6.863] Natural Language Processing
Lecture 19: the meaning of it all, #5

.

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

. Iﬂ}dministrivia:

P 4(a&b) out April 16— last lab before final
project
Agenda:
Being curteous: from meaning to discourse
How to use language

6.8631/9.611] SP04 Lecture 19

he story so far
ol

. We can map (english) language to lambda
formulas

. We can use FOL to check them

. We can use model theory to see if they can
be satisfied

. How does this fit in..?

6.8631/9.611] SP04 Lecture 19

‘ '||'he Language use domain
|

L | |
. As inference tasks: (cf press conference)
. Querying
. Consistency checking
. Informativity checking (why?)

6.8631/9.611] SP04 Lecture 19

‘ @uerying

. Given a model M and a formula ¢, is ¢ true in

model M or not?

M is a little picture of the world (eg, inside
Bush’s brain...)

. Querying ¢ is asking whether or not the info

is true in this little piece

. We need a model checker for this
. For finite models — easy to do, and needed

for question answering

6.8631/9.611] SP04 Lecture 19

‘ ﬁ:onsistency checking

. A formula is consistent if it is satisfiable in at

least one model - such formulas describe
‘conceivable’ or ‘possible’ states of affairs. Eg,
silly(bob) is consistent

. A formula that is not consistent is inconsistent

eg, silly(bob) & not silly(bob)

. A finite set of formulas is consistent if its

conjunction is consistent, otherwise,
inconsistent

6.8631/9.611] SP04 Lecture 19

8

‘ Fonsistency checking
|

\
. We would like to do this — why?

. If inconsistent information, something might
be going wrong with communication in
discourse

. But this is much harder to check...
. It is undecideable!

. We have to use model builder and thm prover
to at least help

6.8631/9.611] SP04 Lecture 19

&8

&

nformativity
|

|

. A valid sentence is a sentence that is true in
all models (eg, silly(bob) v— silly(bob)). A
sentence that is not valid is invalid

. Formula set ®, and new formula ¢

. Valid argument: formula set ® implies ¢ (in
all models)

. Invalid argument: otherwise

6.8631/9.611] SP04 Lecture 19

B

i

nformativity
|

\
. Valid sentence is uninformative Why?

. Doesn't give us any specific information (true
in all possible models)

. A sentence that is not valid is informative
. Otherwise, uninformative
. (wrt to some collection of formulas...)

6.8631/9.611] SP04 Lecture 19

|

}nformativity

|
. Also harder than querying

. Undecideable for FOL

6.8631/9.611] SP04 Lecture 19

‘ *nformativity and consistency
|

|
. If ¢ informative = not valid = iff not ¢ is
valid, so the opposite of ¢ really was an
option
. Contrariwise, if ¢ uninformative then not ¢ is
invalid, so the opposite of ¢ is not an option

. S0, we can use a theorem prover to kill two
birds with one stone (is that an idiom?)

6.8631/9.611] SP04 Lecture 19

‘ 'f'heorem prover
|

& I ‘
. Used to tell us whether a formula is valid or not

. Proof theory: purely syntactic way to figure out
whether a formula is valid or not
Methods (see Al) — tableaux and resolution theorem
proving

. Try to prove the negation of the formula — if you
can't, then the formula is valid

. If we have premises true and a result false, then
informative (negation of (¢ implies ¢))

6.8631/9.611] SP04 Lecture 19

What happens if theorem prover
‘ goesn’t get answer?
|

. FOL undecideable

. So, if no answer, don't know if the formula is
not a theorem... (is not valid)

. If there is an answer, pretty sure the formula
is a theorem (is valid)

6.8631/9.611] SP04 Lecture 19

I|VIodeI building
|

. Theorem provers check whether a formula or set of
formulas is valid (true in all possible models)

. Model builders attempt to construct a formula (or set
of formulas) and so show that this formula is
satisfiable (true in at least one possible model)

. So — must limit model builders to domain size...

