6.863] Natural Language Processing
Lecture 18: the meaning of it all, #4

‘I (or #42)

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

. I,t}‘dministrivia:

T Lab 4a out April 14 — last lab before final
project
Agenda:
Scoping ambiguities & computation - solutions
Quantifier raising (QR)
Cooper storage
Keller storage
“Hole"” semantics
Prelude to discourse representation theory

6.8631/9.611] SP04 Lecture 18

Montague’s approach (& other
‘ $urrent linguistic theory)

I
. Rule of Quantifier raising — like moving other

phrases

. Landing site in position at head of Sbar (function
or operator position)

. Combine with indexed pronoun (alternatively:
empty element or trace) instead of quantifying
NP

- When placeholder has moved high enough in
tree to give the scope we need, replace by
quantifying NP

6.8631/9.611] SP04 Lecture 18

x?mple: every person loves a woman (Sbar)
Jy(woman(y)&Vvx(person(x) — LOVE(x,y)))

|
/Mﬁ loves her-3 (S)

A woman (NP) Az3.Vx(person(x) — LOVE(x,z3)

AP. Hy(woman(y) & P@)/ \

Every person (NP) loves her-3 (VP)
AP.Vx(person(x) —» P@x) Ay.LOVE(y,z3))

AX.AY.X@AX.LOVE(Y,x) AP. P@ z3

6.8631/9.611] SP04 Lecture 18

‘ YVhy do we have to solve this?
|

= |
. IReadings aren't always logically independent
. Direct construction doesn't give us the right
ambiguities
. Example (demo):

every customer in a restaurant eats a big kahuna burger

forall A ((exists B (restaurant(B) & in(A,B)) & customer(A)) -> exists C
((big(C) & (kahuna(C) & burger(C))) & eat(A,C)))

6.8631/9.611] SP04 Lecture 18

‘ i—lere they all are...
- ((big(C) & (kahuna(C) & burger(C))) & eat(A,C)))

2. forall A ((in(A,B) & customer(A)) > exists C (restaurant(C) & exists D
((big(D) & (kahuna(D) & burger(D))) & eat(A,D))))

3. forall A ((in(A,B) & customer(A)) > exists C (restaurant(C) & exists D
((big(D) & (kahuna(D) & burger(D))) & eat(A,D))))

4. forall A ((in(A,B) & customer(A)) > exists C ((big(C) & (kahuna(C) &
burger(C))) & exists D (restaurant(D) & eat(A,C))))

s. exists A ((big(A) & (kahuna(A) & burger(A))) & forall B ((exists C
(restaurant(C) & in(B,C)) & customer(B)) > eat(B,A)))

6. exists A (restaurant(A) & forall B ((in(B,A) & customer(B)) > exists C
((big(C) & (kahuna(C) & burger(C))) & eat(B,C))))

7. exists A ((big(A) & (kahuna(A) & burger(A))) & forall B ((in(B,C) &
customer(B)) > exists D (restaurant(D) & eat(B,A))))

8. exists A (restaurant(A) & exists B ((big(B) & (kahuna(B) & burger(B))) &
forall C ((in(C,A) & customer(C)) > eat(C,B))))

9. exists A ((big(A) & (kahuna(A) & burger(A))) & exists B (restaurant(B) &
forall C ((n(C,8) & cysiamei(CLs SaHGAN)

‘ IIVIontague approach
|
\

|
| Idea of having a ‘dummy’ semantic rep that we use
when needed is basically right...
But... way it is used here is not smart from a modular
engineering or computational design
Don't want to futz w/ grammar — only want to add on
this combinatory mechanism to existing grammars
Storage methods — move the QR idea from syntax to
semantics
. Cooper storage & Keller storage
6.8631/9.611] SP04 Lecture 18
‘ Fooper storage
|

A
=
History: cf W. Woods and Lunar system
Key ideas:
. Associate each node of parse tree with a store

Store contains core semantic rep together w/
quantifiers associated w/ nodes lower in the tree

. After sentence is parsed, store is used to generate
scoped representations

Order in which store is retrieved determines the
different scopings (cf also for PP attachment...)

