
6.863J Natural Language Processing
Lecture 17: Scoping outthe meaning of it all,

#3

Instructor: Robert C. Berwick
berwick@ai.mit.edu

(or #42)

6.863J/9.611J SP04 Lecture 17

The Menu Bar
• Administrivia:

• Lab 4a out April 14
Agenda:

The lambda calculus picture
Today: beyond simple VPs; properties &
database interfaces; adjectives, prepositions
Scoping ambiguities & computation

6.863J/9.611J SP04 Lecture 17

Meaning of meaning, redux

• How can we automate process of associating
semantic representations w/ expressions of
natural language?

• How can we use semantic representations to
automate drawing inferences?

6.863J/9.611J SP04 Lecture 17

Why compositionality?

• a human being can understand a possibly
infinite number of sentences never heard
before (namely by constructing their meaning
from a finite set of rules and a finite set of
known lexical meanings).

• Also, a compositional account of meaning
suggests a plausible explanation of why we
perceive a connection in meaning between
sentences that share syntactic parts

6.863J/9.611J SP04 Lecture 17

The recipe

The lexical items (i.e. the words) in a sentence
give us the basic ingredients for our
representation.

Syntactic structure tells us how the semantic
contributions of the parts of a sentence are to
be joined together.

6.863J/9.611J SP04 Lecture 17

The three tasks

• Specify a reasonable syntax for the natural language
fragment of interest.

• Specify semantic representations for the lexical
items.

• Specify the translation of complex expressions (i.e.
phrases and sentences) compositionally - That is, we
need to systematically specify the translation of such
expressions in terms of the translation of their parts,
“parts” here referring to the substructure given to us
by the syntax.

6.863J/9.611J SP04 Lecture 17

Our working vocabulary

6.863J/9.611J SP04 Lecture 17

Lambda calculus & lambda terms

• Key to building logical semantic representations
• Extension of FOPC allowing us to bind variables using

operator λ
• Occurrences of variables bound by λ are

placedholders for missing information: they explicitly
mark where we should substitute the pieces we
obtain during semantic construction

• Like a programming language devoted to task of
gluing the items together for semantic rep – a
construction kit, it’s the Elmer’s glue

6.863J/9.611J SP04 Lecture 17

The lambda operator

• The lambda operator marks missing
information by binding variables

• E.g., a lambda expression:
λx.person(x)

• The prefix λx binds the occurrence of x in
person(x)

• λx.person(x) can be read as: “I am the 1-
place predicate and I’m looking for a term to
fill my argument slot”

6.863J/9.611J SP04 Lecture 17

Lambda calculus
• Glue language – a ‘programming language’ with a

single task: gluing together items to build semantic
representations

• Way of controlling substitutions
• Instructions – β and α conversion
• Functional application: β conversion

λx.person(x)@bob
• The expression λx.person(x) is the functor
• The expression bob is the argument
• The @ operator indicates functional application = a

substitution
• Fill the vars in the functor by occurrences of arg bob

6.863J/9.611J SP04 Lecture 17

β− conversion does the work

• Actual substitution is performed by β− conversion:
From:

λx.person(x)@bob
• β− conversion produces:

person(bob)
• Throw away the λx at the start, substitute the

argument for all occurrences of x bound by λx

6.863J/9.611J SP04 Lecture 17

What are λ terms?

• They are functions
• λ x.P(x) : function from objects to truth

values (ind to Bool)
• λ P.P(john) : function from predicates to

truth values
• λ P. λ x.P(x) : function from predicates to

functions from objects to truth values…

6.863J/9.611J SP04 Lecture 17

Filling the semantic gaps…

6.863J/9.611J SP04 Lecture 17

A woman walks

• First order formula ∃x (WOMAN(x) ∧
WALK(x))

• The verb ‘walks' contributes the predicate
symbol WALK

• The determiner must contribute the quantifier
and the pattern of the quantification

• What’s the lexical template pattern? Abstract
away the variables x

6.863J/9.611J SP04 Lecture 17

‘a woman walks’ - general

λP.λQ.(∃(P@x ∧ Q@x))

• P and Q stand for missing predicate symbols

6.863J/9.611J SP04 Lecture 17

A woman

6.863J/9.611J SP04 Lecture 17

The whole S

6.863J/9.611J SP04 Lecture 17

Beta reductions

6.863J/9.611J SP04 Lecture 17

The whole S – goal is love(bob, ice-cream)

Bob loves ice-cream (S)
(λP P. BOB) λX λz (X. λx LOVE(z,x)) (λP P.ICE-CREAM)

Bob (NP)
λP P.BOB

loves ice-cream (VP)
λX λz (X. λx LOVE(z,x))

loves (trans verb)
λX λz (X. λx LOVE(z,x))

ice-cream (NP)
λP P. ICE-CREAM

6.863J/9.611J SP04 Lecture 17

Lambda reduction
Start with:
(λP P. BOB) (λX λz (X. λx LOVE(z,x)) (λP P.ICE-CREAM))

(λP P. BOB) (λz (λP P.ICE-CREAM). λx LOVE(z,x))

(λP P. BOB) (λz (λx LOVE(z,x).ICE-CREAM))

(λP P. BOB) (λz LOVE(z,ice-cream))

(λz LOVE(z,ice-cream). BOB)

LOVE(BOB,ice-cream)

6.863J/9.611J SP04 Lecture 17

Now we can…uhm, go to town…

• Adjectives are properties
red: Adj: λP (λx P(x) ∧ red’(x))
• Prepositions are properties
in: P: λy λP λx (P(x) ∧ in’(y)(x))
• Everything is a property…!