. Uncertainty: if you don't find model, you don't
know... but

. If you do, pretty sure the formula is satisfiable

. Restricted to finite models (Everybody has a mother,
even George Bush)

6.8631/9.611] SP04 Lecture 19

8

‘ 'f'heorem proving and model building
|

[
Consistency

To check whether ¢ is consistent...

. Give —¢ to a theorem prover; if it finds a
proof, ¢ is not consistent

. Give —¢ to a model builder; if it finds a
model, then ¢ is consistent

6.8631/9.611] SP04 Lecture 19

&8

‘ 'f'heorem proving and model building
|

[
Informativity

To check whether ¢ is informative wrt o:

. Give ¢—¢ to a theorem prover; if it finds a
proof, ¢ is not informative wrt ¢

. Give pAd and pa— to a model builder; if it
finds a model in both cases, then ¢ is
informative wrt ¢

6.8631/9.611] SP04 Lecture 19

B

‘ '||'he Bob hierarchy
|

. Dumb bob - just parse and quantifier
assignment, no inferences

. Clever bob — only consistent inferences
(logical syntax only...)

6.8631/9.611] SP04 Lecture 19

|

‘ '||'he bob hierarchy
|

| |
. Mia smokes and does not smoke

. Bob: OK

. Vincent likes every woman

. Bob: OK

. Mia is a woman; Vincent does not like Mia
. Bob: OK

6.8631/9.611] SP04 Lecture 19

‘ Flever Bob
1
. Use model builder mace to check consistency,

and a theorem prover otter to check
inconsistency

. Use this to reject inconsistent sentences

6.8631/9.611] SP04 Lecture 19

L
I

E{epresenting Discourse
|
|

. Discourse so far: a collection of the previous
sentences= D

. Add single new sentence, ¢.
. Does D imply —¢ (in all models)?
. If so, then then ¢ is inconsistent

6.8631/9.611] SP04 Lecture 19

{\ctual program: add “consistency”
|

l
curtUpdate (Input,Moves,run) : -

kellerStorage(Input,Readings), !,
updateHistory(Input),
readings (01dReadings),
combine (Readings,0ldReadings,Combined),
consistentReadings(Combined-NewReadings,Moves),
updateReadings (NewReadings),
updateModels(Models) .

6.8631/9.611] SP04 Lecture 19

‘ Fugrat bob

&
I

. Mia is a woman
. Vincent likes every woman
. Vincent does not like Mia

. Must be able to do equality reasoning:
woman(A) & mia = A

. Need to do general theorem proving...but this
can be hard...

. Solution:

6.8631/9.611] SP04 Lecture 19

B

lever Bob
o

[
. Run model builder and theorem prover in parallel
Why?
If a discourse is inconsistent, then a theorem prover
will never be able to detect an inconsistency - just
runs until clock’s up (negative test for consistency —
are no WMD in Iraq)

Model builder is a positive check for consistency

6.8631/9.611] SP04 Lecture 19

|

lever bob
ot

> Mia dances.

Message (consistency checking): mace found a result.
Curt: OK.

> models

1 model([d1], [£(1,dance, [d1]),f(0,mia,d1)])

6.8631/9.611] SP04 Lecture 19

Models not only what you might

Fxpect. .
‘ | VVhY?

B3
> Jody dances

Message (consistency checking): mace found a result.
Curt: OK.

> models

1 model([d1], [£(1,dance, [d1]),£(0,jody,d1),f(0,mia,d1)

6.8631/9.611] SP04 Lecture 19

‘ it doesn’t know otherwise...
|

L =l

> Mia 18 not Jody.

Message (consistency checking): mace found a result.
Curt: UK.