6.8631/9.611] SP04 Lecture 18

I|=ormaIIy stores

. A store is an n-place sequence
. Stores are represented by angle brackets < and >

. The first item of the sequence is the core semantic
representation

. Subsequent elements are pairs (B.i) where B is the
semantic representation of an NP (that is, another
lambda expression) and i is an index

. Anindex is a label that picks out a free variable in
the core semantic representation

6.8631/9.611] SP04 Lecture 18

se of the store
e

= \
I . Quantified Noun phrases can repackage the
information that the store contains
More precisely:
Storage (Cooper)

If the store <¢,(B,)),....(B, k)> is a semantic
representation for a quantified NP, then the
store < AP.P@z, ¢,(B,)),...(B", k)> where i is
some unique index, is also a rep for that NP

6.8631/9.611] SP04 Lecture 18

et's try it
ot

B | |
. Every person loves a woman
6.8631/9.611] SP04 Lecture 18
‘ '||'ree for this showing indices
|

| | I

Every person loves a woman (S)
<LOVE(z6,27), (AP.¥x(person(x) — P@x), 6), (AP.3y(woman(y)&P@y),7)>

/ % woman (VP)

Every person (NP) <\U.LOVE(u,z7),(AP.3y(woman(y)&P@y),7)>

< 2Q.Q@z6,(AP.¥x(person(x) — P@x), 6)> \

a woman (NP)

loves (trans verb) <70.0@ 27, (P 3y(woman(y)&P@y).7)>
2X. AU X@A\V.LOVE(u,v) P3N (y)&P@y).7)

6.8631/9.611] SP04 Lecture 18

Ii{etrieval 1
1
. Want the ordinary scoped representation

. How do we get this?

. Remove one of the indexed binding
operators from the store

. Combine it with the core representation
. Result is a new core representation
. Continue until store has just one element

6.8631/9.611] SP04 Lecture 18

Pr precisely
B |
|l
Retrieval:

. Let o1 and o2 be (possibly empty) sequences of
binding operators

. If the store <¢, 1, (B, i), 62> is associated with
an expression of category S, then the store

< B@rz .9, o1, 62> is also associated with this
expression

Informally: pull out the indexed QP and apply

6.8631/9.611] SP04 Lecture 18

‘Let’s see how it works
|

B I |

<LOVE(z6,27),(AP.¥x(person(x) — P@x), 6),(AP.3y(woman(y)&P@y),7)>

Retrieval rule to this store, pull 1st quantifier out
< AP.vx(person(x) - P@x)@ Az6. LOVE(z6,2z7), (AP.3y(woman(y)&P@y),7)>
Beta-convert (lambda apply) to simplify:
< vx(person(x) — love(x,z7)), (AP.3y(woman(y)&P@y),7)>
Pull 2nd quantifier (the last one remaining)
<AP.3y(woman(y)&P@y)@1z7.vx(person(x) — love(x,z7))>
Result:
< Jy(woman(y)&vx(person(x) — love(x,y))>

How do we get the other reading?

6.8631/9.611] SP04 Lecture 18

‘ 1\re we ok?
1
. Cooper storage gives a lot of freedom

. Quantifiers retrieved in any order

. The only constraint is the use of co-indexed
variables

Is this too much rope?

Mia knows every owner of a hash bar

6.8631/9.611] SP04 Lecture 18

Il\lested NPs cause a problem
|

Store:

<Know(Mia, z2), (AP.vy(owner(y)&Of(y,z1)—>P@y),2),
(AQ.3x(hashbar(x)&Q@a),1)>

. Pull 2:

<vy(owner(y)&Of(y,z1)—Know(Mia,y)),
AQ.3x(hashbar(x)&Q@a),1)>

<3Ix(hashbar(x)& vy(owner(y)&Of(y,x) —Know(Mia,y)))>

. Pull 1:

<3x(hashbar(x)&Know(Mia,z2)),

(AP.¥y(owner(y)&Of(y,z1)—»>P@y),2)>
<vy(owner(y)&Of(y,z1)— Ix(hashbar(x)&Know(Mia,y)))>

??????? 6.8631/9.611] SP04 Lecture 18

‘ YVhat to do?

S

. Allow stores to contain other stores

. Nesting structure of stores automatically
tracks nesting of NPs

. Easy to implement (akin to some linguistic
solutions: can’t move NP ‘too far’)

. Keller storage: If the (nested) store <¢, o> is
an interpretation for an NP, then the (nested)
store <AP.P@z,(< ¢, >, i), for some unique
index i, is also an interpretation for this NP

6.8631/9.611] SP04 Lecture 18

‘ Fvery owner...
|

Fvery owner of a hashbar
(NP)
MP.P@z2,(<(AP.Vy(owner(y)&Of(y,z1)-P@y),(< AQ.3x(hashbar(x)&Q@x)>,1)>,2).

