6.863J Natural Language Processing Lecture 18: the meaning of it all, \#4
 (or \#42)

Instructor: Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

Administrivia:
Lab 4a out April 14 - last lab before final project
Agenda:
Scoping ambiguities \& computation - solutions
Quantifier raising (QR)
Cooper storage
Keller storage
"Hole" semantics
Prelude to discourse representation theory

Montague's approach (\& other current linguistic theory)

- Rule of Quantifier raising - like moving other phrases
- Landing site in position at head of Sbar (function or operator position)
- Combine with indexed pronoun (alternatively: empty element or trace) instead of quantifying NP
- When placeholder has moved high enough in tree to give the scope we need, replace by quantifying NP

Why do we have to solve this?

- Readings aren't always logically independent
- Direct construction doesn't give us the right ambiguities
- Example (demo):
every customer in a restaurant eats a big kahuna burger
- forall A ((exists B (restaurant(B) \& in $(A, B))$ \& customer $(A))$-> exists C ((big(C) \& (kahuna(C) \& burger(C))) \& eat(A,C))) ((big(C) \& (kahuna(C) \& burger(C))) \& eat(A,C)))
forall $A((i n(A, B) \&$ customer $(A))>$ exists C (restaurant $(C) \&$ exists D ((big(D) \& (kahuna(D) \& burger(D))) \& eat(A,D))))
forall $A((i n(A, B) \&$ customer $(A))>$ exists C (restaurant(C) \& exists D ((big(D) \& (kahuna(D) \& burger(D))) \& eat(A,D))))
forall $A((i n(A, B) \&$ customer $(A))>$ exists $C((\operatorname{big}(C) \&(k a h u n a(C) \&$ burger(C))) \& exists D (restaurant(D) \& eat(A,C))))
exists $A((\operatorname{big}(A) \&(k a h u n a(A) \&$ burger(A))) \& forall B ((exists C (restaurant(C) \& in(B,C)) \& customer(B)) > eat(B,A)))
exists A (restaurant (A) \& forall $B((i n(B, A) \&$ customer $(B))>$ exists C ((big(C) \& (kahuna(C) \& burger(C))) \& eat(B,C))))
exists $A((\operatorname{big}(A) \&(k a h u n a(A) \&$ burger(A)) \& forall B ((in(B,C) \& customer $(B))>$ exists $D($ restaurant $(D) \&$ eat($B, A)))$)
exists A (restaurant(A) \& exists $B((\operatorname{big}(B) \&(k a h u n a(B) \&$ burger(B))) \& forall C ((in(C,A) \& customer(C)) > eat(C,B))))

9. exists $A((\operatorname{big}(A) \&(k a h u n a(A) \& b u r g e r(A))) \&$ exists B (restaurant(B) \&

- Quantified Noun phrases can repackage the information that the store contains
More precisely: Storage (Cooper) If the store $<\phi,(\beta, j), \ldots,\left(\beta^{\prime}, k\right)>$ is a semantic representation for a quantified NP, then the store $<\lambda$ P.P@ $z_{i}, \phi,(\beta, j), \ldots\left(\beta^{\prime}, k\right)>$ where i is some unique index, is also a rep for that NP

- Every person loves a woman

- Want the ordinary scoped representation
- How do we get this?
- Remove one of the indexed binding operators from the store
- Combine it with the core representation
- Result is a new core representation
- Continue until store has just one element
- Retrieval:
- Let $\sigma 1$ and $\sigma 2$ be (possibly empty) sequences of binding operators
- If the store $<\phi, \sigma 1,(\beta, i), \sigma 2>$ is associated with an expression of category S , then the store
$<\beta @ \lambda z_{\mathrm{i}} \cdot \phi, \sigma 1, \sigma 2>$ is also associated with this expression
Informally: pull out the indexed QP and apply

Are we ok?

- Cooper storage gives a lot of freedom
- Quantifiers retrieved in any order
- The only constraint is the use of co-indexed variables
- Is this too much rope?

Mia knows every owner of a hash bar

Nested NPs cause a problem

- Store:
$<K n o w(M i a, z 2),(\lambda P . \forall y(o w n e r(y) \& O f(y, z 1) \rightarrow P @ y), 2)$, ($\lambda \mathrm{Q} . \exists \mathrm{x}(\mathrm{hashbar}(\mathrm{x}) \& \mathrm{Q} @ a), 1)>$
- Pull 2:
$<\forall y(o w n e r(y) \& O f(y, z 1) \rightarrow K n o w(M i a, y))$, $\lambda \mathrm{Q} . \exists \mathrm{x}(\mathrm{hashbar(x)} \mathrm{\& Q@a),1)>}$
$<\exists x($ hashbar $(x) \& \forall y($ owner $(y) \& O f(y, x) \rightarrow K n o w(M i a, y)))>$
- Pull 1:
$<\exists x($ hashbar(x)\&Know(Mia,z2)),
(λ P. $\forall y($ owner(y)\&Of(y,z1) $\rightarrow P @ y), 2)>$
$<\forall y($ owner $(y) \& O f(y, \underline{z}) \rightarrow \exists x($ hashbar $(x) \& K n o w(M i a, y)))>$
???????

What to do?