> models

1 model ([d1,d2], [£(0,mia,d1),£(0, jody,d2),£(1,dance, [d1,d2])])

6.8631/9.611] SP04 Lecture 19

8

‘ IPoth thm prover & model builder
|

| \
. Vincent is a man

. Consistency — mace finds result
. Mia likes every man
. Consistency — mace
. Mia does not like Vincent
. Doesn'’t believe it — uses thm prover

6.8631/9.611] SP04 Lecture 19

‘ }nformativeness
|

[
. Theorem prover gives negative check for

informativeness — if Discourse-so-far implies
the new sentence ¢ (as a theorem) the new

sentence ¢ is uninformative
. Model builder gives positive check for

informativeness — if model builder can show

that Discourse-so-far U {—¢}

has a model, then latest sentence is
informative

6.8631/9.611] SP04 Lecture 19

8

Xxample
IF

\
. Vincent knows every boxer

. Butch is a boxer

. (therefore) Vincent knows Butch — valid
VS...

. If Vincent snorts then Jody smokes

. Jody smokes

. Vincent snorts — what will it say? What about
Vincent does not snort

6.8631/9.611] SP04 Lecture 19

&8

Can we use consistency check for
ilnformativeness?
|

I
. Consistency done first — so ¢ known to be
consistent with previous discourse

. Suppose M is the model made so far

. Suppose new sentence ¢ is false in this model
M

. What does this tell us? Is ¢ informative?

6.8631/9.611] SP04 Lecture 19

‘ Fliminating logical duplicates
|

B
[
. A boxer loves a woman

. Has two readings from quantifiers, and two
model results:

> readings

1 exists A (boxer(A) & exists B (woman(B) & love(A,B)))
2 exists A (woman(A) & exists B (boxer(B) & love(B,A)))

6.8631/9.611] SP04 Lecture 19

‘ YVhat about this one?
|
L | |

. Every boxer loves a woman

. System as it stands says two readings
“probably now equivalent” (theorem prover)

. Why? Can't we do better?

- What about having the strongest reading
only? What else to cut down on thm proving
burden?

6.8631/9.611] SP04 Lecture 19

‘ {f ignorance is bliss
|

| | [
. Knowledgeable Curt

. Use background knowledge as additional
premises

. Add lexical knowledge and world knowledge

6.8631/9.611] SP04 Lecture 19

‘ Fonsistency & Informativeness
|

&
[
. Consistency now:

[negative test] Lexical knowledge u World
knowledge U Discourse-so-far = —¢

[positive test] Lexical knowledge v World
knowledge v Discourse-so-far U {$} has a
model

6.8631/9.611] SP04 Lecture 19

{nformativeness

. [Negative test] Lexical knowledge u World

knowledge U Discourse-so-far = ¢

. [positive test] Lexical knowledge w World

knowledge U Discourse-so-far U {—¢} has a
model

6.8631/9.611] SP04 Lecture 19

|

‘ Sf»o let's see what this does
|

. Mia smokes gives us: smoke(mia)
. What does this take?

6.8631/9.611] SP04 Lecture 19

=

(forall A (concrete(A) > 7 abstract(4)) &
(forall B (entity(B) > concrete(B)) &
(forall C (entity(C) > thing(C)) &

(forall D (1iving(D) > ~ nonliving(D)) &
(forall E (male(E) > ~ female(E)) &
(forall F (organism(F) > living(F)) &
(forall G (organism(G) > entity(G)) &
(forall H (animate(H) > ~ inanimate(H)) &
(forall I (human(I) > ~ nonhuman(I)) &
(forall J (person(J) > human(J)) &

(forall K (person(K) > animate(K)) &
(forall L (person(L) > organism(L)) &

(forall M (female(M) > ~ male(M)) &
(female(mia) & (person(mia) &

(female(mia) & person(mia)))))))))))))))))

6.8631/9.611] SP04 Lecture 19

ORGANISM

Not transitive!

6.8631/9.611] SP04 Lecture 19

ORGANISM

PERSON

6.8631/9.611] SP04 Lecture 19

I ABSTRACT — CONCRETE
| NONLIVING — LIVING

EDIBLE — INEDIBLE
IMMOBILE — MOBILE
ANIMATE — INANIMATE
NONHUMAN — HUMAN
MALE — FEMALE

Hypernym: All X, car x implies vehicle x
All x, concrete x implies not abstract x

6.8631/9.611] SP04 Lecture 19

orld knowledge
!

