6.863J Natural Language Processing Lecture 19: Machine translation 3

Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

- Administrivia:
 - Start w/ final projects (final proj: was 20% boost to 35%, 4 labs 55%?)
 - Agenda:
 - MT: the statistical approach
 - Formalize what we did last time
 - Divide & conquer: 4 steps
 - Noisy channel model
 - Language Model
 - Translation model
 - Scrambling & Fertility; NULL words 6.863J/9.611J Lecture 19 Sp03

- The basic idea: moving from Language A to Language B
- The noisy channel model
- Juggling words in translation bag of words model; divide & translate
- Using n-grams the Language Model
- The Translation Model
- Estimating parameters from data
- Bootstrapping via EM
- Searching for the best solution

Like our alien system

- We will have two parts:
- 1. A <u>bi-lingual dictionary</u> that will tell us what e words go w/ what f words
- 2. A <u>shake-n-bake</u> idea of how the words might get scrambled around
- We get these from cycling between alignment & word translations – reestimation loop on which words linked with which other words

'George Bush' model of translation (noisy channel)

noise (corrupted)

rendered English

French text <u>f</u> (observed)

Same French text

f, e are strings of (french, english) words

6.863J/9.611J Lecture 19 Sp03

IBM "Model 3"

- First to do this, late 80s: Brown et al, "The Mathematics of Statistical Machine Translation", <u>Computational Linguistics</u>, 1990 (orig 1988 conference) – "Candide"
- We'll follow that paper & 1993 paper on estimating parameters
- 1993: Brown, Della Pietra, et al, "The mathematics of statistical MT" J. Assoc. Comp. Ling, 19:2, 264-311.

Summary of components – Model 3

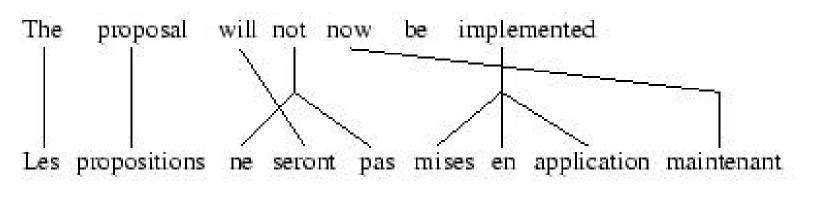
- The language model: P(e)
- The translation model for P(f|e)
 - Word translation t
 - Distortion (scrambling) d
 - Fertility φ
- (really evil): <u>null</u> words e₀ and f₀
- Maximize (A* search) through product space

OK, what are the other models?

- Model 1 just t
- Model 2 just t & simple d

- What are they for?
- As we'll see used to pipeline training get estimates for Model 3

The training data - Hansard



P(les|the)

Q: What do you think is the biggest error source in Hansard?
e.g. which P(f|e), or P(?| e₁ e₀)
A: How about this – P(? | hear, hear) as in "Hear Hear!"

How to estimate?

- Formalize alignment
- Formalize dictionary in terms of P(f|e)
- Formalize shake-n-bake in terms of P(e)
- Formalize re-estimation in terms of the <u>EM Algorithm</u>
 - Give initial estimate (uniform), then up pr's of some associations, lower others

Fundamentals

The basic equation

- $\hat{e} = \operatorname{argmax} \Pr(e) \Pr(f|e)$
- Language Model Probability Estimation Pr(e)
- Translation Model Probability Estimation -Pr(f|e)
- Search Problem maximizing their product

Finding the pr estimates

- Usual problem: sparse data
 - We cannot create a "sentence dictionary" $\mathsf{E} \leftrightarrow \mathsf{F}$
 - we do not see a sentence even twice, let alone once

Let's see what this means

P(e) x P(f|e) Factor 1: Language Factor 2: Translation Model Model

6.863J/9.611J Lecture 19 Sp03

P(e) – Language model

- Review: it does the job of ordering the English words
- We estimate this from monolingual text
- Just like our alien language bigram data

Bag translation?

- Take sentence, cut into words, put in bag, shake, recover original sentence
- Why? (why: show how it gets order of English language, for P(e) estimate)
- How? Use n-gram model to rank difft arrangements of words:
 - S better than S' if P(S) > P(S')
 - Test: 100 S's, trigram model

Bag results?

- Exact reconstruction (63%)
 - Please give me your response as soon as possible
 - Please give me your response as soon as possible
- Reconstruction that preserves meaning (20%)
 - Now let me mention some of the disadvantages
 - Let me mention some of the disadvantages
- Rest garbage
 - In our organization research has two missions
 - In our missions research organization has two
- What is time complexity? What K does this use?

Estimating P(e)

- IBM used trigrams
- LOTS of them... we'll see details later
- For now...