• …red Porsche in cambridge…

6.863J/9.611J SP04 Lecture 17

“…red porsche in cambridge”

NP
Det N’: λx (porsche(x) ∧ in’(cambridge)(x) ∧ red’(x))

Adj:λP (λx P(x) ∧ red’(x)) N’:λx (porsche(x) ∧ in’(cambridge)(x))

N’:porsche

porsche

PP:λP λx (P(x) ∧ in’(cambridge)(x))

P:λy λP λx (P(x) ∧ in’(y)(x))N:porsche

red
NP:cambridge

What’s the parse? Red (porsche in c.)

6.863J/9.611J SP04 Lecture 17

Red porsche in cambridge

• Isn’t there another parse?
• Yes: (red porsche) in cambridge

• Why doesn’t this matter?

6.863J/9.611J SP04 Lecture 17

Translation to SQL – property
semantics

• Select Porsches.obj from Porsches,
locations, Red where Porsches.obj =
Locations.obj AND Locations.place =
‘cambridge’ AND Porsches.obj = Red.obj

• Now – let’s add ‘some’, as in “some red Porsche in
cambridge”

• Some = λx.P(x); Some(P)=yes iff ∃xP(x)=yes, i.e., if
P ≠ ∅

6.863J/9.611J SP04 Lecture 17

Translation to SQL

• Select Porsche.obj from Porsches,
locations, Red where Porsches.obj =
Locations.obj AND Locations.place =
‘cambridge’ AND Porsches.obj =
Red.obj having count(*)> 0

6.863J/9.611J SP04 Lecture 17

More on adjectives

• What’s the difference?
• Red Porsche in Cambridge
• Fake Porsche in Cambridge

• Is there a difference in parse now?

6.863J/9.611J SP04 Lecture 17

Question answering

• Yes/no question: interrogate DB (not just
assert or check the fact as with a statement)

• Content question: Who loves ice-cream? is
an open proposition – which individuals make
statement true

• Need semantics for who, what, which,
how_many

6.863J/9.611J SP04 Lecture 17

Question answering

• What, NP[wh]: λ U. U
• Who, NP[wh]: λ U λ x U(x) ∧ human(x)
• Which, Det[wh]: λ P λ U λ x P(x) ∧ U(x) (why

do we have the U??)
• How_many, Det[wh]: λ P λ U |λ x P(x) ∧ U(x) |

6.863J/9.611J SP04 Lecture 17

Question sentence – new rules

• Sbar: NP[wh] Aux S
• Filler: S → S-NPz

• Gaps: NP-NPz : z → e
• and need a way to link fillers and gaps:
• S: λz F(…z…) → S-NPz : F(…z…)

6.863J/9.611J SP04 Lecture 17

What does Bob love e

Sbar:

NP[wh]:λU.U
what

Aux
S: λz love(z)(bob)

does
S/NPz: love(z)(bob)

NP: bob VP/NPz: love(z)

V: love bob

love

NP/NPz: z

e

λz love(z)(bob)

6.863J/9.611J SP04 Lecture 17

SQL

• Select loved from Loves where
Loves.lover = ‘bob’

• Who does Bob love
• Which cars does Bob love
select liked from Cars.Likes where
Cars.obj = Likes.liked AND
Likes.liker = ‘bob’

• Which cars does every student love

6.863J/9.611J SP04 Lecture 17

Why λ calculus works

6.863J/9.611J SP04 Lecture 17

What you must do

6.863J/9.611J SP04 Lecture 17

Accidental bindings (alpha reduction)

6.863J/9.611J SP04 Lecture 17

Example

6.863J/9.611J SP04 Lecture 17

Example – w/ problem after 1 more
beta reduction

Must rename variables = α reduction

6.863J/9.611J SP04 Lecture 17

So

• Most work done in the lexicon
• Pattern for intransitive, transitive verbs – can

be abstracted by a ‘macro’ (eg, ‘sleep’ is like
‘walk’…)

• What about a ditransitive verb? (eg, give?)

6.863J/9.611J SP04 Lecture 17

Puzzles: Unknown vocabulary
problem

• Everyone is a therapist, but Cinderella isn't
• What will a logic system do?

6.863J/9.611J SP04 Lecture 17

Still some puzzles…!!

• Some person broke every Porsche

6.863J/9.611J SP04 Lecture 17

Semantic ambiguity

• Every student did not pass the exam (One
exam or many?)

6.863J/9.611J SP04 Lecture 17

Quantifier ambiguity

1. Negation has narrow scope, det has
wide scope
2. Negation has wide scope, det has
narrow scope

6.863J/9.611J SP04 Lecture 17

Are we done yet?

• Every owner of a siamese cat loves a therapist
• Three quantifiers – so, if they freely permute
• Five readings
• But… some are logically equivalent! Only 5…

6.863J/9.611J SP04 Lecture 17

Cats

6.863J/9.611J SP04 Lecture 17

More examples

• Possibly a dog is barking
• Adverbs interact!

• But our algorithm so far is determinstic – we
get only the det wide scope reading

• Why?
• Look at the reduction enterprise…

6.863J/9.611J SP04 Lecture 17

Reduction order and scope – ‘every
man loves a woman’

• Let EVERY stand for

• Let A stand for the existential. Then:

• after beta reduction 1:

6.863J/9.611J SP04 Lecture 17

What is a solution?

• Montague: let’s raise the existential to this:

• Does this work? Why did we drag along the
λ y?

6.863J/9.611J SP04 Lecture 17

Comparison

6.863J/9.611J SP04 Lecture 17

Montague’s solution (and others’
solution…)

• Two different syntactic analyses…
• One, the familiar one
• The second: ‘A woman, every man loves her’
• This is quantifier raising (in syntax – R. May,

1977) or “quantifying in” (Montague’s phrase)
• Let’s see how it works
• Consider semantics for “Every man loves her”
• “her” = λ P.P(v1)

6.863J/9.611J SP04 Lecture 17

Every man loves her

Beta reduced to this…

Now we want to put the “a woman” in front

6.863J/9.611J SP04 Lecture 17

Getting the scope right

• We have to delay processing NP ‘a woman’
until we have processed NP ‘every man’

• This lifts the existential quantifier above the
universal

6.863J/9.611J SP04 Lecture 17

This formula

• Beta reduces to:

6.863J/9.611J SP04 Lecture 17

Cats

6.863J/9.611J SP04 Lecture 17

Cats…not!

