd argument and
blocks its evaluation to
True or False

This is a common approach to such modal concepts.
My view: unnecessarily complicates the logic, but
mine is a minority view.

6.8631/9.611] SP04 Lecture 17

ntensions vs. Extensions

semantics of a unary predicate

the predicate dog ==> the set of all dogs (in the real world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes dog-ness depend
only on possibly accidental facts about the real world.

Intension: Map the predicate dog into a mapping from all possible worlds
to the set of dogs in that possible world.
the predicate dog > [F: possible world w - the set of dogs in w

Given a predicate and a possible world, the intension will tell you the
set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.

6.8633/9.611] SP04 Lecture 17

Joan knows George is tall.
Joam betreves Wichaet s tatt:

i(nowledge and Belief
|
|

& ‘
I

Possible world treatment of knowledge:

True(p, w1): Proposition p is true in possible world w1
K(a, w1, w2): w2 is a world which is possible given what a knows
in w1
(The w2’s are the worlds in which a could be, given what a knows)

(A a,p,w1)[True(Know(a,p), w1) <--> (A w2)[K(a, w1, w2) --> True(p, w2)]]
A consequence of this is that you know all the logical consequences
of what you know, e.g., all of the truths of mathematics if you know
Peano’s axioms.

Knowledge is true, justified belief.

6.8631/9.611] SP04 Lecture 17

‘ fome Problems of Belief Contexts
|

B | |

My view: Possible worlds treatment of knowledge and belief
complicate the logic too much.
Joan believes Michael is tall ==> believe(j,e) & tall'(e,m)

However there are problems (with this and every other
treatment of belief):

De re vs. de dicto readings

Frege’'s problem of identity

6.8633/9.611] SP04 Lecture 17

Frege’s Problem of Identy

I Equals can be substituted for equals.

L | Joan believes the Evening Star is rising.

Evening Star = Morning Star (= Venus)

- Joan believes the Morning Star is rising.

Possible solutions:

1. Block substitution of equals for equals in belief contexts:
Then believe is an operator, not a predicate.
Problems with keeping track of coreference:
Joan believes the Evening Star is rising. It is bright. Probably

2. They are not identical in all possible worlds; they just happ‘e? right

to be identical in the real world.
Axiomatize “real-world-identical” in parallel with “=".
A huge bother when dealing with coreference. Frege's

+ solution

3. “The Evening Star” refers not to the real Evening Star, but to
something like the concept of the Evening Star
6.8631/9.611] SP04 Lecture 17

iVIutuaI Belief

Alvery important concept in dealing with language:

| | We understand each other because we have a huge set of shared
beliefs, and we build our utterances on this.

We describe the new information we wish to convey in terms

of the mutual beliefs we share with our hearers.

B

More than “common belief” (i.e., beliefs we both have);
we have to believe we each believe the beliefs, and so on.

| believe you believe | believe Bush believes he is president.

The properties of mutual belief:
mb(s,p): The set of agents s believes proposition p

mb(s,p) & member(a,s) --> believe(a,p)
mb(s,p) --> mb(s, mb(s, p))

These rules and the rules of logic are mutually believed.

6.8633/9.611] SP04 Lecture 17

roperties
Jganiis taller than Mary - more(J, M, tall)
& i.e. treat predicates as individuals that can be arguments to other predicates

But what about

Joan is a better student than Mary, but Mary is a better tennis player.
- more(J,M,good-student) & more(M,J,good-tennis-player)

These can get
Lambda abstraction: arbitrarily complex
A x [(E y)[good(x) & play(x,y) & tennis(y)]]

where [A x p(x)](a) = p(a)

This allows us to represent arbitrarily complex predicates,
but it takes us beyond first-order logic.

6.8631/9.611] SP04 Lecture 17

Other Uses of Properties

I Opaque adjectives:

[| atoy car =/=> toy(X) & car(x)
a former president =/=> former(x) & president(x)
a fake diamond =/=> fake(x) & diamond(x) /

Functional mapping
a predicate into
another predicate

More like: toy(car)(x); former(president)(x); fake(diamond)(x)
My notation: toy(e) & car’(e,x)

The adjective modifies the property of the head noun, not the
referent of the head noun.

Verb phrase ellipsis:

John called his mother, and George did too.

N

A x [call'(e,x,y) & mother(y,x)]
6.8633/9.611] SP04 Lecture 17

To“mﬁ;" ang."a”

i v
A H LI AV 4 VAL +] H Lo\
I TV Al alivesST —— (= AJ[CATTAT S ATTIVETAT]
\ v
The car arrives. ==> arrive(1 x [car(x)])
X

iota operator: the x such that car(x)

But “the” and “a” convey information:
“the”: the entity referred to by the NP is mutually identifiable in context via
the property conveyed by the rest of the NP.
The car is in the driveway. «—— Known entity
“a”. the entity referred to by the NP is not mutually identifiable in context via
the property conveyed by the rest of the NP.
A caris in the driveway. «——— New entity

John Kerry is a tall man. <—— New property

My approach: the man - the(x,e) & man’(e,x)
aman > a(x,e) & man’(e,x)

Highly idiosyncratic
6.8633/9.611] SP04 Lecture 17

ets and Plurals
| ﬂls require both a set and a representative or typical member of the set.