P(f|e) - Recall Model 3 story: French mustard

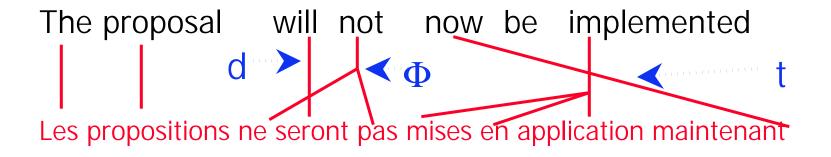
- Words in English replaced by French words, then scrambled
- Let's review how
- Not word for word replacement (can't always have same length sentences)

Alignment as the "Translation Model"

- 0 1 2 3 4 5 6
- e_0 And the program has been implemented

- f₀ Le programme à été mis en application
 0 1 2 3 4 5 6 7
- Notation:
- $f_0(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) = [2 3 4 5 6 6 6]

Example alignment



4 parameters for P(f|e)

1. Word translation, t

Spurious word toss-in, p

- 2. Distortion (scrambling), d
- 3. Fertility, Φ

6.863J/9.611J Lecture 19 Sp03

Notation

- e= English sentence
- **f** = French sentence
- $e_i = i^{th}$ english word
- $f_j = j^{th}$ french word
- I = # of words in English sentence
- m = # words in French sentence
- a = alignment (vector of integers a₁ a₂ ... a_m where each a_j ranges from 0 to l)
- a_j = actual English position connected to by the jth French word in alignment a
- e_{aj} = actual English word connected to by the jth French word in alignment a
 - Φ_i = fertility of English word i (i = 1 to l) given alignment a

OK, what parameters do we need?

- English sentence i= 1, 2, ..., I words
- Look at dependencies in the generative story!
- 3 basic parameters
- Parameter 1: Which f word to generate depends only on English word e that is doing generating
- Example: prob(fromage | monkey)
- Denote these by $t(\tau_i \mid e_i)$

Procrustean bed

- For each word e_i in the english sentence e,
 i= 1, 2, ..., I, we choose a <u>fertility</u> φ(e_i), equal to 0, 1, 2,...[25]
- This value is <u>solely</u> dependent on the English word, not other words or the sentence, or the other fertilities
- The French words are permuted ('distorted') assigned a position slot (this is the scrambling phase)
- Call this a <u>distortion parameter</u> d(i|j)
- Note that distortion needing't be careful why?

- Prob that <u>monkey</u> will produce certain # of French words
- Denoted $n(\phi_i | e_i)$ e.g., n(2|monkey)

- The fertility of word i does not depend on the fertility of previous words.
 - Does not always concentrate its probability on events of interest.
- This deficiency is no serious problem.
- It might decrease the probability of all well-formed strings by a constant factor.

Distortion

- Where the target position of the French word is, compared to the English word
- Think of this as distribution of alignment links
- First cut: d(k|i)
- Second cut: distortion depends on english and french sentence lengths (why?)
- So, parameter is: d(k|i, l, m)

To fix the fertility issue...

- Final Procrustean twist
- Add notion of a <u>Null</u> word that can appear before beginning of english & french sentence, e₀ and f₀
- Purpose: account for 'spurious' words like function words (á, la, le, the, ...)
- Example in this case:

Alignment as the "Translation Model"

- 0 1 2 3 4 5 6
- e_0 And the program has been implemented
- f₀ Le programme a été mis en application
 0 1 2 3 4 5 6 7
- Notation:
 - f₀(1) Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) =

What about...

- Fertility of Null words?
- Do we want n(2 | null), etc.?
- Model 3: longer S's have more null words... (!) & uses a single parameter p1
- So, picture is: after fertilities assigned to all the real English words (excluding null), then will generate (perhaps) z French words
- As we generate each french word, throw in spurious French word with probability p1
- Finally: what about <u>distortion</u> for null words?

Distortions for null words

- Since we can't predict them, we generate the french words first, according to fertilities, and then put null words in spots left over
- Example: if there are 3 null generated words, and 3 empty slots, there are 6 ways for putting them in, so the pr for the distortion is 1/6
- OK, the full monty...

Model 3 in full

- 1. For each English word e_i , i=1,...I, pick fertility Φ_i with probability $n(\Phi_i | e_i)$
- 2. Pick the # of spurious french words ϕ_0 generated from $e_0 = null$
 - Use probability p_1 and the Σ of fertilities from Step 1
- 3. Let m be the sum of <u>all</u> the fertilities, incl null = total length of the output french sentence
- 4. For each i=0,1,...,I & each k=1,2,..., Φ_i pick french translated words τ_{ik} with prob t($\tau_{ik} | e_i$)
- 5. For each i=1,2,...,I & each k=1,2,... Φ_i pick french target positions with prob d(t | i, l, m)

And 2 more steps

- 6. [sprinkle jimmies] For each k=1,2,..., Φ_i choose positions in the Φ₀ k + 1 remaining vacant slots in spots 1,2,...,m, w/ total prob (1/Φ₀!)
- 7. Output French sentence with words

 τ_{ik} in the target positions, accdg to the probs $t(\tau_i \mid e_i)$

Model 3 in full

- Has four parameters: t, n, d, p
- t and n are 2-d tables of floating point numbers (words x fertilities)
- d is 1-d table of numbers
- p is just 1 number

- But...where can we can these numbers?
- How do we compute P(f|e)?