6.863J/9.611J SP04 Lecture 17

readings

number of quantifers readings

4 14

5 42

6 132

7 429

8 1430

6.863J/9.611J SP04 Lecture 17

The picture so far

6.863J/9.611J SP04 Lecture 17

How to get readings?

6.863J/9.611J SP04 Lecture 17

Formulas and dominance structure

6.863J/9.611J SP04 Lecture 17

With lambda expressions

Take out shared material & convert
to a constraint graph

6.863J/9.611J SP04 Lecture 17

Constraint graph

6.863J/9.611J SP04 Lecture 17

Constraint graphs and l structures

• Any node that has a label in the graph must
have the same label in the λ-structure.

• No two nodes that have a label in the graph
must be mapped to the same node in the λ-
structure.

• Any two nodes connected with a solid edge or
a binding edge in the graph must be connected
in the same way in the λ-structure.

• Whenever there is a dominance edge from a
node X to a node Y in the graph, there must be
a path from X to Y using only solid edges in the
λ-structure.

6.863J/9.611J SP04 Lecture 17

The REALLY big picture – truth or
consequences

6.863J/9.611J SP04 Lecture 17

But what about…

• Some linguist speaks at most 2 languages
• Some linguist x is such that x speaks at most 2

languages
• There are at most 2 languages y s.t. some

linguist or other speaks those 2 languages y

6.863J/9.611J SP04 Lecture 17

And in general

• (Every x: Person(x)) (love(x, ice-cream))
• In general, the second component love(…)

could be any predicate P (every person loves
parfait…, every person hates dentists), where
P is an arbitrary λ form

• So, we really need this:
(Every x: Person(x)) P. x) and substitute P

Lambda abstract P:
λP (Every x: Person(x)) P. x)

6.863J/9.611J SP04 Lecture 17

Cognition as computation

• Computation manipulates formal symbols
• The symbols are represented
• The symbol manipulation is purely syntactic
• The symbol manipulation is semantically

invariant

6.863J/9.611J SP04 Lecture 17

Our general view

• Syntactic representations to…
• Semantic representations to…
• Conceptual representations…

6.863J/9.611J SP04 Lecture 17

We know…

• What syntactic representations are
• We know much less about semantic or

conceptual representations, but…
• Assume: they are the representations and

vehicle for reasoning…
• So…must preserve what?
• Should be built up compositionally
• Why?

6.863J/9.611J SP04 Lecture 17

Compositionality, Turing, and all that

• Brown cow
• Meaning(Brown) & Meaning(cow) & some

mode of composition
• Why?

• Cf: Purple cow

6.863J/9.611J SP04 Lecture 17

Easy case

• Bob sleeps
• Bob likes ice-cream

• Event: likes(Bob, ice-cream)

6.863J/9.611J SP04 Lecture 17

Hard case

(But the Accord was redesigned for the 2003 model year.)

The roomier, faster, and sleeker sedan’s sales stabilized last
year,falling by just 1,230 units -- a strong showing in a
market that saw combined total passenger car sales fall by
471,000 units.

6.863J/9.611J SP04 Lecture 17

The envelope please…

the(x1,e1&e3&e5&e7) & more’(e1,x1,y1,e2) & roomy’(e2,x1)

& more’(e3,x1,y1,e4) & fast’(e4,x1) & more’(e5,x1,y1,e6) & sleek’(e6,x1)

& sedan’(e7,x1) & poss(x1,z1) & sale(z1,x2) & Plur(z1,s1)

& stabilize’(e8,s1) & Past(e8) & at-time(e8,y2) & last(y2,u1) & year(y2)

& fall’(e9,s1) & by(e9,s2) & just(e6) & card’(e6,s2,1230) & unit(u2) & Plur(u2,s2)

& Appos(e8,e11) & a(e11,e10&e11) & strong’(e10,e11) & show’(e11,x3,x4)

& in(e10,m) & a(m,e12&e13) & market’(e12,m) & see’(e13,m,e14) & Past(e13)

& combine(x5,s3) & total(s3) & passenger(p) & nn(p,c) & car(c)

& nn(c,z2) & sale(z2,x6) & Plur(z2,s3)

& fall’(e14,s3) & by(e14,s4) & card(s4,471000) & unit(u3) & Plur(u3,s4)

6.863J/9.611J SP04 Lecture 17

Why: recover meaning from structure –
syntax-directed translation

S

NP VP

V NP
Bob

likes ice-cream

= λy.likes(y, ice-cream)

VP(NP)=likes (Bob , , ice-cream)

ice-cream

Bob

λyλ x. likes(x, y)

6.863J/9.611J SP04 Lecture 17

How: function application

S

NP VP

V NP
Bob

likes ice-cream

= λy.likes(y, ice-cream)

VP(NP)=likes (Bob , , ice-cream)

ice-cream

Bob

λyλ x. likes(x, y)

6.863J/9.611J SP04 Lecture 17

What’s meaning? What’s semantics –
2 ends of the spectrum

• Answer 1: whatever it is, it’s mapping (translation)
between representations
And it depends on all of the text

• Answer 2: whatever it is, our answer depends on a
much more focused task-specific question, viz.,
information extraction from texts

• Perhaps call this ‘natural language engineering’

• These two ends of the spectrum have different
characteristics, and difft uses

• Deep vs. Shallow?