Every(Det)

AQ. AP. v P
<Q y (Q@y — P@y)> owner of a hashbar (Nbar)

<iu.owner(u) & of(u, z1),(< AQ.3x(hashbar(x)&Q@x)>,1)>

owner (Noun) of a hashbar (PP)
<\x.owner(x)>

< AP.AU.P@u & of(u, z1),(< 2Q.3x(hashbar(x)&Q@x)>,1)>

6.8631/9.611] SP04 Lecture 18

‘ ?etrieval with nested storage
R
. The new retrieval rule:

Let 6, o1, 62, be (possibly empty) sequences of
binding operators

If the (nested) store <¢, o1, (<B,c>, i), 62> is an
interpretation for an expression of category S, then
<p@irz.9, cl, o, 52> is too

Ensures that any operators stored while processing B
become accessible for retrieval only after B itself has
been retrieved

Overcomes problem with generating free variable
readings

6.8631/9.611] SP04 Lecture 18

Reading 1
| . Nested store:
B <

know(Mia, z2)

(

<
AP.vy(owner(y)&O0f(y,z1)—>P@y),

(

< AQ.3x(hashbar(x)&Q@x)>,1

)

>, 2)
> Only one way to do retrieval:
<3x(hashbar(x)& vy(owner(y)&Of(y,x) —Know(Mia,y)))>
6.8631/9.611] SP04 Lecture 18

Reading 2 — avoid storing nested NP
Ia hashbar’
|

b Every owner of a hashhar
= (NP)
AP.P@z2, (<(AP.vy(owner(y)& 3Ix(hashbar(x)& of(z,x))—>P@y)>,2)>

Every(Det)

AQ. AP. ¥ P
<Q y (Q@y - P@y)> owner of a hashbar (Nbar)

<\z.owner(z) & 3 x (hashbar(x)& of(z,x))>

owner (Noun) of a hashbar (PP)

<ix.owner(x)>
< AP.Az.P@z & 3 x (hashbar(x)& of(z,x))>

6.8631/9.611] SP04 Lecture 18

‘ IPasic message
|

. Pushing quantifier on store is
nondeterministic choice

. Use nested stores to deal with complex NPs

6.8631/9.611] SP04 Lecture 18

‘ @uantifier store conclusions
|

L I |
. Original version isn't sufficiently constrained

. Causes spurious readings (in fact, logical
nonsense)

. Cure: nested stores — only trivial changes to
Cooper store

. Is it enough? Consider:
One criminal knows every owner of a hash bar

6.8631/9.611] SP04 Lecture 18

‘ f|roblem

N
[
. Storage lets us represent possible combinations
compactly, and gets 5 readings for this but...

Doesn't let us force ‘every owner’ outscope ‘a hash
bar’ while leaving subj-obj relation intact

How do we add other constraints like this?

Solution: underspecified constraint system — add
constraints... how?

. What about negation? Storage doesn’t handle this!

6.8631/9.611] SP04 Lecture 18

‘ \-Iole semantics
] |
. Constraint satisfaction method

6.8631/9.611] SP04 Lecture 18

. Every boxer loves a woman — UF:

3113123\’1 (lJ_ZALL(Vl,lQ) A 3133111(12ZH\'IP(L_;,]]L) A 13:BOXER(V1) A
AL Al 3vs (Ly:soME(ve 1) A dlgTha (I5:AND(lg,his) A lg:WOMAN(vS) A
317{17:LO\"E(V1 ,\"Q) A Ll<hy A 1;<hy A Hh()(ll <hg A 14511()))))))

6.8631/9.611] SP04 Lecture 18

hy
11 14
l:ann(vy,lo) Ly:SOME(va,l5)
lo:vp(ls,hy) l5:AND(lg.ho)
l3: BOXER(Vy) o lg:WOMAN(v3)
l7

|

17 :LO\’E-£\-’1 V2)

V.UUDJ/ UL 1D OF UT LTLLUL

l3:BOXER(vy)

h()

—

1y

!

1y SALL(VL,]Q)
lo:imp(ls hy)

Ly

|

ly:sOME(va.l5)

et

15:AND(16_,h2)

\

lg:WOMAN(vy)

I

}

VX(BOXER(x)— Fy(WOMAN(Y) A LOVE(XY))) 1 -rovi (v, va)

6.8631/9.611] SP04 Lecture 18

hy

\

FV(WOMAN(V) A VX(BOXER(X) — LOVE(X.V))) lf

B -
Ly:soME(va,l5)
l5 :AND@)
lg:WOMAN(vs) 1,
li:ALL(vy o)
ly:mvp flj/hl)
l3:BOXER(vy) \17
17 L(Z)\«'i(vl V2)
Bl 1

—
Translation of a UF and a plugging to FOL:

(h.P)"2el = (P(h))"2*l iff h is a hole

1. Pyl — Jy(n, Pyl iff :somi(v.n)

1Pyl — gy (n, P)"POl G L ALL(v.n)
)ut2ful _ ((n:p)umol A (ll Vp)uf?iul) iff ISAND(H,HI)
P)

(
(
(Le)"=
(LYol = (v iff Lo(v)

6.8631/9.611] SP04 Lecture 18

s Basic UFs are defined as follows:

1.