Finding parameter values

- Suppose we had the actual step-by-step transform of english sentences into french...
- We could just count: e.g., if <u>did</u> appeared in 24,000 examples and was deleted 15,000 times, then n(0|did) = 5/8

• Word-word alignments can help us here

Alignment as the "Translation Model"

- 0 1 2 3 4 5 6
- e_0 And the program has been implemented

- f₀ Le programme à été mis en application
 0 1 2 3 4 5 6 7
- Notation:
- $f_0(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) = [2 3 4 5 6 6 6]

Alignments help get all estimates

- Compute n : count how many times <u>did</u> connects to 0 french words
- Compute t: count how many times f word connects to e word
- (Note: we assume every french word connects to exactly 1 english word, or null – so never that 2 or more english words jointly give a french word...)
- Also, if 1 english word connects to 2 french words f1 and f2, we don't know whether they were generated in that order, or the reverse...

OK, so how do we get d & p_1 ?

- Can also get that from aligned pairs
- Every connection in alignment contributes to a particular parameter like d(3 | 2, 5,6)
- Get counts, dc, & normalize:
 d(3 | 2, 5, 6) = dc(3 | 2, 5, 6)/Σ dc(j|2, 5, 6)
- Finally, p₁. From alignments, N words in total french corpus, M generated by null.
- So, after each of the N-M real word cases, a spurious word is generated M times, or

 $p_1 = M/N-M$

- We need aligned sentences to get parameter values...
- We need parameter values to get aligned sentences.... i.e., we want to maximize

P(a|e,f)

comment amorçons-nous? ¿Cómo atamos con correa?

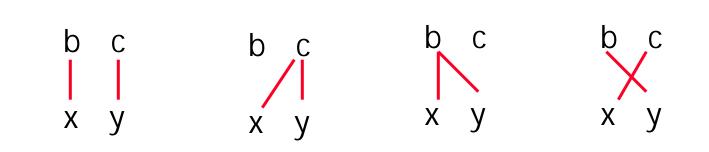
Laying an egg: The magic

- You can actually get estimates from <u>non-aligned</u> sentence pairs!!!
- Exactly as you did in your (ahem) alien assignment
- English & French words that co-occur in sentence translations might/might not be translations, <u>but</u> if we have a rough idea about correspondences, we can get idea about distortion probs... e.g., if first english word/first french word correspond, then what about d(1|1, l,m)?

The key: alignments

- Suppose we have a single correct alignment for each sentence pair
- We could collect all parameter counts directly
- But we don't...
- Suppose we have 2 equally good looking candidates...
- Then we weight the counts from each by 0.5 (a <u>fractional count</u>)
- In general, many more than this... (Neglecting nulls, if e has length 'l' and f has length 'm', there are 2^{lm} alignments in all)

Example: easy as a, b,...

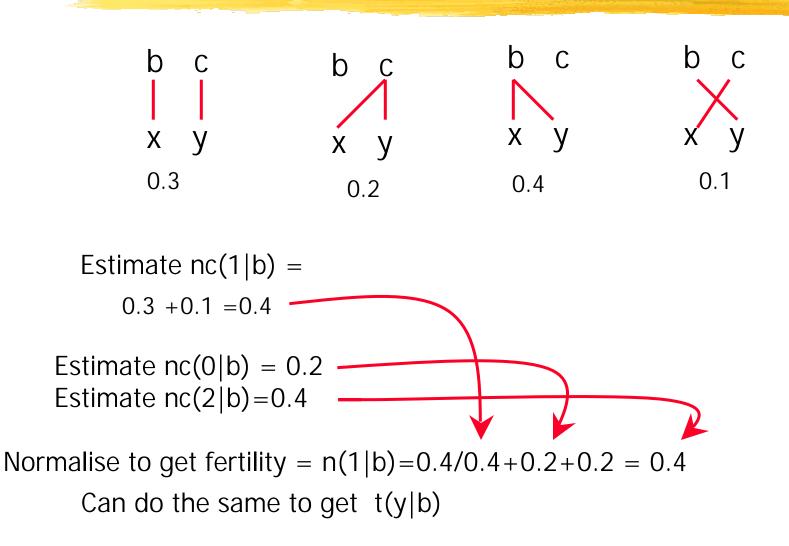


b=blue c= house; x= maison; y=bleue

Can we figure out which alignment works best?

- Idea 1: use alignment <u>weights</u>
- Idea 2: actually use counts as proxies for probabilities

Example



Better to compute alignment probabilities

- Let <u>a</u> be an alignment just a vector of integers
- We want highest P(a|e,f) (e & f are a particular sentence pair)
- What would make alignment more probable?
- If we had the translation t parameters, we could judge – a good alignment ought to connect words that are already known to be high prob translations of one another
- An alignment summarizes (some of) the choices that get made

- BUT We can convert P(a|e,f) to: P(a,f|e)/P(f|e)
- P(a|e,f) = P(a,e,f)/P(e,f) = ...