6.863J/9.611J SP04 Lecture 17

What Counts as Understanding?
some notions

• We understand statement if we know how to determine its
truth

• What are exact conditions under which it would be true?
• necessary + sufficient

• Equivalently, derive all its consequences
• what else must be true if we accept the statement?

• Philosophers tend to use this definition
• We understand statement if we can use it to answer

questions [very similar to above – requires reasoning]

• Easy: John ate pizza. What was eaten by John?
• Hard: White’s first move is P-Q4. Can Black checkmate?
• Constructing a procedure to get the answer is enough

6.863J/9.611J SP04 Lecture 17

What Counts as Understanding?

• Be able to translate
• Depends on target language
• English to English? bah humbug!

• English to French? reasonable

• English to Chinese? requires deeper understanding

• English to logic? deepest

all humans are mortal = ∀x [human(x) ⇒mortal(x)]

• Assume we have logic-manipulating rules to tell us how to
act, draw conclusions, answer questions …

6.863J/9.611J SP04 Lecture 17

Answer 1: translation – from ‘syntactic’ rep to
‘semantic’ rep, aka “Deep”

• Mirrors the progamming language approach
• When is it used?
• DB Q&A (but answer 2 can be used

here…when and how?)
• Text understanding: when all the text is

relevant - voice, inference, paraphrase,
important

• Intentions, beliefs, desires (non-extensional=
not just sets of items)

6.863J/9.611J SP04 Lecture 17

What requirements must meaning
representations fulfill?

• Verifiability: The system should allow us to
compare representations to facts in a
Knowledge Base (KB)
• Cat(Huey)

• Ambiguity: The system should allow us to
represent meanings unambiguously
• ‘German teachers’ has 2 representations

• Vagueness: The system should allow us to
represent vagueness
• He lives somewhere in the south of France.

6.863J/9.611J SP04 Lecture 17

Requirements: Canonical Form

• Inputs that mean the same thing have the same
representation.

• Huey eats kibble.
• Kibble, Huey will eat.
• What Huey eats is kibble.
• It’s kibble that Huey eats.

• Alternatives
• Four different semantic representations
• Store all possible meaning representations in

Knowledge Base

6.863J/9.611J SP04 Lecture 17

Requirements: Semantic Ambiguity

• Parallel to syntactic ambiguity
• Happy [cats and dogs] live on the farm
• [Happy cats] and dogs live on the farm

• Independent of syntactic structure
• Every boy loves a dog
• “all boys love a single dog”
• “foreach boy, there is a dog he loves”

6.863J/9.611J SP04 Lecture 17

Requirements: Inference

• Draw valid conclusions based on the meaning
representation of inputs and its store of
background knowledge.
Does Huey eat kibble?
thing(kibble)
Eat(Huey,x) ^ thing(x)

6.863J/9.611J SP04 Lecture 17

Word Senses & Ambiguity

• Q: Can the basic unit of meaning rep be a
word?

• A: No, words have different senses
• Example: go has many senses (to move,

depart, pass, vanish, reach, extend, …)
• Senses are organized into an ontology

6.863J/9.611J SP04 Lecture 17

Requirements: Word Senses

• Ontology
• Example: Aristotle’s classes

• substance (physical objects)
• quantity (e.g., numbers)
• quality (e.g., being red)
• Others: relation, place, time, position, state,

action, affection
• Important: actions, events

• Provide a structure for organizing the
interpretation of sentences

6.863J/9.611J SP04 Lecture 17

Requirements: Actions and Events

• We lifted the box. It was hard work.
• The pronoun it refers to the whole action

(not just the box)
• We lifted the box. It was heavy.

• The pronoun it refers to the box

6.863J/9.611J SP04 Lecture 17

Need some kind of logical calculus

• Not ideal as a meaning representation and
doesn't do everything we want - but close
• Supports the determination of truth
• Supports compositionality of meaning
• Supports question-answering (via

variables)
• Supports inference

• What are its elements?
• What else do we need?

6.863J/9.611J SP04 Lecture 17

Logical Form Language

• Similar to first-order predicate calculus
(FOPC)

• Constants: word senses
• Terms: constants that describe objects in the

world
• Predicates: constants that describe relations

or properties
• Propositions: predicate + terms

6.863J/9.611J SP04 Lecture 17

First order predicate calculus (FOPC)
Propositional logic: Don’t look inside propositions: P, Q, R, ...
First-order logic: Look inside propositions: p(x,y), like(J,M), ...

Constants: John1, Sam1, ..., Chair-46, ..., 0, 1, 2, ...
Variables: x, y, z,
Predicate symbols: p, q, r, ..., like, hate, ...
Function symbols: motherOf, sumOf, ...
All the logical connectives of propositional logic.

Predicates and functions apply to a fixed number of arguments:
Predicates: like(John1,Mary1), hate(Mary1,George1), tall(Sue3), ...
Functions: motherOf(Sam1) = Mary1, sumOf(2,3) = 5, ...

In the expression: 3 + 2 > 4

function predicate

Predicates applied to arguments are propositions and yield True or False.
Functions applied to arguments yield entities in the domain.

6.863J/9.611J SP04 Lecture 17

Predicates

• Fido is a dog
(DOG1 FIDO1)
unary predicate

• Sue loves Jack
(LOVES SUE1 JACK1) or LOVES(Sue, Jack)
binary predicate

• We shall place this into an event structure:
Event(Loves1 :Agent Sue1 :Patient Jack1

Time: present)

6.863J/9.611J SP04 Lecture 17

Extension of a predicate

The semantics of a unary predicate is the set of all
entities in the domain for which the predicate is true.

The predicate dog the set of all dogs (in the real
world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes
dog-ness depend on ‘accidental’ historically
contingent properties of the world

6.863J/9.611J SP04 Lecture 17

Possible Worlds
Possible world: A technical device in logic for handling
“possible”

And a very powerful tool for analyzing some concepts.