Joan saw numerous old friends at the conference.
describes the deSC:ithi? 'thed”
representative member property ‘frien

of the set describes the set / Lots of technical

B

/problems

Past(e1) & see’(e, j, x) & numerous(s) & old(e) & friend’(e,x) & Plur(x,s)
Or:

(E s)[numerous(s) & (A x)[member(x,s) --> old(friend)(x,j) & see(j,x)]
the set the representative member

6.8633/9.611] SP04 Lecture 17

Quantifier Ambiguities

vely person loves some desert.
==> (A p)(E i) love(p,d) i.e., mint fudge

=T =T arpovernd T.€., partan

Most politicians in most countries can fool most of the people on most issues
most of the time.

This has 120 possible readings, all distinct.
e.g., different issues for each country, or same issues?
different people for each issue, or same people?
Do we need to generate each separate reading?

6.8631/9.611] SP04 Lecture 17

onotone Decreasing Quantifiers

ui\r{’!ifiers can be monotone increasing:

most men work hard ==> most men work « more general,
some men work hard ==> some men work it’s still true

Or monotone decreasing:

Make the predication
-« more general,
it's not necessarily true

few men work hard =/=> few men work
no men work hard =/=> no men work

Rather,

Make the predication
«— more specific,
it’s still true

few men work ==> few men work hard
no men work ==> no men work hard

To make the flat notation work, we must interpret
Few men work
as

The men who work are few.
6.8631/9.611] SP04 Lecture 17

‘ Ponkey Sentences
|

Every man who owns a donkey beats it.

(A X)I(E y)lown(xy) & donkey(y)] --> beat(x,y)]
* |

But this reaches
inside scope of
existential quantifier

Concerns of sentences like this, and how to extend quantifiers
beyond single sentences, have led to developments in
semantics including
Discourse Representation Theory (DRT)

Dynamic logic

6.8631/9.611] SP04 Lecture 17

egation

B ‘ | The car doesn’t work.
| | ~work(c) vs. not(e) & work’(e,j)

The car almost doesn’t work.

ALMOST(~work(c)) vs. almost(e1) & not’(e1,e) & work’(e,c)

An operator,
not first-order

In fact, in not(e), e is really a representative element of a set
John didn’t go to class. (yesterday)

To properly interpret negation, we have to figure out that set.

6.8633/9.611] SP04 Lecture 17

hew...
A

Ny
|

. That's how hard it can get...
. Let’s go back to the simple case.

6.8631/9.611] SP04 Lecture 17

B

Why: recover meaning from
stﬁctu re
|

S VP(NP)= ate (john ,icecream)

A

T NP VP= Ay.ate(y,ice-cream)
\Y%

NP ice-cream

i

ate ice-cream

John ‘ xhy.atey, x)

6.8633/9.611] SP04 Lecture 17

|

A\Y

ILogicaI” Form
|

\

. Context-independent meaning
. Produced directly from the syntax
. Ignores the utterance context

. Example: The ball is red

. Assigning an exact (contextual) meaning
requires knowing which ball

. Logical form an jntermediate step in full
meaning representation

6.8631/9.611] SP04 Lecture 17

‘ lrogical Form [2]
|

. Includes /ndexical terms
. Pronouns (e.qg., 1, you)
. Generic NP (e.q., a ball, the ball)

. Any term whose exact denotation can only
be determined from context

. Logical form allows compact representation of
indexical terms

. e.g. (RED1 <THE b1 BALL>) vs.
(OR bl b4 b12 b45 ..

6.8633/9.611] SP04 Lecture 17

‘ YVord Senses & Ambiguity
L I 1
. Q: Can the basic unit of LF be a word?

. A: No, words have different senses

. Example: go has many senses (to move,
depart, pass, vanish, reach, extend, ...)