How to compute P(a|f,e) ?

- First term P(a,f|e) can be found from the story of Model 3: start with english string e, blah blah ... get alignment and french string (can have same alignment and two or more different french strings)
- Second term P(f|e) is what we've been after...it is all the ways of producing f, over all alignments, so in fact...

All we need to find is

• $P(f|e) = \Sigma_a P(a,f|e)$

• OK, let's see about this formula

P(a,f|e)

- e= English sentence
- f = French sentence
- $e_i = i^{th}$ english word
- $f_j = j^{th}$ french word
- I = # of words in English sentence
- m = # words in French sentence
- a = alignment (vector of integers a₁ a₂ ... a_m where each a_j ranges from 0 to I)
- a_j = actual English position connected to by the jth French word in alignment a
- e_{aj} = actual English word connected to by the jth French word in alignment a
- ϕ_i = fertility of English word i (i = 1 to l) given alignment a $_{6.863J/9.611J \text{ Lecture 19 Sp03}}$

 word translation values implied by alignment & French string

$$P(a,f|e) = \prod_{i=1}^{l} n(f_i | e_i) * \prod_{j=1}^{m} t(f_j | e_{aj}) * \prod_{j=1}^{m} d(j|a_j,l,m)$$

• We will have to correct this a bit...for the null words...

Adjustments to formula - 4

- 1. Should only count distortions that involve real english words, not <u>null</u> eliminate any <u>d</u> value for which $a_j = 0$
- 2. Need to include probability "costs" for spurious french words there are Φ_0 null french words, and m- Φ_0 real french words
 - How many ways to sprinkle in ϕ_0 'jimmies' pick ϕ_0 balls out of urn that has m- ϕ balls, or, [(m- Φ_0) choose Φ_0] Must multiply these choices by prob costs:
 - We choose to add spurious word ϕ_0 times, each with probability p_1 so total pr of this is $p_1 \Phi_0$
 - We choose to <u>not</u> add spurious word ((m- Φ_0)- Φ_0) times, so total pr of this factor is $p_0^{(m-2\Phi_0)}$

Adjustments – last 2

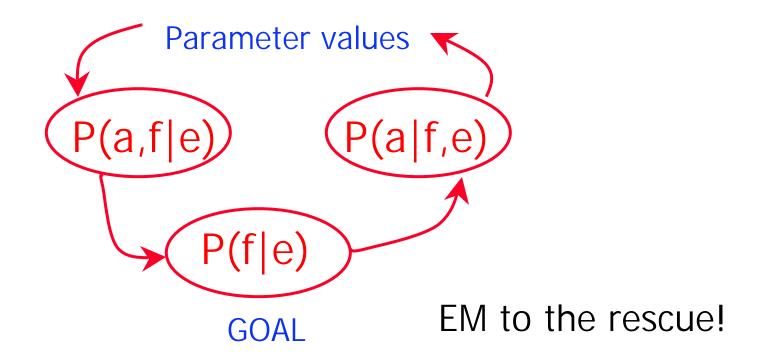
- Probability Cost for placing spurious french words into target slots – there are <u>no</u> distortions for the null words, eg, d(j |0, l, m) Instead we put them in at the end, as the final step of generating the french string
 - There are Φ_0 ! possible orderings, all equally likely, so that adds cost factor of $1/\Phi_0$!
- 4. For 'fertile' words, e.g., english word x generates french p, q, r – then there are 6 (in general Φ_i) ways to do this (order is not known) In general, we must add this factor: $\Phi_i!$

i=0

All boiled down to one math formula...

$$P(a,f|e) = \prod_{i=1}^{l} n(f_i | e_i) * \prod_{j=1}^{m} t(f_j | e_{aj}) * \prod_{j:a_j <>0}^{m} d(j|a_j, l, m) * \begin{pmatrix} m - \Phi_0 \\ \Phi_0 \end{pmatrix} * p_0^{(m - 2\Phi_0)} * p_1^{\Phi_0} \\ * \prod_{i=0}^{l} \Phi_i ! * (\frac{1}{\Phi_0})$$

Huhn- und Eiproblem?



What is EM about?