Only persons can dance
. For all x, Dance(x) implies person(x)

. drink: For all x, for all y, drink(x,y) implies
person(x) & beverage(y)

. Plays into consistency and in rejecting scope
readings: ‘Every car has a radio’

6.8631/9.611] SP04 Lecture 19

YVorId knowledge helps...
|
|

B ‘
|
> 7- readings
1 forall A (car(A) > exists B (radio(B) & have(a, B)))

forall T forall U (exists V
(object(T) & (object(U) & (object(V) &
(have(T, V) & have(U, V))))) > T = 1))

> 1 car... (compare: every boxer has
a broken nose)

6.8631/9.611] SP04 Lecture 19

k ‘

I—Ielpful bob
|
|

Vincent likes Mia
Who likes a plant?
Ans: I have no idea”

Answering questions — yes, no, or no
answer...

Query model builder with free variable for x,
corresponding to ‘who’

6.8631/9.611] SP04 Lecture 19

l—low it's done
|

Models=[Model]_],
satisfy(some(X,and(R,S)) ,Model, [],Result),
\+ Result=undef,

o

findall(A,satisfy(and(R,S),Model, [g(X,A)] ,pos) ,Answers),
realiselnswer (Answers,que(X,R,S5),Model,String),
Moves=[sensible_question,answer(String)]

Moves=[unknown_answer]

6.8631/9.611] SP04 Lecture 19

Is this all for answering a discourse
‘ ﬁ]uery?
5 |
[
. No!

. Consider: discourse models show a possible
picture of the world — the way the agent
imagines them to be, not necessarily the way
things are

- What can go wrong?
. Example: Mia or Jody dances. Who dances?
. If just say: Mia, or just Jody — this is more

restrictive...
6.8631/9.611] SP04 Lecture 19
‘ YVhat to do?
1
. Check whether answer is just possible or whether the

answer is guaranteed... by using theorem prover on
what model builder has selected

. Jody or Mia dances (dance(J) OR dance(M))
. Build model in which “Jody dances” is true

. ‘Who dances’ finds ‘Jody’ as candidate answer — but
perhaps this is so because of discourse..does this
answer follow logically from discourse so far &
background knowledge?

6.8631/9.611] SP04 Lecture 19

,i\nswer
1
. Try to prove dance(J) from background &
discourse alone
. Won't work — it's a disjunction
. S0, hedge bet

6.8631/9.611] SP04 Lecture 19

Fenerating answers
|
|

B
|
. Even a bit of discourse/communication here

. Why do we answer ‘Jody’ instead of ‘a
person’?

. Generating more specific answers — when?
How?

. We need a theory!

6.8631/9.611] SP04 Lecture 19

Discourse representation theory
‘ ﬁDRT)
|

. Semantic framework w/ a language to
describe discourse

. Translate discourse to FO logic
. Compatible with lambda calculus approach

6.8631/9.611] SP04 Lecture 19

‘ IPRT overview
1
. Uses language based on box-like structures

called DRSs (discourse representation
structures)

. Intuition: DRSs are pictures

. Another (nonrepresentational) view: DRSs are
programs

6.8631/9.611] SP04 Lecture 19

‘ Piscourse
] |
. Mia is a woman. She loves Vincent

. A man snorts. He collapses.

. Problems: complex post-processing &
counter-intuitive readings

6.8631/9.611] SP04 Lecture 19

‘ YVe will see if we can do this..
|

| | |
. If a criminal eats a big kahuna burger, he enjoys
it
. Translation — the correct one — is:
vxVy [criminal(x) & big_k_b(y) & eat(x,y)— enjoy(X,y)

But our system current gets:
3 x [criminal(x) & 3y[big_k_b(y) & eat(x,y)]] —»
enjoy(x,y)

6.8631/9.611] SP04 Lecture 19

‘ Fontext change potential
|

. When we utter ‘a man snorts’ we don't simply
make a claim about the world, we change the
context in which subsequent utterances will

be interpreted (hmm, like a frame....)