- Allow stores to contain other stores
- Nesting structure of stores automatically tracks nesting of NPs
- Easy to implement (akin to some linguistic solutions: can't move NP 'too far')
- Keller storage: If the (nested) store $\langle\phi, \sigma\rangle$ is an interpretation for an NP, then the (nested) store $<\lambda$ P. $\mathrm{P@z}_{\mathrm{i} 1}(<\phi, \sigma>, i)$, for some unique index i, is also an interpretation for this NP

Retrieval with nested storage

- The new retrieval rule:

Let $\sigma, \sigma 1, \sigma 2$, be (possibly empty) sequences of binding operators
If the (nested) store $<\phi, \sigma 1,(<\beta, \sigma>, i), \sigma 2>$ is an interpretation for an expression of category S, then $<\beta @ \lambda z_{i} \cdot \phi, \sigma 1, \sigma, \sigma 2>$ is too

- Ensures that any operators stored while processing β become accessible for retrieval only after β itself has been retrieved
- Overcomes problem with generating free variable readings

Basic message

- Pushing quantifier on store is nondeterministic choice
- Use nested stores to deal with complex NPs

Quantifier store conclusions

- Original version isn't sufficiently constrained
- Causes spurious readings (in fact, logical nonsense)
- Cure: nested stores - only trivial changes to Cooper store
- Is it enough? Consider:

One criminal knows every owner of a hash bar

Problem

- Storage lets us represent possible combinations compactly, and gets 5 readings for this but...
- Doesn't let us force 'every owner' outscope 'a hash bar' while leaving subj-obj relation intact
- How do we add other constraints like this?
- Solution: underspecified constraint system - add constraints... how?
- What about negation? Storage doesn't handle this!

- Constraint satisfaction method

Every boxer loves a woman - UF:

$\exists \mathrm{l}_{1} \exists \mathrm{l}_{2} \exists \mathrm{v}_{1}\left(\mathrm{l}_{1}: \operatorname{ALL}\left(\mathrm{v}_{1}, \mathrm{l}_{2}\right) \wedge \exists \mathrm{l}_{3} \exists \mathrm{~h}_{1}\left(\mathrm{l}_{2}: \operatorname{IMP}\left(\mathrm{l}_{3}, \mathrm{~h}_{1}\right) \wedge \mathrm{l}_{3}: \operatorname{BOXER}\left(\mathrm{v}_{1}\right) \wedge\right.\right.$ $\exists \mathrm{l}_{4} \exists \mathrm{l}_{5} \exists \mathrm{v}_{2}\left(\mathrm{l}_{4}: \operatorname{SOME}\left(\mathrm{v}_{2}, \mathrm{l}_{5}\right) \wedge \exists \mathrm{l}_{6} \exists \mathrm{~h}_{2}\left(\mathrm{l}_{5}: \operatorname{AND}\left(\mathrm{l}_{6}, \mathrm{~h}_{2}\right) \wedge \mathrm{l}_{6}:\right.\right.$ WOMAN $\left(\mathrm{v}_{2}\right) \wedge$ $\left.\left.\left.\left.\exists \mathrm{l}_{7}\left(\mathrm{l}_{7}: \operatorname{LOVE}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \wedge \mathrm{l}_{7} \leq \mathrm{h}_{1} \wedge \mathrm{l}_{7} \leq \mathrm{h}_{2} \wedge \exists \mathrm{~h}_{0}\left(\mathrm{l}_{1} \leq \mathrm{h}_{0} \wedge \mathrm{l}_{4} \leq \mathrm{h}_{0}\right)\right)\right)\right)\right)\right)$

Basic UFs are defined as follows:

1. If l is a label, and h is a hole, then $\mathrm{l} \leq \mathrm{h}$ is a basic UF;
2. If 1 is a label, and n and n^{\prime} are nodes, then $l: \operatorname{NOT}(n), l: I M P\left(n, n^{\prime}\right)$, $1: \operatorname{AND}\left(\mathrm{n}, \mathrm{n}^{\prime}\right), \mathrm{l}: \mathrm{OR}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ are basic UFs;
3. If I is a label, t and t^{\prime} are terms, then $\mathrm{l}: \mathrm{EQ}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ is a basic UF ;
4. If l is a label, S is a symbol in the SRL language with arity n , and t_{1} $\ldots \mathrm{t}_{n}$ are terms, then $\mathrm{l}: \mathrm{S}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n}$) is a basic UF.
5. If l is a label, v a metavariable, and n a hole or label, then $\mathrm{l}: \operatorname{some}(\mathrm{v}, \mathrm{n})$ and $1: \operatorname{ALL}(\mathrm{v}, \mathrm{n})$ are basic UFs.
6. Nothing else is a basic UF.

Basic UFs are defined as follows:

1. If l is a label, and h is a hole, then $\mathrm{l} \leq \mathrm{h}$ is a basic UF ;
2. If 1 is a label, and n and n^{\prime} are nodes, then $l: \operatorname{NOT}(n), \operatorname{limp}\left(n, n^{\prime}\right)$, $1: \operatorname{AND}\left(n, n^{\prime}\right), l: O R\left(n, n^{\prime}\right)$ are basic UFs;
3. If l is a label, t and t^{\prime} are terms, then $\mathrm{l}: \mathrm{EQ}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ is a basic UF ;
4. If I is a label, S is a symbol in the SRL language with arity n , and t_{1} $\ldots \mathrm{t}_{n}$ are terms, then $\left.\mathrm{l}: \mathrm{S}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ is a basic UF.
5. If l is a label, v a metavariable, and n a hole or label, then l: $\operatorname{Some}(\mathrm{v}, \mathrm{n})$ and $\mathrm{l}: \mathrm{ALL}(\mathrm{v}, \mathrm{n})$ are basic UFs.
6. Nothing else is a basic UF.

7. If ϕ is a UF, and n is a node then $\exists \mathrm{n} \phi$ is a UF;
8. If ϕ is a UF, and v is a meta-variable then $\exists v \phi$ is a UF;
9. If ϕ and ψ are UFs, then $(\phi \wedge \psi)$ is a UF;
10. Nothing else is a UF.

Why underspecify?

- One criminal knows the owner of every hash bar
- What do storage methods do?
- What does UF do? (or rather, can do)?