- Learning: improve prob estimates
- Imagine game:
- I show you an English sentence e
- I hide a French translation f in my pocket
- You get \$100 to bet on French sentences how you want (all on one, or pennies on lots)
- I then show you the French translation if you bet \$100 on it, you get a lot; even if just 10 cents. But if you bet 0, you lose all your money (P(f|e)=0, a mistake!)
- That's <u>all</u> EM learns to do 6.863J/9.611J Lecture 19 Sp03

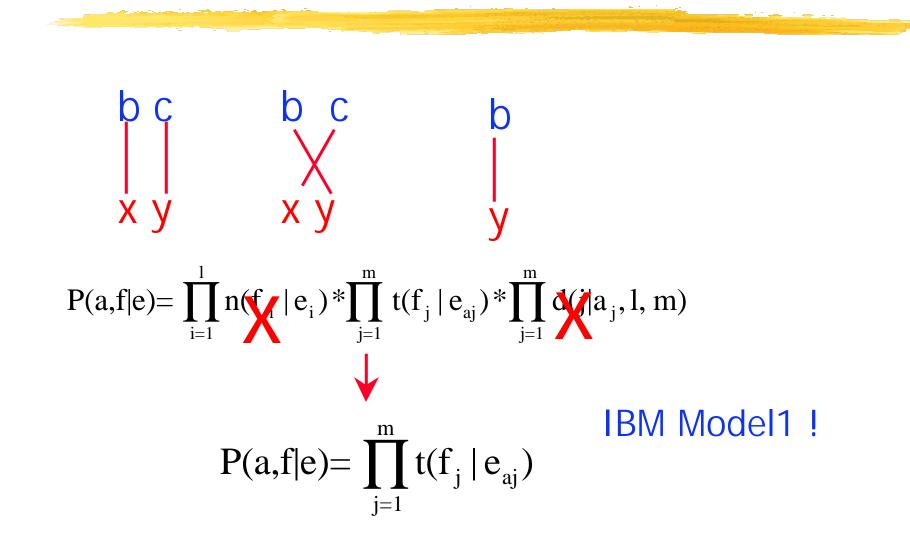
A question

- If you're good at this game, would you be a good translator?
- If you're a good translator, would you be good at this game?

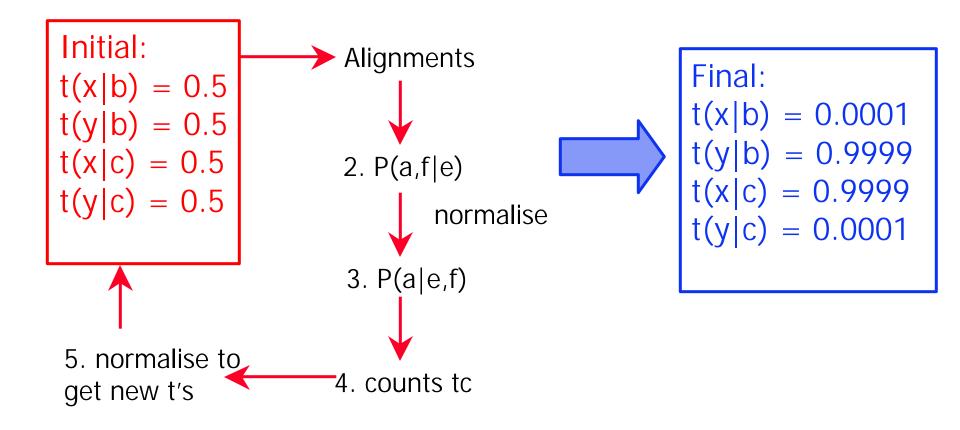
- Begin with uniform parameter values
 - Eg, if 50,000 French words, then t(f|e)=1/50000
 - Every word gets same set of fertilities
 - Set p₁=0.15
 - Uniform distortion probs (what will these be?)
- Use this to compute alignments
- Use new alignments to refine parameters [Loop until (local) convergence of P(f|e)]

- Corpus: just two paired sentences (english, french)
 - b c/x y & b/y Q: is y a translation of c?
- Assume: Forget about null word, fertility just 1, no distortion;
- So, just 2 alignments for first pair, and one for the second:

Alignments



Start to Finish: 4 steps in loop



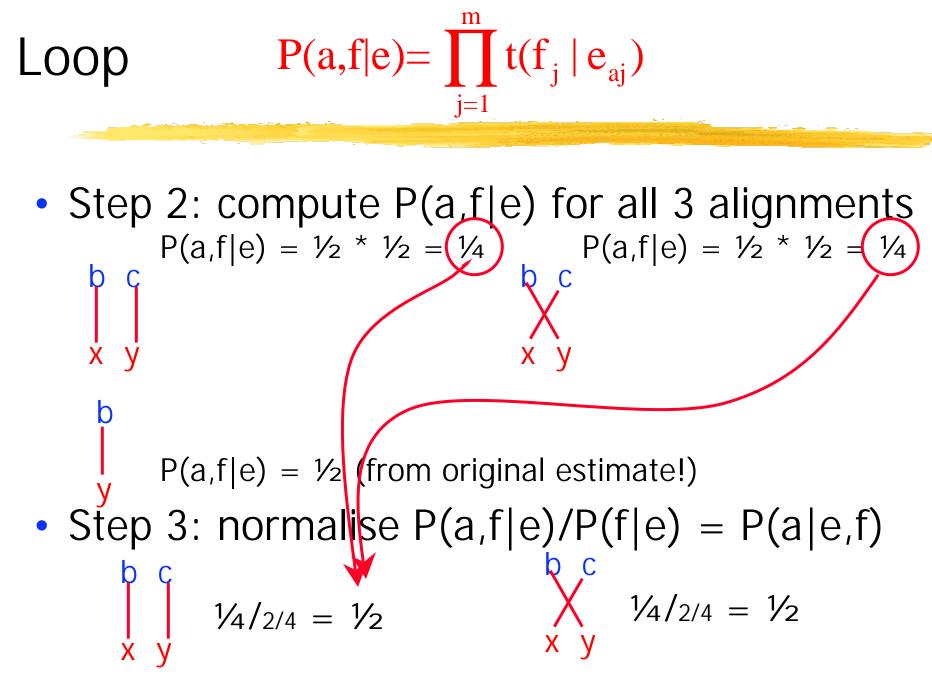
Why does this happen?

