
6.863J Natural Language Processing
Lecture 19: the meaning of it all, #5

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 19

The Menu Bar
• Administrivia:

• Lab 4(a&b) out April 16– last lab before final
project

Agenda:
Being curteous: from meaning to discourse
How to use language

6.863J/9.611J SP04 Lecture 19

The story so far

• We can map (english) language to lambda
formulas

• We can use FOL to check them
• We can use model theory to see if they can

be satisfied

• How does this fit in..?

6.863J/9.611J SP04 Lecture 19

The Language use domain

• As inference tasks: (cf press conference)
• Querying
• Consistency checking
• Informativity checking (why?)

6.863J/9.611J SP04 Lecture 19

Querying

• Given a model M and a formula φ, is φ true in
model M or not?

• M is a little picture of the world (eg, inside
Bush’s brain…)

• Querying φ is asking whether or not the info
is true in this little piece

• We need a model checker for this
• For finite models – easy to do, and needed

for question answering

6.863J/9.611J SP04 Lecture 19

Consistency checking

• A formula is consistent if it is satisfiable in at
least one model - such formulas describe
‘conceivable’ or ‘possible’ states of affairs. Eg,
silly(bob) is consistent

• A formula that is not consistent is inconsistent
eg, silly(bob) & not silly(bob)

• A finite set of formulas is consistent if its
conjunction is consistent, otherwise,
inconsistent

6.863J/9.611J SP04 Lecture 19

Consistency checking

• We would like to do this – why?
• If inconsistent information, something might

be going wrong with communication in
discourse

• But this is much harder to check…
• It is undecideable!
• We have to use model builder and thm prover

to at least help

6.863J/9.611J SP04 Lecture 19

Informativity

• A valid sentence is a sentence that is true in
all models (eg, silly(bob) ∨¬ silly(bob)). A
sentence that is not valid is invalid

• Formula set Φ, and new formula ϕ
• Valid argument: formula set Φ implies ϕ (in

all models)
• Invalid argument: otherwise

6.863J/9.611J SP04 Lecture 19

Informativity

• Valid sentence is uninformative Why?
• Doesn’t give us any specific information (true

in all possible models)
• A sentence that is not valid is informative
• Otherwise, uninformative
• (wrt to some collection of formulas…)

6.863J/9.611J SP04 Lecture 19

Informativity

• Also harder than querying
• Undecideable for FOL

6.863J/9.611J SP04 Lecture 19

Informativity and consistency

• If φ informative = not valid = iff not φ is
valid, so the opposite of φ really was an
option

• Contrariwise, if φ uninformative then not φ is
invalid, so the opposite of φ is not an option

• So, we can use a theorem prover to kill two
birds with one stone (is that an idiom?)

6.863J/9.611J SP04 Lecture 19

Theorem prover

• Used to tell us whether a formula is valid or not
• Proof theory: purely syntactic way to figure out

whether a formula is valid or not
• Methods (see AI) – tableaux and resolution theorem

proving
• Try to prove the negation of the formula – if you

can’t, then the formula is valid
• If we have premises true and a result false, then

informative (negation of (φ implies ϕ))

6.863J/9.611J SP04 Lecture 19

What happens if theorem prover
doesn’t get answer?

• FOL undecideable
• So, if no answer, don’t know if the formula is

not a theorem… (is not valid)
• If there is an answer, pretty sure the formula

is a theorem (is valid)

6.863J/9.611J SP04 Lecture 19

Model building

• Theorem provers check whether a formula or set of
formulas is valid (true in all possible models)

• Model builders attempt to construct a formula (or set
of formulas) and so show that this formula is
satisfiable (true in at least one possible model)

• So – must limit model builders to domain size…
• Uncertainty: if you don’t find model, you don’t

know… but
• If you do, pretty sure the formula is satisfiable
• Restricted to finite models (Everybody has a mother,

even George Bush)