. Start a new discourse with the empty box

6.8631/9.611] SP04 Lecture 19

hanging context
| _.| Start a new discourse with the empty box

.- Expand this box with info from the entire

discourse

X

man(x)
snorts(x)

6.8631/9.611] SP04 Lecture 19

‘ Ii’ronouns

1. Add new discourse referent, y
2. Add condition ‘collapse(y)’ X,y
;5. Add equation ‘x=y’

man(x)
snorts(x)
collapse(y)
X=y

The discourse referent introduced must be identified with
an accessible discourse referent

6.8631/9.611] SP04 Lecture 19

‘ Piscourse 2
|
|

L
I

. Vincent snorts. He collapses.

X,y

x=Vincent
snorts(x)
collapse(y)
y=X

Same as quantified NPs...equational

6.8631/9.611] SP04 Lecture 19

‘ IPRT summary so far
: |
[
. Pictures of changing context

. By introducing discourse referents and stating
constraints

. Proper names and quantifed NPs handled the
same

. Parallel between anaphoric NPs and proper
names

6.8631/9.611] SP04 Lecture 19

‘ IPRS languages
i |
-
Handle universal quantification and negation
DRSs nested, combined with connectives
DRS languages like FOL

. Contain connectives v, —, — , =(but not usually)

. Symbols x,y,z,... - these are called discourse
referents, not variables

Differences

Don't contain V or 3 (this is done by boxes for v
or implicit, for 3)

6.8631/9.611] SP04 Lecture 19

xamples
u

B | [
. We've seen indefinite NP, ‘a man snorts’,
proper name, eg, Vincent does not snort
X
X = vincent
B snort(x)
6.8631/9.611] SP04 Lecture 19
‘ Pniversal quantifiers
|

| I |

. Every boxer snorts

X

boxer(x) snort(x)

6.8631/9.611] SP04 Lecture 19

8

}nformal semantics for DRS
|

\
. Q: When is a DRS satisfied in a model?

. A: Iff it is an accurate image of the info
recorded inside the model

X,y

woman(x)
boxer(x)
admire(x,y)

6.8631/9.611] SP04 Lecture 19

&8

‘ Fomplex conditions
|

|
. Negated DRS: satisfied if it is not possible to
embed the picture inside the model
. Disjunctive: can embed both parts in model
. Implicational: no matter what entities used to
embed antecedent, we can embed
consequent

6.8631/9.611] SP04 Lecture 19

I|VIost important constraint - referents
|

| \
. Accessibility: a geometric concept — the way
DRSs are stacked inside one another

. Discourse referents of DRS K1 are accessible
from DRS K2 when K1 equals K2 or when K1
subordinates K2

. Intuitively: look up and then look left (with —)

6.8631/9.611] SP04 Lecture 19

‘ Falculating accessibility
|

-
. Vincent snorts. He collapses.

X,y

x=Vincent
snorts(x)
collapse(y)
y=X

. X is accessible to y (they are part of the same DRS)

6.8631/9.611] SP04 Lecture 19

‘ Falculating accessibilty
|

| | [
. Every boxer snorts. He collapses.
y
X
5
boxer(x) snort(x)
collapse(y)
y="?
6.8631/9.611] SP04 Lecture 19
‘ Pack to the Kahuna burger...
|

| I |

. How do we represent this in DRT?

6.8631/9.611] SP04 Lecture 19

e
Xy vV W
MAN(x) _ | ENJOY(v,w)
BIG_KAHUNA_BURGER (Y) V=X
EAT(X,Y) w=y
6.8633/9.611] SP04 Lecture 19
‘ uestions
b |

—
. Does the DRS representation really capture
the meaning?

. Can we build the representations
systematically?

. A: Yes, we can translate to FOL and get the
right answer...

. A: Yes, you can do it top down or bottom up

6.8631/9.611] SP04 Lecture 19

