
6.863J Natural Language Processing
Lecture 18: the meaning of it all, #4

Instructor: Robert C. Berwick
berwick@ai.mit.edu

(or #42)

6.863J/9.611J SP04 Lecture 18

The Menu Bar
• Administrivia:

• Lab 4a out April 14 – last lab before final
project

Agenda:
Scoping ambiguities & computation - solutions
Quantifier raising (QR)
Cooper storage
Keller storage
“Hole” semantics
Prelude to discourse representation theory

6.863J/9.611J SP04 Lecture 18

Montague’s approach (& other
current linguistic theory)

• Rule of Quantifier raising – like moving other
phrases

• Landing site in position at head of Sbar (function
or operator position)

• Combine with indexed pronoun (alternatively:
empty element or trace) instead of quantifying
NP

• When placeholder has moved high enough in
tree to give the scope we need, replace by
quantifying NP

6.863J/9.611J SP04 Lecture 18

Example: every person loves a woman (Sbar)
∃y(woman(y)&∀x(person(x) → LOVE(x,y)))

Every person (NP)
λP.∀x(person(x) → P@x)

loves her-3 (VP)
λy.LOVE(y,z3))

loves (trans verb)
λX.λy.X@λx.LOVE(y,x)

her-3 (NP)
λP.P@ z3

Every person loves her-3 (S)
λz3.∀x(person(x) → LOVE(x,z3)A woman (NP)

λP.∃y(woman(y) & P@y)

QR

6.863J/9.611J SP04 Lecture 18

Why do we have to solve this?

• Readings aren’t always logically independent
• Direct construction doesn’t give us the right

ambiguities
• Example (demo):

every customer in a restaurant eats a big kahuna burger
• forall A ((exists B (restaurant(B) & in(A,B)) & customer(A)) -> exists C

((big(C) & (kahuna(C) & burger(C))) & eat(A,C)))

6.863J/9.611J SP04 Lecture 18

Here they all are…
1. forall A ((exists B (restaurant(B) & in(A,B)) & customer(A)) > exists C

((big(C) & (kahuna(C) & burger(C))) & eat(A,C)))
2. forall A ((in(A,B) & customer(A)) > exists C (restaurant(C) & exists D

((big(D) & (kahuna(D) & burger(D))) & eat(A,D))))
3. forall A ((in(A,B) & customer(A)) > exists C (restaurant(C) & exists D

((big(D) & (kahuna(D) & burger(D))) & eat(A,D))))
4. forall A ((in(A,B) & customer(A)) > exists C ((big(C) & (kahuna(C) &

burger(C))) & exists D (restaurant(D) & eat(A,C))))
5. exists A ((big(A) & (kahuna(A) & burger(A))) & forall B ((exists C

(restaurant(C) & in(B,C)) & customer(B)) > eat(B,A)))
6. exists A (restaurant(A) & forall B ((in(B,A) & customer(B)) > exists C

((big(C) & (kahuna(C) & burger(C))) & eat(B,C))))
7. exists A ((big(A) & (kahuna(A) & burger(A))) & forall B ((in(B,C) &

customer(B)) > exists D (restaurant(D) & eat(B,A))))
8. exists A (restaurant(A) & exists B ((big(B) & (kahuna(B) & burger(B))) &

forall C ((in(C,A) & customer(C)) > eat(C,B))))
9. exists A ((big(A) & (kahuna(A) & burger(A))) & exists B (restaurant(B) &

forall C ((in(C,B) & customer(C)) > eat(C,A))))

6.863J/9.611J SP04 Lecture 18

Montague approach

• Idea of having a ‘dummy’ semantic rep that we use
when needed is basically right…

• But… way it is used here is not smart from a modular
engineering or computational design

• Don’t want to futz w/ grammar – only want to add on
this combinatory mechanism to existing grammars

• Storage methods – move the QR idea from syntax to
semantics

• Cooper storage & Keller storage

6.863J/9.611J SP04 Lecture 18

Cooper storage

History: cf W. Woods and Lunar system
Key ideas:
• Associate each node of parse tree with a store
• Store contains core semantic rep together w/

quantifiers associated w/ nodes lower in the tree
• After sentence is parsed, store is used to generate

scoped representations
• Order in which store is retrieved determines the

different scopings (cf also for PP attachment…)