6.863J/9.611J SP04 Lecture 19

Theorem proving and model building

Consistency
To check whether φ is consistent…

• Give ¬φ to a theorem prover; if it finds a
proof, φ is not consistent

• Give ¬φ to a model builder; if it finds a
model, then φ is consistent

6.863J/9.611J SP04 Lecture 19

Theorem proving and model building

Informativity
To check whether φ is informative wrt ϕ:

• Give ϕ→φ to a theorem prover; if it finds a
proof, φ is not informative wrt ϕ

• Give ϕ∧φ and ϕ∧¬φ to a model builder; if it
finds a model in both cases, then φ is
informative wrt ϕ

6.863J/9.611J SP04 Lecture 19

The Bob hierarchy

• Dumb bob - just parse and quantifier
assignment, no inferences

• Clever bob – only consistent inferences
(logical syntax only…)

6.863J/9.611J SP04 Lecture 19

The bob hierarchy

• Mia smokes and does not smoke
• Bob: OK
• Vincent likes every woman
• Bob: OK
• Mia is a woman; Vincent does not like Mia
• Bob: OK

6.863J/9.611J SP04 Lecture 19

Clever Bob

• Use model builder mace to check consistency,
and a theorem prover otter to check
inconsistency

• Use this to reject inconsistent sentences

6.863J/9.611J SP04 Lecture 19

Representing Discourse

• Discourse so far: a collection of the previous
sentences= D

• Add single new sentence, φ.
• Does D imply ¬φ (in all models)?
• If so, then then φ is inconsistent

6.863J/9.611J SP04 Lecture 19

Actual program: add “consistency”

6.863J/9.611J SP04 Lecture 19

Rugrat bob

• Mia is a woman
• Vincent likes every woman
• Vincent does not like Mia
• Must be able to do equality reasoning:

woman(A) & mia = A

• Need to do general theorem proving…but this
can be hard…

• Solution:

6.863J/9.611J SP04 Lecture 19

Clever Bob

• Run model builder and theorem prover in parallel
• Why?
• If a discourse is inconsistent, then a theorem prover

will never be able to detect an inconsistency - just
runs until clock’s up (negative test for consistency –
are no WMD in Iraq)

• Model builder is a positive check for consistency

6.863J/9.611J SP04 Lecture 19

Clever bob

6.863J/9.611J SP04 Lecture 19

Models not only what you might
expect…

Why?

6.863J/9.611J SP04 Lecture 19

It doesn’t know otherwise…

6.863J/9.611J SP04 Lecture 19

Both thm prover & model builder

• Vincent is a man
• Consistency – mace finds result

• Mia likes every man
• Consistency – mace

• Mia does not like Vincent
• Doesn’t believe it – uses thm prover

6.863J/9.611J SP04 Lecture 19

Informativeness

• Theorem prover gives negative check for
informativeness – if Discourse-so-far implies
the new sentence φ (as a theorem) the new
sentence φ is uninformative

• Model builder gives positive check for
informativeness – if model builder can show
that Discourse-so-far ∪ {¬φ}
has a model, then latest sentence is
informative

6.863J/9.611J SP04 Lecture 19

Example

• Vincent knows every boxer
• Butch is a boxer
• (therefore) Vincent knows Butch – valid
vs…
• If Vincent snorts then Jody smokes
• Jody smokes
• Vincent snorts – what will it say? What about

Vincent does not snort

6.863J/9.611J SP04 Lecture 19

Can we use consistency check for
informativeness?

• Consistency done first – so φ known to be
consistent with previous discourse

• Suppose M is the model made so far
• Suppose new sentence φ is false in this model

M
• What does this tell us? Is φ informative?

6.863J/9.611J SP04 Lecture 19

Eliminating logical duplicates

• A boxer loves a woman
• Has two readings from quantifiers, and two

model results:

6.863J/9.611J SP04 Lecture 19

What about this one?

• Every boxer loves a woman

• System as it stands says two readings
“probably now equivalent” (theorem prover)

• Why? Can’t we do better?
• What about having the strongest reading

only? What else to cut down on thm proving
burden?