- Alignment prob for the crossing case with b connected to y will get boosted
- Because b is also connected to y in the second sentence pair
- That will boost t(b|y), and as side effect will also boost t(x|c), because c connects to x in the same crossed case (note how this is like the game we played)
- Boosting t(x|c) means lowering t(y|c) because they must sum to 1...
- So even though y and c co-occur, wiped out...

EM, step by step (hill climbing)

 Step 1[initial only]: set parameter values uniformly

• t(x|b) = 1/2; t(y|b) = 1/2; t(x|c) = 1/2; t(y|c) = 1/2



Loop to Step 2 – update t via counts tc

- (Ps: what is P(a|f,e) for 3rd alignment?
- Step 4: collect fractional counts tc: first local to a single alignment: tc(x|b) = 1/2

• Step 5: normalize to get new t values:

$$t(\mathbf{x}|\mathbf{b}) = \frac{1}{2}/\frac{4}{2} = \frac{1}{4} \quad \text{DOWN}$$

$$t(\mathbf{y}|\mathbf{b}) = \frac{3}{2}/\frac{4}{2} = \frac{3}{4} \quad \text{UP}$$

$$t(\mathbf{x}|\mathbf{c}) = \frac{1}{2}/1 = \frac{1}{2}$$

$$t(\mathbf{y}|\mathbf{c}) = \frac{1}{2}/1 = \frac{1}{2}$$

 $\frac{tc(y|b) = \frac{1}{2} + 1 = \frac{3}{2}}{tc(x|c) = \frac{1}{2}}$

Cook until done...

• Feed these new t values back to Step 2!

2nd iteration:

t(x | b) = 1/8 t(y | b) = 7/8 t(x | c) = 3/4t(y | c) = 1/4

- EM <u>guarantees</u> that this will monotonically increase P(a,f|e) (but only local maxima)
- EM for Model 3 is <u>exactly</u> like this, but we have difft formula for P(a|f,e) & we collect fractional counts for n, p, d from the alignments

- The blue house / la maison bleue
- The house / la maison
- 6 alignments for sentence 1, two for sentence 2
- Start w/ all t's set to 1/3 i.e., t(la|the)=1/3...

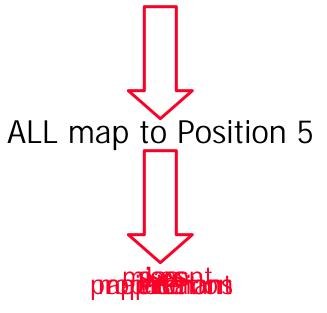
How good is Model 3?

- Remember gambler?
- How good is Model 3 at this game?

- Distortion poor description of word order differences – bets on lots of ungrammatical french sentences
- Nothing stops us from choosing target position

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant



problemas del entrenamiento

- EM not globally optimal
 - Initial condition: might take 1st two words & always link them, then distortion cost small, word-translation costs high
 - EM doesn't know about linguistics!
 - How to fix?
- More seriously: look at iteration
- Over <u>every</u> alignment: P(f|e)=Σ_a P(a,f|e)
- 20 words by 20 words gulp
- Solution: iterate only over good-looking ones...
 - How to find best 100 w/o enumerating them all??