6.863J/9.611J SP04 Lecture 18

Formally stores

• A store is an n-place sequence
• Stores are represented by angle brackets < and >
• The first item of the sequence is the core semantic

representation
• Subsequent elements are pairs (β,i) where β is the

semantic representation of an NP (that is, another
lambda expression) and i is an index

• An index is a label that picks out a free variable in
the core semantic representation

6.863J/9.611J SP04 Lecture 18

Use of the store

• Quantified Noun phrases can repackage the
information that the store contains

More precisely:
Storage (Cooper)
If the store <φ,(β, j),…,(β’, k)> is a semantic
representation for a quantified NP, then the
store < λP.P@zi, φ,(β, j),…(β’, k)> where i is
some unique index, is also a rep for that NP

6.863J/9.611J SP04 Lecture 18

Let’s try it

• Every person loves a woman

6.863J/9.611J SP04 Lecture 18

Tree for this showing indices

Every person (NP)
< λQ.Q@z6,(λP.∀x(person(x) → P@x), 6)>

loves a woman (VP)
<λu.LOVE(u,z7),(λP.∃y(woman(y)&P@y),7)>

loves (trans verb)
λX.λu.X@λv.LOVE(u,v)

a woman (NP)
< λQ.Q@ z7,(λP.∃y(woman(y)&P@y),7)>

Every person loves a woman (S)
<LOVE(z6,z7), (λP.∀x(person(x) → P@x), 6), (λP.∃y(woman(y)&P@y),7)>

6.863J/9.611J SP04 Lecture 18

Retrieval 1

• Want the ordinary scoped representation
• How do we get this?

• Remove one of the indexed binding
operators from the store

• Combine it with the core representation
• Result is a new core representation
• Continue until store has just one element

6.863J/9.611J SP04 Lecture 18

Or precisely

• Retrieval:
• Let σ1 and σ2 be (possibly empty) sequences of

binding operators
• If the store <φ, σ1, (β, i), σ2> is associated with

an expression of category S, then the store
< β@λzi .φ, σ1, σ2> is also associated with this

expression
Informally: pull out the indexed QP and apply

6.863J/9.611J SP04 Lecture 18

Let’s see how it works

<LOVE(z6,z7),(λP.∀x(person(x) → P@x), 6),(λP.∃y(woman(y)&P@y),7)>

• Retrieval rule to this store, pull 1st quantifier out
< λP.∀x(person(x) → P@x)@ λz6. LOVE(z6,z7), (λP.∃y(woman(y)&P@y),7)>

• Beta-convert (lambda apply) to simplify:
< ∀x(person(x) → love(x,z7)), (λP.∃y(woman(y)&P@y),7)>

• Pull 2nd quantifier (the last one remaining)
<λP.∃y(woman(y)&P@y)@λz7.∀x(person(x) → love(x,z7))>

• Result:
< ∃y(woman(y)&∀x(person(x) → love(x,y))>

How do we get the other reading?

6.863J/9.611J SP04 Lecture 18

Are we ok?

• Cooper storage gives a lot of freedom
• Quantifiers retrieved in any order
• The only constraint is the use of co-indexed

variables
• Is this too much rope?

Mia knows every owner of a hash bar

6.863J/9.611J SP04 Lecture 18

Nested NPs cause a problem

• Store:
<Know(Mia, z2), (λP.∀y(owner(y)&Of(y,z1)→P@y),2),

(λQ.∃x(hashbar(x)&Q@a),1)>
• Pull 2:
<∀y(owner(y)&Of(y,z1)→Know(Mia,y)),

λQ.∃x(hashbar(x)&Q@a),1)>
<∃x(hashbar(x)& ∀y(owner(y)&Of(y,x) →Know(Mia,y)))>
• Pull 1:
<∃x(hashbar(x)&Know(Mia,z2)),

(λP.∀y(owner(y)&Of(y,z1)→P@y),2)>
<∀y(owner(y)&Of(y,z1)→ ∃x(hashbar(x)&Know(Mia,y)))>

???????

6.863J/9.611J SP04 Lecture 18

What to do?

• Allow stores to contain other stores
• Nesting structure of stores automatically

tracks nesting of NPs
• Easy to implement (akin to some linguistic

solutions: can’t move NP ‘too far’)
• Keller storage: If the (nested) store <φ, σ> is

an interpretation for an NP, then the (nested)
store <λP.P@zi,(< φ, σ>, i), for some unique
index i , is also an interpretation for this NP

6.863J/9.611J SP04 Lecture 18

Every owner…

λP.P@z2,(<(λP.∀y(owner(y)&Of(y,z1)→P@y),(< λQ.∃x(hashbar(x)&Q@x)>,1)>,2).