6.863J/9.611J SP04 Lecture 19

If ignorance is bliss

• Knowledgeable Curt
• Use background knowledge as additional

premises

• Add lexical knowledge and world knowledge

6.863J/9.611J SP04 Lecture 19

Consistency & Informativeness

• Consistency now:
[negative test] Lexical knowledge ∪ World
knowledge ∪ Discourse-so-far ⇒ ¬φ

[positive test] Lexical knowledge ∪ World
knowledge ∪ Discourse-so-far ∪ {φ} has a
model

6.863J/9.611J SP04 Lecture 19

Informativeness

• [Negative test] Lexical knowledge ∪ World
knowledge ∪ Discourse-so-far ⇒ φ

• [positive test] Lexical knowledge ∪ World
knowledge ∪ Discourse-so-far ∪ {¬φ} has a
model

6.863J/9.611J SP04 Lecture 19

So let’s see what this does

• Mia smokes gives us: smoke(mia)
• What does this take?

6.863J/9.611J SP04 Lecture 19

6.863J/9.611J SP04 Lecture 19

Hypernym (‘above’)

Hyponym (‘below’)

Not transitive!

6.863J/9.611J SP04 Lecture 19

6.863J/9.611J SP04 Lecture 19

Hypernym: All X, car x implies vehicle x
All x, concrete x implies not abstract x

6.863J/9.611J SP04 Lecture 19

World knowledge

• Only persons can dance
• For all x, Dance(x) implies person(x)

• drink: For all x, for all y, drink(x,y) implies
person(x) & beverage(y)

• Plays into consistency and in rejecting scope
readings: ‘Every car has a radio’

6.863J/9.611J SP04 Lecture 19

World knowledge helps…

> 1 car… (compare: every boxer has
a broken nose)

6.863J/9.611J SP04 Lecture 19

Helpful bob

• Vincent likes Mia
• Who likes a plant?
• Ans: “I have no idea”
• Answering questions – yes, no, or no

answer…
• Query model builder with free variable for x,

corresponding to ‘who’

6.863J/9.611J SP04 Lecture 19

How it’s done

6.863J/9.611J SP04 Lecture 19

Is this all for answering a discourse
query?

• No!
• Consider: discourse models show a possible

picture of the world – the way the agent
imagines them to be, not necessarily the way
things are

• What can go wrong?
• Example: Mia or Jody dances. Who dances?
• If just say: Mia, or just Jody – this is more

restrictive…

6.863J/9.611J SP04 Lecture 19

What to do?

• Check whether answer is just possible or whether the
answer is guaranteed… by using theorem prover on
what model builder has selected

• Jody or Mia dances (dance(J) OR dance(M))
• Build model in which “Jody dances” is true
• ‘Who dances’ finds ‘Jody’ as candidate answer – but

perhaps this is so because of discourse..does this
answer follow logically from discourse so far &
background knowledge?

6.863J/9.611J SP04 Lecture 19

Answer

• Try to prove dance(J) from background &
discourse alone

• Won’t work – it’s a disjunction
• So, hedge bet

6.863J/9.611J SP04 Lecture 19

Generating answers

• Even a bit of discourse/communication here
• Why do we answer ‘Jody’ instead of ‘a

person’?

• Generating more specific answers – when?
How?

• We need a theory!

6.863J/9.611J SP04 Lecture 19

Discourse representation theory
(DRT)

• Semantic framework w/ a language to
describe discourse

• Translate discourse to FO logic
• Compatible with lambda calculus approach

6.863J/9.611J SP04 Lecture 19

DRT overview

• Uses language based on box-like structures
called DRSs (discourse representation
structures)

• Intuition: DRSs are pictures
• Another (nonrepresentational) view: DRSs are

programs

6.863J/9.611J SP04 Lecture 19

Discourse

• Mia is a woman. She loves Vincent

• A man snorts. He collapses.

• Problems: complex post-processing &
counter-intuitive readings

6.863J/9.611J SP04 Lecture 19

We will see if we can do this..