You can use them without believing in them.
Duality between possible worlds and propositions:

A proposition can be viewed as the set of all possible worlds
in which the proposition is true.

A possible world can be viewed as the set of all propositions
that are true in it.

Add another proposition that has to be true
Make the set of possible worlds smaller

6.863J/9.611J SP04 Lecture 17

Possible worlds to define ‘intension’
of a predicate

Intension: Map the predicate dog into a mapping from all possible
worlds to the set of dogs in that possible world.

the predicate dog [F: possible world w the set of dogs in w

Given a predicate and a possible world, the intension will tell you
the set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.

6.863J/9.611J SP04 Lecture 17

A simple semantics for sentences

• Assuming that meaning of sentence is the proposition
p expressed by sentence

• Simply its ‘truth conditional’ content, I.e,
p:w {0,1} (w= ‘a possible world’)

This function (the proposition p expressed by s) may be
viewed as:

• The truth conditions of a sentence s
• Assigning the values 0 or 1 for any given w
• Or as the set of possible worlds or situations

where s is true

6.863J/9.611J SP04 Lecture 17

From syntactic structures to semantic
structures

• We know what the structure of a simple
subject-predicate sentence is

• We also know its meaning: the proposition of
set of (all possible, not just actual) situations
given by {sit | Peter sleeps in sit}

• Or: where individual denoted by “Peter” is in
the extension of the predicate sleeps, I.e., in
the set of all individuals that sleep

6.863J/9.611J SP04 Lecture 17

Syntax to semantics

S

NP VP

Bob sleeps

SLEEP(Bob)

6.863J/9.611J SP04 Lecture 17

The master principles

• Compositionality
• In a structure like this:

• The meaning of the S is computed as the function
application of the meaning of the VP to the meaning of the
NP: S*=VP*(NP*)

• Intuitively: the concept expressed by the VP is asserted of
the object to which the NP refers

S , S*

NP, NP* VP, VP*

6.863J/9.611J SP04 Lecture 17

The Principles

• Rule-to-rule hypothesis (Frege): semantic
interpretation guided by syntactic structure;

For each syntactic rule, there is a corresponding rule of
semantic interpretation

• Compositionality

We assume that the meaning of a complex expression
is determined by the meaning of its parts

6.863J/9.611J SP04 Lecture 17

How to execute?

• Composition as function composition, I.e.,
function application

• We’ll need a way to express this…

• Also need a way to express predicates
generally…

6.863J/9.611J SP04 Lecture 17

NP meanings

• If just a common noun (CN), e.g., “Bob”,
“ice-cream”, then it’s like a constant

(i.e., picks out all the “Bobs” in the world…)

• We’ll see how to express this in a moment…

6.863J/9.611J SP04 Lecture 17

VP meanings

• VP - sleeps (as intransitive)
• The meaning of the VP sleeps, then, is a

function f from an individual x into a
proposition (or a set of situations)

f(x) = {situation | x sleeps in situation}

How can we express this function?

6.863J/9.611J SP04 Lecture 17

6.001 to the rescue

• The function f can be given by the λ-
expression

λx SLEEPS(x)
• When this function is applied to the argument

‘Bob’, as usual this binds the variable x:
λx SLEEPS(x)Bob SLEEPS(Bob)

6.863J/9.611J SP04 Lecture 17

λ Abstraction to the rescue

• SLEEPS(BOB) is composed of the VP meaning
which is the function λx SLEEPS(x), applied to
an argument, the NP meaning, which is Bob

• Execution: associate with each context-free
rule a corresponding semantic rule

6.863J/9.611J SP04 Lecture 17

Context-free semantics

Item or rule Semantic translation
S NP VP S*: apply VP*(NP*)
VP sleeps VP*: λx SLEEPS(x)
NP CN NP*: λx.x
CN Bob CN*: ‘Bob’ (ie, a constant)

6.863J/9.611J SP04 Lecture 17

It all works…

S*: apply VP*(NP*)

λx SLEEPS(x) λx.x ‘Bob’

λx SLEEPS(x).Bob

SLEEPS(BOB)

6.863J/9.611J SP04 Lecture 17

OK, the next step… meaning of a
transitive verb

• Bob likes ice-cream
• We already know the meaning of a VP likes

sleeps, so we know the meaning of, e.g., ‘likes
ice-cream’

• But what is the meaning of likes?
• {situation | Bob likes ice-cream in situation }
• We need a function that combines w/ ice-cream

Goal: yield an intransitive VP meaning, as above,
• Intransitive: λx Likes-ice-cream(x)

6.863J/9.611J SP04 Lecture 17

Transitive verb meaning

• Intransitive: λx Likes-ice-cream(x)
• λy g(y) LIKES(ice-cream)
• Lambda abstract:

λy LIKES(y) for the VP
• Replace this in Likes-ice-cream(x):

λx (λy LIKES(x, y)) or to fix order
λy λx LIKES(x, y). ice-cream . Bob

This is the meaning of likes

6.863J/9.611J SP04 Lecture 17

Quantifier Ambiguities

Every person loves some desert.
==> (A p)(E i) love(p,d) i.e., chocolate cake
==> (E d)(A p) love(p,d) i.e., parfait

Most politicians in most countries can fool most of the people on most issues
most of the time.

This has 120 possible readings, all distinct.
e.g., different issues for each country, or same issues?

different people for each issue, or same people?
Do we need to generate each separate reading?

6.863J/9.611J SP04 Lecture 17

The solution next time…!

• But there is a lot more to do…

6.863J/9.611J SP04 Lecture 17

What can we represent with this
machinery?

• Is it enough?
• Is it too much?
• We have to look at natural language!

• Here are some ‘classic’ semantics and NL core
issues

6.863J/9.611J SP04 Lecture 17

Representing Arguments
Jenny pushed the chair from the living room to the dining room for Sam yesterday

Agent Theme Source Goal Benefactor TimeArg:

Could represent this like
push(Jenny, Chair1, LR, DR, Sam, 21Jan04, ...)