<λx.owner(x)>

owner (Noun)

Every owner of a hashbar
(NP)

Every(Det)

of a hashbar (PP)

<λQ. λP. ∀y (Q@y → P@y)>
owner of a hashbar (Nbar)

<λu.owner(u) & of(u, z1),(< λQ.∃x(hashbar(x)&Q@x)>,1)>

< λP.λu.P@u & of(u, z1),(< λQ.∃x(hashbar(x)&Q@x)>,1)>

6.863J/9.611J SP04 Lecture 18

Retrieval with nested storage

• The new retrieval rule:
Let σ, σ1, σ2, be (possibly empty) sequences of
binding operators
If the (nested) store <φ, σ1, (<β,σ>, i), σ2> is an
interpretation for an expression of category S, then
<β@λzi.φ, σ1, σ, σ2> is too

• Ensures that any operators stored while processing β
become accessible for retrieval only after β itself has
been retrieved

• Overcomes problem with generating free variable
readings

6.863J/9.611J SP04 Lecture 18

Reading 1
• Nested store:
<

know(Mia, z2)
(

<
λP.∀y(owner(y)&Of(y,z1)→P@y),

(

< λQ.∃x(hashbar(x)&Q@x)>,1

)
>, 2)

> Only one way to do retrieval:
<∃x(hashbar(x)& ∀y(owner(y)&Of(y,x) →Know(Mia,y)))>

6.863J/9.611J SP04 Lecture 18

Reading 2 – avoid storing nested NP
‘a hashbar’

λP.P@z2, (<(λP.∀y(owner(y)& ∃x(hashbar(x)& of(z,x))→P@y)>,2)>

<λx.owner(x)>

owner (Noun)

Every owner of a hashbar
(NP)

Every(Det)

of a hashbar (PP)

<λQ. λP. ∀y (Q@y → P@y)>
owner of a hashbar (Nbar)

<λz.owner(z) & ∃ x (hashbar(x)& of(z,x))>

< λP.λz.P@z & ∃ x (hashbar(x)& of(z,x))>

6.863J/9.611J SP04 Lecture 18

Basic message

• Pushing quantifier on store is
nondeterministic choice

• Use nested stores to deal with complex NPs

6.863J/9.611J SP04 Lecture 18

Quantifier store conclusions

• Original version isn’t sufficiently constrained
• Causes spurious readings (in fact, logical

nonsense)
• Cure: nested stores – only trivial changes to

Cooper store
• Is it enough? Consider:

One criminal knows every owner of a hash bar

6.863J/9.611J SP04 Lecture 18

Problem

• Storage lets us represent possible combinations
compactly, and gets 5 readings for this but…

• Doesn’t let us force ‘every owner’ outscope ‘a hash
bar’ while leaving subj-obj relation intact

• How do we add other constraints like this?
• Solution: underspecified constraint system – add

constraints… how?
• What about negation? Storage doesn’t handle this!

6.863J/9.611J SP04 Lecture 18

Hole semantics

• Constraint satisfaction method

6.863J/9.611J SP04 Lecture 18

Every boxer loves a woman – UF:

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

Every

6.863J/9.611J SP04 Lecture 18

Every boxer
Two separate trees…

Now combine them…

6.863J/9.611J SP04 Lecture 18

6.863J/9.611J SP04 Lecture 18

Does not growl

6.863J/9.611J SP04 Lecture 18

Every boxer does not growl

6.863J/9.611J SP04 Lecture 18

‘every boxer does not growl’

Now we need a ‘plugging’ algorithm…

6.863J/9.611J SP04 Lecture 18

Why underspecify?

• One criminal knows the owner of every hash
bar

• What do storage methods do?
• What does UF do? (or rather, can do)?

6.863J/9.611J SP04 Lecture 18

Meaning of meaning, redux

• How can we automate process of associating
semantic representations w/ expressions of
natural language?

• How can we use semantic representations to
automate drawing inferences?

6.863J/9.611J SP04 Lecture 18

Why compositionality?

• a human being can understand a possibly
infinite number of sentences never heard
before (namely by constructing their meaning
from a finite set of rules and a finite set of
known lexical meanings).

• Also, a compositional account of meaning
suggests a plausible explanation of why we
perceive a connection in meaning between
sentences that share syntactic parts