2

o

If I'is a label, and L is a hole, then 1<l is a basic UF;

It 1is a label, and n and 1’ are nodes. then Linor(n). Livp{na').

LAND(n.n"). Lor(n.a') are basic UFs:

If 1 is a label. t and t" are terms. then LEQ(t.t") is a basic UF:

I Lis a label. S is a svinbol in the SRL language with arity n, and t,

b, are terms, then LS.ty .. .6, is a basic UF.

. If 1 is a label, v a metavariable, and n a hole or label, then Lsonme(v.n)

and LALL(v.n) are basic UFs.

. Nothing else is a basic UF.

6.8631/9.611] SP04 Lecture 18

{ Basic UFs are defined as follows:

1.

2

[\ §

G.

If 'is a label, and h is a hole, then [<h is a basic UF:

If 1 is a label, and n and n' are nodes. then LNoT(n). Live(n.an').
LaND(n.n)., Lor(n.n') are basic UFs:

If 1 is a label. t and t" are terms, then LEQ(t.t') is a basic UF;

If L is a label, S is a svinbol in the SRL language with arity n, and t,
.ty are terms, then LS.t .. .1,) is a basic UF.

It Lis a label. v a metavariable, and n a hole or label, then LisomeE(v.n)
and LALL(v.n) are basic UFs,

Nothing else is a basic UF.

6.8631/9.611] SP04 Lecture 18

2. If & 15 a UF, and n is a node then dno is a UF;
3. If ¢ is a UF, and v is a meta-variable then Jve is a UF;

4. If ¢ and ¢ are UFs then (o A1) is a UF;

on

. Nothing eclse is a UF.

6.8631/9.611] SP04 Lecture 18

AVALAL(BOXER(Lv) A 1<h).
Drawn as a tree:
h
AV ARLAL | l

'

I:BOXER(V)

6.8631/9.611] SP04 Lecture 18

Axvhl.3hy L llgvy ([2ALLVEL) 1 A va@v,@hal, A yav,ahal)

6.8631/9.611] SP04 Lecture 18

1 Every boxer
b
| b
Axvhl3h 1 Ll (] IZ:ALLE‘}W A L | A vy, ahal)

v

Lysvp (1, 1y) 1 BOXER(vy)

-

|

Now combine them...

6.8631/9.611] SP04 Lecture 18

5 |
h
L
v

AvhL I 1 T lyvy (] brALL(vi(L)) A yav,anal)

/

ly:invp (1, hy)

Y
hEs
e

l;:BOXER(vy) |

6.8631/9.611] SP04 Lecture 18

1 Does not growl
e 1 _
1

AVLL 3D, 1| liNo(hy))

L:GROWL(V)

6.8631/9.611] SP04 Lecture 18

N . Every boxer does not growl
|
lll]l_,
1 ey
v v
LTy 1 Ll (] 12:.\1.1.(:]/.[1';) | A Sholyl lyvor(hs) 1)
113k avi(L R
Tamaeily.hy) f__-
v
1y :pOXER(V) 1 L:GROWL(v)
6.8631/9.611] SP04 Lecture 18
\ I
every boxer does not growl
|
L= I |
LA
I Y
+ +
lo: ALL(V.13) l.:N::'r[lf-_,']
f\]l|-‘”11]lzl||3]:ﬂ]|\'l[l;;:TI\]]’[h.ll‘.'] /l___,,--"']
| :BOXER(v)) _HLI“'

'

LLGROWL(v,)

Now we need a ‘plugging’ algorithm...

6.8631/9.611] SP04 Lecture 18

S

hy underspecify?
5

One criminal knows the owner of every hash
bar

. What do storage methods do?
. What does UF do? (or rather, can do)?

6.8631/9.611] SP04 Lecture 18

I|Vleaning of meaning, redux
|

& I |
. How can we automate process of associating

semantic representations w/ expressions of
natural language?

. How can we use semantic representations to
automate drawing inferences?

6.8631/9.611] SP04 Lecture 18

‘ YVhy compositionality?

I
. a human being can understand a possibly
infinite number of sentences never heard
before (namely by constructing their meaning
from a finite set of rules and a finite set of
known lexical meanings).

. Also, a compositional account of meaning
suggests a plausible explanation of why we
perceive a connection /n meaning between
sentences that share syntactic parts

6.8631/9.611] SP04 Lecture 18