Or like
push’(e) & Agent(Jenny,e) & Theme(Chair1,e) & Source(LR,e) & Goal(DR,e)

& Benefactor(Sam,e) & atTime(e, 21Jan04)

Or like
push’(e, Jenny, Chair1) & from(e, LR) & to(e, DR) & for(e, Sam)

& yesterday(e, ...)

from complements
from adjuncts

Equivalence of these: (A e,x,y)[push’(e,x,y) --> Agent(x,e) & Theme(y,e)]

6.863J/9.611J SP04 Lecture 17

Space, Time, Tense, and Manner

John ran.
run’(e,J) & Past(e)

John ran on Tuesday.
run’(e,J) & Past(e) & onDay(e,d) & Tuesday(d)

John ran in Chicago.
run’(e,J) & Past(e) & in(e,Chicago)

John ran slowly.
run’(e,J) & slow(e)

John ran reluctantly.
run’(e,J) & reluctant(J,e)

tense

6.863J/9.611J SP04 Lecture 17

Attributives

Some attributive adjectives have an implicit comparison set or scale:

A small elephant is bigger than a big mosquito.

That mosquito is big.
mosquito(x) & big(x, s)

The implicit comparison set or scale,
which must be determined

from context

6.863J/9.611J SP04 Lecture 17

Proper Names

Proper names:

Could treat them as constants:
Springfield is the capital of Illinois. capital(Springfield, Illinois)

But there are many Springfields; we could treat it as a predicate true
of any town named Springfield:

capital(x,y) & Springfield(x) & Illinois(y)

Or we could treat the name as a string, related to the entity by the
predicate name:

capital(x,y) & name(“Springfield”, x) & name(“Illinois”, y)

6.863J/9.611J SP04 Lecture 17

Indexicals
An indexical or deictic is a word or phrase that requires knowledge of

the situation of utterance for its interpretation.
“I”, “you”, “we”, “here”, “now”, some uses of “this”, “that”, ...

The property of being “I” is being the speaker of the current utterance

Indexicals require an argument for the utterance or the speech situation.

I(x,u): x is the speaker of utterance u
you(x,u): x is the intended hearer of utterance u
we(s,u): s is a set of people containing the speaker of utterance u
here(x,u): x is the place of utterance u
now(t,u): t is the time of utterance u

Chris said, “I see you now.”
==> say(Chris,u) & content(e,u) & see’(e,x,y) & I(x,u) & you(y,u)

& atTime(e,t) & now(t,u)

from the quotation marks

6.863J/9.611J SP04 Lecture 17

Unreal Things
Herodotus worshipped Zeus.

(E e,h,z)
[worship’(e,h,z) & Past(e) & Herodotus(h) & Zeus(z)]

Herodotus and the worshipping existed in the past.
Did Zeus?

John wants to build a boat.

(E e1,j,e2,b)
[want’(e1,j,e2) & Present(e1) & John(j) & build’(e2,j,b) & boat(b)]

The wanting exists; the building doesn’t (at least not yet).

Language talks about things that don’t exist, and have various
modalities of existence.

(E e,h,z) ... has to mean “There exists in some universe of
possible individuals” ...

Existence in the real world has to be asserted separately,
e.g., Present(e), Rexist(h)

6.863J/9.611J SP04 Lecture 17

Another Approach

Use “operators” that scope over existence.

(E j)[WANT(j, (E e,b)[build’(e,j,b) & boat(b)] & John(j)]

Special operator that
takes logical expression
as 2nd argument and

blocks its evaluation to
True or False

Exists only in John’s
wanting

This is a common approach to such modal concepts.
My view: unnecessarily complicates the logic, but

mine is a minority view.

6.863J/9.611J SP04 Lecture 17

Intensions vs. Extensions
The semantics of a unary predicate

is the set of all entities in the domain for which the predicate is true.

the predicate dog ==> the set of all dogs (in the real world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes dog-ness depend
only on possibly accidental facts about the real world.

Intension: Map the predicate dog into a mapping from all possible worlds
to the set of dogs in that possible world.

the predicate dog [F: possible world w the set of dogs in w

Given a predicate and a possible world, the intension will tell you the
set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.

6.863J/9.611J SP04 Lecture 17

Knowledge and Belief
Joan knows George is tall.
Joan believes Michael is tall.

Possible world treatment of knowledge:

True(p, w1): Proposition p is true in possible world w1
K(a, w1, w2): w2 is a world which is possible given what a knows

in w1
(The w2’s are the worlds in which a could be, given what a knows)

(A a,p,w1)[True(Know(a,p), w1) <--> (A w2)[K(a, w1, w2) --> True(p, w2)]]

A consequence of this is that you know all the logical consequences
of what you know, e.g., all of the truths of mathematics if you know
Peano’s axioms.

Knowledge is true, justified belief.

6.863J/9.611J SP04 Lecture 17

Some Problems of Belief Contexts

My view: Possible worlds treatment of knowledge and belief
complicate the logic too much.
Joan believes Michael is tall ==> believe(j,e) & tall’(e,m)

However there are problems (with this and every other
treatment of belief):

De re vs. de dicto readings

Frege’s problem of identity

6.863J/9.611J SP04 Lecture 17

Frege’s Problem of Identy
Equals can be substituted for equals.

Joan believes the Evening Star is rising.

Evening Star = Morning Star (= Venus)

Joan believes the Morning Star is rising.

Possible solutions:

1. Block substitution of equals for equals in belief contexts:
Then believe is an operator, not a predicate.
Problems with keeping track of coreference:

Joan believes the Evening Star is rising. It is bright.

2. They are not identical in all possible worlds; they just happen
to be identical in the real world.
Axiomatize “real-world-identical” in parallel with “=”.
A huge bother when dealing with coreference.