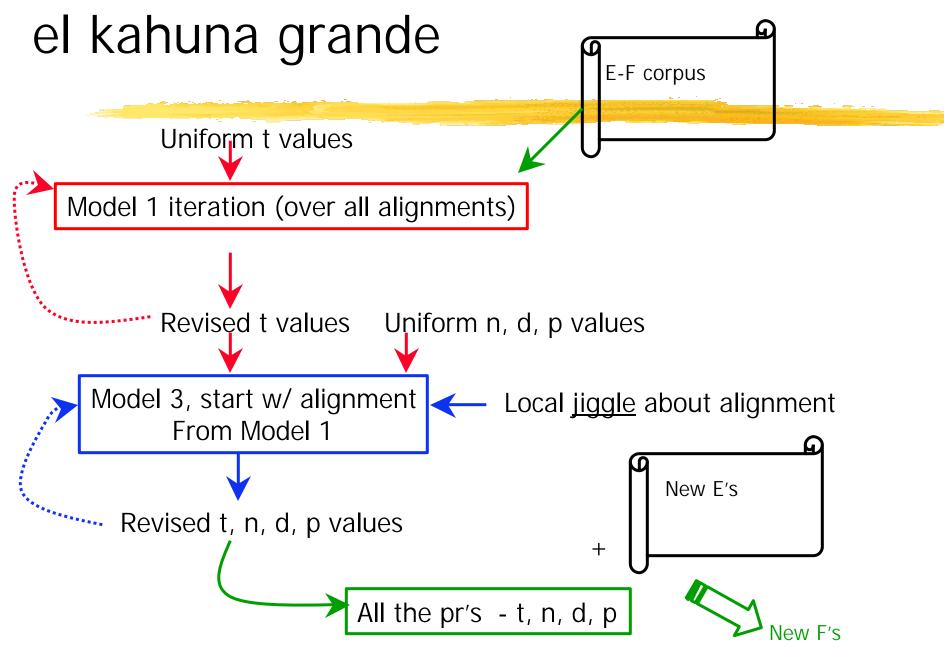
parámetros rápidos y sucios

- Can use Model 1 counts from all alignments w/o enumerating them all!
- Model 1 easy to figure out what best alignment is – quadratic time in I, m
- In fact, it has a single local maximum, since the objective function is quadratic (won't prove this here...)
- Use this to kick-off Model 3 6.863J/9.611J Lecture 19 Sp03

Formula about Model 1

$$\sum_{a} P(a,f|e) = \sum_{a} \prod_{j=1}^{m} t(f_j | e_{aj}) = \prod_{j=1}^{m} \sum_{i=0}^{l} t(f_j | e_i)$$

Use factoring to do this-Last expression only takes I+I*m operations



^{6.863}J/9.611J Lecture 19 Sp03

Now to the next step...

- Got our P(e), P(f,e)
- To translate given French sentence f, we still need to find the English sentence e that maximizes the product

- Can't search all of these!!!
- How? Basically: A* stack search

 Unknown words – names & technical terms: use phonetics

Robert Berwick,... (what does Babelfish do?)

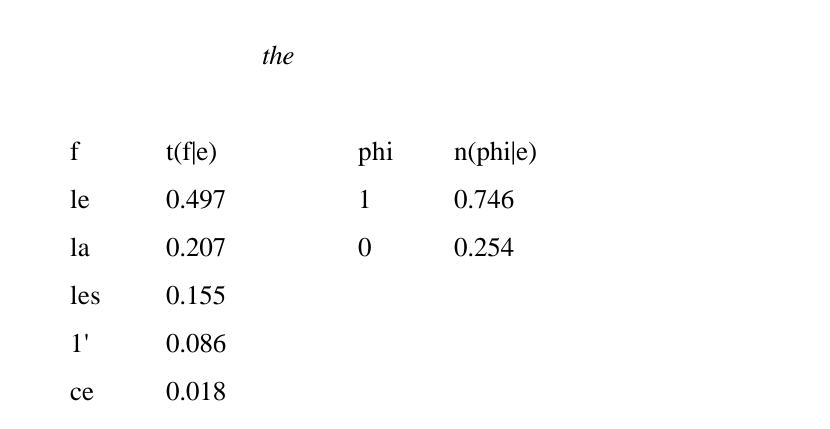
- What did IBM actually do? (datawise)
- Remember the British unemployed?

IBM's actual work

- (Remember the British unemployed)
- 1,778,620 translation pairs
- 28, 850, 104 French words
- T array has 2, 437, 020, 096 entries...
- Final English, French dictionaries have 42,006 and 58, 016 words
- In all, about 100mb of storage needed to calculate the pr's

Iteration	In	\rightarrow	Out	Surviving pr's	Alignments	Perplexity
1	1	\rightarrow	2	12,017,609		71,550.56
2	2	\rightarrow	2	12,160,475		202.99
3	2	\rightarrow	2	9,403,220		89.41
4	2	\rightarrow	2	6,837,172		61.59
5	2	\rightarrow	2	5,303,312		49.77
6	2	\rightarrow	2	4,397,172		46.36
7	2	\rightarrow	3	3,841,470		45.15
8	3	\rightarrow	5	2,057,033	291	124.28
9	5	\rightarrow	5	1,850,665	95	39.17
10	5	\rightarrow	5	1,763,665	48	32.91
11	5	\rightarrow	5	1,703,393	39	31.29
12	5	\rightarrow	5	1,658,364	33	30.65

the



cette 0.011

Should

should

f	t(f e)	phi	(phi e)		
devrait	0.330	1	0.649		
Devraient	0.123	0	0.336		
devrions	0.109	2	0.014		
faudrait	0.073				
faut	0.058				
doit	0.058				
aurait	0.041				
doivent	0.024				
devons	0.017				
devrais	0.013				

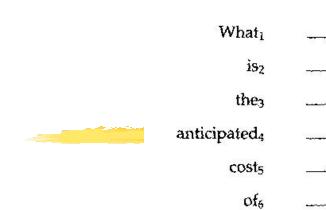
What about...