• If a criminal eats a big kahuna burger, he enjoys
it

• Translation – the correct one – is:
∀x∀y [criminal(x) & big_k_b(y) & eat(x,y)→ enjoy(x,y)

But our system current gets:
∃ x [criminal(x) & ∃y[big_k_b(y) & eat(x,y)]] →

enjoy(x,y)

6.863J/9.611J SP04 Lecture 19

Context change potential

• When we utter ‘a man snorts’ we don’t simply
make a claim about the world, we change the
context in which subsequent utterances will
be interpreted (hmm, like a frame….)

• Start a new discourse with the empty box

6.863J/9.611J SP04 Lecture 19

Changing context
• Start a new discourse with the empty box

• Expand this box with info from the entire
discourse

x

man(x)
snorts(x)

6.863J/9.611J SP04 Lecture 19

Pronouns
• A man snorts. He collapses

1. Add new discourse referent, y
2. Add condition ‘collapse(y)’
3. Add equation ‘x=y’

The discourse referent introduced must be identified with
an accessible discourse referent

x,y

man(x)
snorts(x)
collapse(y)
x=y

6.863J/9.611J SP04 Lecture 19

Discourse 2

• Vincent snorts. He collapses.

Same as quantified NPs…equational

x, y

x=Vincent
snorts(x)
collapse(y)
y=x

6.863J/9.611J SP04 Lecture 19

DRT summary so far

• Pictures of changing context
• By introducing discourse referents and stating

constraints
• Proper names and quantifed NPs handled the

same
• Parallel between anaphoric NPs and proper

names

6.863J/9.611J SP04 Lecture 19

DRS languages

• Handle universal quantification and negation
• DRSs nested, combined with connectives
DRS languages like FOL

• Contain connectives ∨, ¬, → , =(but not usually ∧)
• Symbols x,y,z,… - these are called discourse

referents, not variables
Differences

• Don’t contain ∀ or ∃ (this is done by boxes for ∀
or implicit, for ∃)

6.863J/9.611J SP04 Lecture 19

Examples

• We’ve seen indefinite NP, ‘a man snorts’,
proper name, eg, Vincent does not snort

snort(x)

x = vincent

x

¬

6.863J/9.611J SP04 Lecture 19

Universal quantifiers

• Every boxer snorts

boxer(x) snort(x)

x
→

6.863J/9.611J SP04 Lecture 19

Informal semantics for DRS

• Q: When is a DRS satisfied in a model?
• A: Iff it is an accurate image of the info

recorded inside the model

x,y

woman(x)
boxer(x)
admire(x,y)

6.863J/9.611J SP04 Lecture 19

Complex conditions

• Negated DRS: satisfied if it is not possible to
embed the picture inside the model

• Disjunctive: can embed both parts in model
• Implicational: no matter what entities used to

embed antecedent, we can embed
consequent

6.863J/9.611J SP04 Lecture 19

Most important constraint - referents

• Accessibility: a geometric concept – the way
DRSs are stacked inside one another

• Discourse referents of DRS K1 are accessible
from DRS K2 when K1 equals K2 or when K1
subordinates K2

• Intuitively: look up and then look left (with →)

6.863J/9.611J SP04 Lecture 19

Calculating accessibility

• Vincent snorts. He collapses.

• x is accessible to y (they are part of the same DRS)

x, y

x=Vincent
snorts(x)
collapse(y)
y=x

6.863J/9.611J SP04 Lecture 19

Calculating accessibilty

• Every boxer snorts. He collapses.

snort(x)boxer(x)

x
→

collapse(y)
y=?

y

6.863J/9.611J SP04 Lecture 19

Back to the Kahuna burger…

• How do we represent this in DRT?

6.863J/9.611J SP04 Lecture 19

6.863J/9.611J SP04 Lecture 19

Questions

• Does the DRS representation really capture
the meaning?

• Can we build the representations
systematically?

• A: Yes, we can translate to FOL and get the
right answer…

• A: Yes, you can do it top down or bottom up