. Senses are organized into an ontology

6.8631/9.611] SP04 Lecture 17

‘ lrogical Form Language

. Similar to first-order predicate calculus
(FOPC)

. Constants: word senses

. Terms: constants that describe objects in the
world

. Predicates: constants that describe relations
or properties

. Propositions: predicate + terms

6.8633/9.611] SP04 Lecture 17

‘ Irredicates

L I ‘
. Fido is a dog

(DOG1 FIDO1)
unary predicate

. Sue loves Jack
(LOVES1 SUE1 JACK1)
binary predicate

. We shall place this into an event structure:

Event(Lovesl :Agent Suel :Patient Jackl
Time: present)

6.8631/9.611] SP04 Lecture 17

S

ord Senses
K

Proper names: terms
JACK1

. Common nouns: unary predicates
(DOG1 <>)

. Verbs: n-ary predicates (really n?)
(BREAK1 <> <>)

6.8633/9.611] SP04 Lecture 17

perators
o

I . Logical Operators
. not, or, and, if, only If, ...
. Logical form supports two kinds of operators:
. as word senses (if the operator is part of
the utterance)

. as logical operators (if the operator isn't
part of the utterance)

6.8631/9.611] SP04 Lecture 17

8

perators [2]
o

I
. Examples

. Jack loves Sue or Jack loves Mary
(OR1 (LOVES1 JACK1 SUE1)(LOVES1
JACK1 MARY1))

. Jack loves Sue, Bill loves Mary
(& (LOVES1 JACK1 SUE1)(LOVES1 BILL1
MARY1))

6.8633/9.611] SP04 Lecture 17

&8

uantifiers
o

|
. FOPC: only universal and existential
quantifiers: Vv, 3

. English: much larger range: (Is this true?)
. all, some, most, many, a few, the, ...

. Generalized Quantifiers
(<quantifier> <variable> : <restriction-
proposition>
<body-proposition>)

6.8631/9.611] SP04 Lecture 17

8

uantifiers [2]
X

Most dogs bark
(MOST1 d1:(DOG1 d1)(BARKS1 d1))

. Most barking things are dogs

(MOST1 d1:(BARKS d1)(DOG1 d1))

. The dog barks

(THE x:(DOG1 x)(BARKS1 x))

6.8633/9.611] SP04 Lecture 17

&8

‘ Irlural Forms [2]
|

. Distributive reading

The dogs bark
“There is a set of dogs, and each one barks”

. Collective reading

The dogs met at the corner
“*There is a set of dogs, and each one met at
the corner”

6.8631/9.611] SP04 Lecture 17

‘ @mbiguous Plurals
: |
| \
. Some sentences allow both collective and
distributive readings

Two guys bought a stereo

“Each guy bought a stereo”
“The two guys bought a stereo together”

6.8633/9.611] SP04 Lecture 17

his gets complex
] hn ate an ice-cream in a booth

I “Event representation

. Je past(e), act(e,eating), eater(e,John),
exists(ice-cream, eatee(e)), exists(booth,
location(e))

. John ate an ice-cream in every booth

. de past(e), act(e,eating), eater(e,John),
exists(ice-cream, eatee(e)), all(booth,
location(e)),

3g ice-cream?g/), eatee(e,g) Vb bootf?(?a):location(e,b)

6.8631/9.611] SP04 Lecture 17

o this means..
u

. This means Je Vb which means same event for every

booth

False unless John can be in every booth during his
eating of a single ice-cream

. Which order do we want?
. 3b Ve: “for all booths b, there was such an event in

bII

Figuring this out requires a notion of scope (and so,
structure...)

But wait, there’s more... what about a/l, none, ...

6.8633/9.611] SP04 Lecture 17

‘ IFeIiefs, Desires and Intentions
|

How do we represent internal speaker states like
believing, knowing, wanting, assuming, imagining..?
. Not well modeled by a simple DB lookup approach
. Truth in the world vs. truth in some possible world
George imagined that he could dance.

Geroge believed that he could dance.

. Augment FOPC with special modal operators that

take logical formulae as arguments, e.g. believe,
know

6.8631/9.611] SP04 Lecture 17

ntensions vs. Extensions

Ll t time talking about models, we said the semantics of a unary predicate

the predicate dog ==> the set of all dogs (in the real world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes dog-ness depend
only on possibly accidental facts about the real world.

Intension: Map the predicate dog into a mapping from all possible worlds
to the set of dogs in that possible world.
the prediate dog ==> [F: possible world w ==> the set of dogs in w

Given a predicate and a possible world, the intension will tell you the
set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.

6.8633/9.611] SP04 Lecture 17

intensional Arguments
. Joh

wants a unicorn (cf., John wants an ice-cream)
+ there 1s a unicorn u that Willy wants”
. here the wantee is an individual entity
. “Willy wants any entity u that satisfies the unicorn predicate”
. here the wantee is a type of entity
Problem
‘unicorn’ is defined by the set of unicorns — its extension
BUT this set is empty
All empty sets are equal (but some are more equal than others...)
So, John wants a unicorn = John wants a dodo

What's wanted (wantee) should be intension or criteria for being a
unicorn

. (One) solution: possible world semantics:
Can imagine other worlds where set of unicorn # set of dodos

B
|

6.8631/9.611] SP04 Lecture 17