- In French, what is worth saying is worth saying in many different ways
- He is nodding:
 - Il fait signe qui oui
 - Il fait un signe de la tête
 - Il fait un signe de tête affirmatif
 - Il hoche la tête affirmativement

Nodding hill...

nodding

	f	t(f e)	phi	n(phi e)
	signe	0.164	4	0.342
	la	0.123	3	0.293
	tête	0.097	2	0.167
	oui	0.086	1	0.163
	fait	0.073	0	0.023
	que	0.073		
	hoche	0.054		
	hocher	0.048		
	faire	0.030		
	me	0.024		
	approuve	0.019		
	qui	0.019		
	un	0.012		
6.863J/9.	faites 611J Lecture	0.011 19 Sp03		



administering₇

and $_8$

collecting₉

 $fees_{10}$

under₁₃

the₁₂

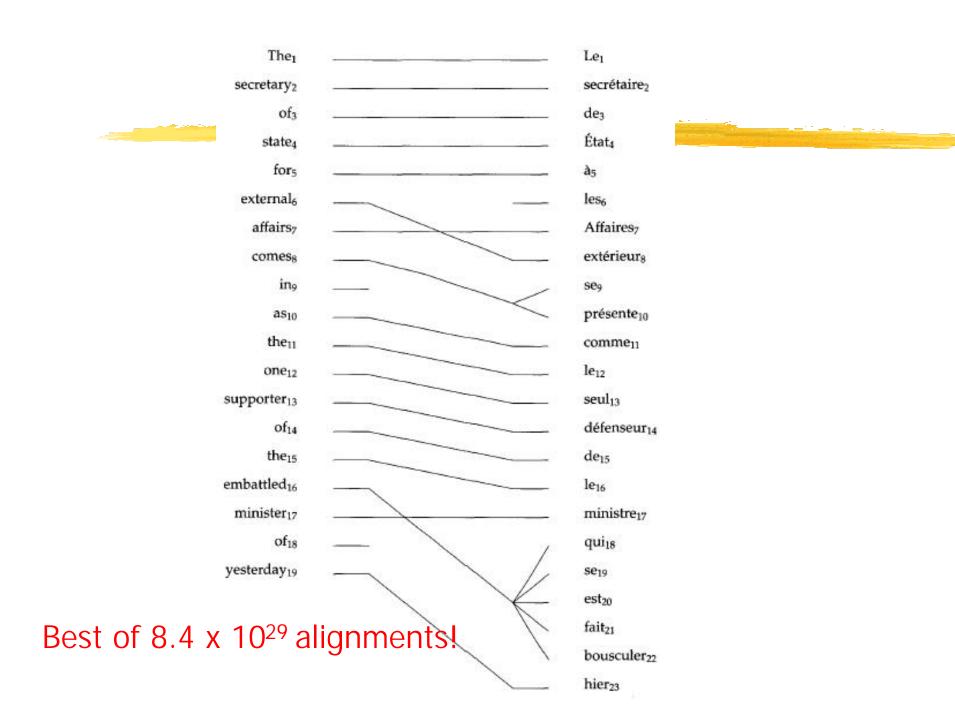
new₁₃

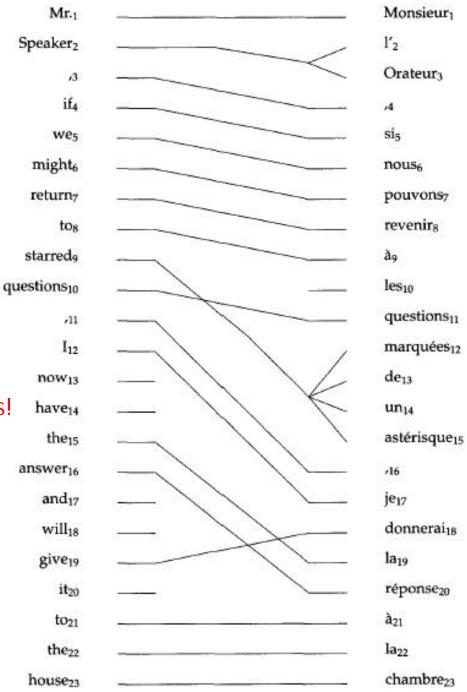
proposal14

?15

Best of 1.9 x 10²⁶ alignments!

 En_1 $vertu_2$ de_3 les_4 nouvelles₅ $propositions_6$ 17 quels est₉ le_{10} côut₁₁ prévu₁₂ de₁₃ administration14 et_{15} de16 perception₁₇ de₁₈ les₁₉ droits20 ?21





5.6 x 10³¹ alignments!

Morals? : Moralejas? ? ? ? .

- Always works hard even if the input sentence is one of the training examples
- Ignores morphology so what happens?
- Ignores phrasal chunks can we include this? (Do we?)
- What next? Alternative histories...
- Can we include syntax and semantics?
- (why not?)