3. “The Evening Star” refers not to the real Evening Star, but to
something like the concept of the Evening Star

Frege’s
solution

Probably
right

6.863J/9.611J SP04 Lecture 17

Mutual Belief
A very important concept in dealing with language:

We understand each other because we have a huge set of shared
beliefs, and we build our utterances on this.
We describe the new information we wish to convey in terms
of the mutual beliefs we share with our hearers.

More than “common belief” (i.e., beliefs we both have);
we have to believe we each believe the beliefs, and so on.

I believe you believe I believe Bush believes he is president.

The properties of mutual belief:
mb(s,p): The set of agents s believes proposition p

mb(s,p) & member(a,s) --> believe(a,p)

mb(s,p) --> mb(s, mb(s, p))

These rules and the rules of logic are mutually believed.

6.863J/9.611J SP04 Lecture 17

Properties
Joan is taller than Mary more(J, M, tall)

i.e. treat predicates as individuals that can be arguments to other predicates

But what about

Joan is a better student than Mary, but Mary is a better tennis player.
more(J,M,good-student) & more(M,J,good-tennis-player)

These can get
arbitrarily complexLambda abstraction:

λ x [(E y)[good(x) & play(x,y) & tennis(y)]]

where [λ x p(x)](a) = p(a)

This allows us to represent arbitrarily complex predicates,
but it takes us beyond first-order logic.

6.863J/9.611J SP04 Lecture 17

Other Uses of Properties
Opaque adjectives:

a toy car =/=> toy(x) & car(x)
a former president =/=> former(x) & president(x)
a fake diamond =/=> fake(x) & diamond(x)

More like: toy(car)(x); former(president)(x); fake(diamond)(x)

My notation: toy(e) & car’(e,x)
The adjective modifies the property of the head noun, not the

referent of the head noun.

Verb phrase ellipsis:

John called his mother, and George did too.

λ x [call’(e,x,y) & mother(y,x)]

Functional mapping
a predicate into

another predicate

6.863J/9.611J SP04 Lecture 17

“the” and “a”Conventional notation:

A car arrives. ==> (E x)[car(x) & arrive(x)]

The car arrives. ==> arrive(ι x [car(x)])

iota operator: the x such that car(x)

But “the” and “a” convey information:
“the”: the entity referred to by the NP is mutually identifiable in context via

the property conveyed by the rest of the NP.
The car is in the driveway. Known entity

“a”: the entity referred to by the NP is not mutually identifiable in context via
the property conveyed by the rest of the NP.

A car is in the driveway. New entity
John Kerry is a tall man. New property

My approach: the man the(x,e) & man’(e,x)
a man a(x,e) & man’(e,x)

Highly idiosyncratic

6.863J/9.611J SP04 Lecture 17

Sets and Plurals

Joan saw numerous old friends at the conference.

describes the set

describes the
representative member

of the set

describes the
property “friend”

Plurals require both a set and a representative or typical member of the set.

Past(e1) & see’(e, j, x) & numerous(s) & old(e) & friend’(e,x) & Plur(x,s)

Or:

(E s)[numerous(s) & (A x)[member(x,s) --> old(friend)(x,j) & see(j,x)]

the set the representative member

Lots of technical
problems

6.863J/9.611J SP04 Lecture 17

Quantifier Ambiguities
Every person loves some desert.

==> (A p)(E i) love(p,d) i.e., mint fudge
==> (E d)(A p) love(p,d) i.e., parfait

Most politicians in most countries can fool most of the people on most issues
most of the time.

This has 120 possible readings, all distinct.
e.g., different issues for each country, or same issues?

different people for each issue, or same people?
Do we need to generate each separate reading?

6.863J/9.611J SP04 Lecture 17

Monotone Decreasing Quantifiers
Quantifiers can be monotone increasing:

every man works hard ==> every man works
most men work hard ==> most men work
some men work hard ==> some men work

Or monotone decreasing:

few men work hard =/=> few men work
no men work hard =/=> no men work

Rather,

few men work ==> few men work hard
no men work ==> no men work hard

Make the predication
more general,

it’s still true

Make the predication
more general,

it’s not necessarily true

Make the predication
more specific,

it’s still true

To make the flat notation work, we must interpret
Few men work

as
The men who work are few.

6.863J/9.611J SP04 Lecture 17

Donkey Sentences

Every man who owns a donkey beats it.

(A x)[(E y)[own(x,y) & donkey(y)] --> beat(x,y)]

But this reaches
inside scope of

existential quantifier

Concerns of sentences like this, and how to extend quantifiers
beyond single sentences, have led to developments in
semantics including
Discourse Representation Theory (DRT)
Dynamic logic

6.863J/9.611J SP04 Lecture 17

Negation
The car doesn’t work.

~work(c) vs. not(e) & work’(e,j)

The car almost doesn’t work.
ALMOST(~work(c)) vs. almost(e1) & not’(e1,e) & work’(e,c)

In fact, in not(e), e is really a representative element of a set

John didn’t go to class. (yesterday)

To properly interpret negation, we have to figure out that set.

An operator,
not first-order

6.863J/9.611J SP04 Lecture 17

Whew…

• That’s how hard it can get…
• Let’s go back to the simple case.

6.863J/9.611J SP04 Lecture 17

Why: recover meaning from
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)

6.863J/9.611J SP04 Lecture 17

“Logical” Form

• Context-independent meaning
• Produced directly from the syntax
• Ignores the utterance context

• Example: The ball is red
• Assigning an exact (contextual) meaning

requires knowing which ball
• Logical form an intermediate step in full

meaning representation

6.863J/9.611J SP04 Lecture 17

Logical Form [2]

• Includes indexical terms
• Pronouns (e.g., I, you)
• Generic NP (e.g., a ball, the ball)
• Any term whose exact denotation can only

be determined from context
• Logical form allows compact representation of

indexical terms
• e.g. (RED1 <THE b1 BALL>) vs.

(OR b1 b4 b12 b45 …)

6.863J/9.611J SP04 Lecture 17

Word Senses & Ambiguity

• Q: Can the basic unit of LF be a word?
• A: No, words have different senses
• Example: go has many senses (to move,

depart, pass, vanish, reach, extend, …)
• Senses are organized into an ontology

6.863J/9.611J SP04 Lecture 17

Logical Form Language

• Similar to first-order predicate calculus
(FOPC)

• Constants: word senses
• Terms: constants that describe objects in the

world
• Predicates: constants that describe relations

or properties
• Propositions: predicate + terms

6.863J/9.611J SP04 Lecture 17

Predicates

• Fido is a dog
(DOG1 FIDO1)
unary predicate

• Sue loves Jack
(LOVES1 SUE1 JACK1)
binary predicate

• We shall place this into an event structure:
Event(Loves1 :Agent Sue1 :Patient Jack1

Time: present)

6.863J/9.611J SP04 Lecture 17

Word Senses

• Proper names: terms
JACK1

• Common nouns: unary predicates
(DOG1 <>)

• Verbs: n-ary predicates (really n?)
(BREAK1 <> <>)

6.863J/9.611J SP04 Lecture 17

Operators

• Logical Operators
• not, or, and, if, only if, …

• Logical form supports two kinds of operators:
• as word senses (if the operator is part of

the utterance)
• as logical operators (if the operator isn’t

part of the utterance)

6.863J/9.611J SP04 Lecture 17

Operators [2]

• Examples
• Jack loves Sue or Jack loves Mary

(OR1 (LOVES1 JACK1 SUE1)(LOVES1
JACK1 MARY1))

• Jack loves Sue, Bill loves Mary
(& (LOVES1 JACK1 SUE1)(LOVES1 BILL1
MARY1))

6.863J/9.611J SP04 Lecture 17

Quantifiers

• FOPC: only universal and existential
quantifiers: ∀, ∃

• English: much larger range: (Is this true?)
• all, some, most, many, a few, the, …

• Generalized Quantifiers
(<quantifier> <variable> : <restriction-
proposition>
<body-proposition>)

6.863J/9.611J SP04 Lecture 17

Quantifiers [2]

• Most dogs bark
(MOST1 d1:(DOG1 d1)(BARKS1 d1))

• Most barking things are dogs
(MOST1 d1:(BARKS d1)(DOG1 d1))

• The dog barks
(THE x:(DOG1 x)(BARKS1 x))

6.863J/9.611J SP04 Lecture 17

Plural Forms [2]

• Distributive reading
The dogs bark
“There is a set of dogs, and each one barks”

• Collective reading
The dogs met at the corner
“*There is a set of dogs, and each one met at
the corner”

6.863J/9.611J SP04 Lecture 17

Ambiguous Plurals

• Some sentences allow both collective and
distributive readings

Two guys bought a stereo
“Each guy bought a stereo”
“The two guys bought a stereo together”

6.863J/9.611J SP04 Lecture 17

This gets complex
• John ate an ice-cream in a booth

• Event representation
• ∃e past(e), act(e,eating), eater(e,John),

exists(ice-cream, eatee(e)), exists(booth,
location(e))

• John ate an ice-cream in every booth
• ∃e past(e), act(e,eating), eater(e,John),

exists(ice-cream, eatee(e)), all(booth,
location(e)),

∃g ice-cream(g), eatee(e,g) ∀b booth(b)⇒location(e,b)

6.863J/9.611J SP04 Lecture 17

So this means..

• This means ∃e ∀b which means same event for every
booth

• False unless John can be in every booth during his
eating of a single ice-cream

• Which order do we want?
• ∃b ∀e: “for all booths b, there was such an event in

b”

• Figuring this out requires a notion of scope (and so,
structure…)

• But wait, there’s more… what about all, none, …

6.863J/9.611J SP04 Lecture 17

Beliefs, Desires and Intentions

• How do we represent internal speaker states like
believing, knowing, wanting, assuming, imagining..?

• Not well modeled by a simple DB lookup approach
• Truth in the world vs. truth in some possible world
George imagined that he could dance.
Geroge believed that he could dance.

• Augment FOPC with special modal operators that
take logical formulae as arguments, e.g. believe,
know

6.863J/9.611J SP04 Lecture 17

Intensions vs. Extensions
Last time talking about models, we said the semantics of a unary predicate

is the set of all entities in the domain for which the predicate is true.

the predicate dog ==> the set of all dogs (in the real world)

This is the extension of the predicate dog.

That leaves out possible dogs, future dogs, etc.; makes dog-ness depend
only on possibly accidental facts about the real world.

Intension: Map the predicate dog into a mapping from all possible worlds
to the set of dogs in that possible world.

the prediate dog ==> [F: possible world w ==> the set of dogs in w

Given a predicate and a possible world, the intension will tell you the
set of things that satisfy that predicate in that world.

Intension does a better job of capturing the essence of the concept.

6.863J/9.611J SP04 Lecture 17

Intensional Arguments
• John wants a unicorn (cf., John wants an ice-cream)

• “there is a unicorn u that Willy wants”
• here the wantee is an individual entity
• “Willy wants any entity u that satisfies the unicorn predicate”
• here the wantee is a type of entity

• Problem
• ‘unicorn’ is defined by the set of unicorns – its extension
• BUT this set is empty
• All empty sets are equal (but some are more equal than others…)
• So, John wants a unicorn ≡ John wants a dodo
• What’s wanted (wantee) should be intension or criteria for being a

unicorn
• (One) solution: possible world semantics:

• Can imagine other worlds where set of unicorn ≠ set of dodos

