6.863J Natural Language Processing Lecture 19: Machine translation 3

Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

- Administrivia:
 - Start w/ final projects (final proj: was 20% boost to 35%, 4 labs 55%?)
 - Agenda:
 - MT: the statistical approach
 - · Formalize what we did last time
 - Divide & conquer: 4 steps
 - Noisy channel model
 - Language Model
 - Translation model
 - Scrambling & Fertility; NULL words
 6.8633/9.611J Lecture 19 Sp03

Submenu

- The basic idea: moving from Language A to Language B
- The noisy channel model
- Juggling words in translation bag of words model; divide & translate
- Using n-grams the Language Model
- The Translation Model
- Estimating parameters from data
- Bootstrapping via EM
- Searching for the best solution

6.863J/9.611J Lecture 19 Sp03

Like our alien system

- We will have two parts:
- 1. A <u>bi-lingual dictionary</u> that will tell us what e words go w/ what f words
- 2. A <u>shake-n-bake idea</u> of how the words might get scrambled around
- We get these from cycling between alignment & word translations – reestimation loop on which words linked with which other words

Summary of components - Model 3

- The language model: P(e)
- The translation model for P(f|e)
 - Word translation t
 - Distortion (scrambling) d
 - Fertility φ
- (really evil): null words eo and fo
- Maximize (A* search) through product space

6.863J/9.611J Lecture 19 Sp03

OK, what are the other models?

- Model 1 just t
- Model 2 just t & simple d
- What are they for?
- As we'll see used to pipeline training get estimates for Model 3

6.863J/9.611J Lecture 19 Sp03

Fundamentals

• The basic equation

 $\hat{e} = \operatorname{argmax} \Pr(e) \Pr(f|e)$

- Language Model Probability Estimation Pr(e)
- Translation Model Probability Estimation -Pr(f|e)
- Search Problem maximizing their product

6.863J/9.611J Lecture 19 Sp03

Finding the pr estimates

- Usual problem: sparse data
 - We cannot create a "sentence dictionary" $E \leftrightarrow F$
 - we do not see a sentence even twice, let alone once

- Review: it does the job of ordering the English words
- We estimate this from monolingual text
- Just like our alien language bigram data

6.863J/9.611J Lecture 19 Sp03

Bag translation?

- Take sentence, cut into words, put in bag, shake, recover original sentence
- Why? (why: show how it gets order of English language, for P(e) estimate)
- How? Use n-gram model to rank difft arrangements of words:
 - S better than S' if P(S) > P(S')
 - Test: 100 S's, trigram model

6.863J/9.611J Lecture 19 Sp03

Bag results?

- Exact reconstruction (63%)
 - Please give me your response as soon as possible
 - Please give me your response as soon as possible
- Reconstruction that preserves meaning (20%)
 Now let me mention some of the disadvantages
 - Let me mention some of the disadvantages
- Rest garbage
 - In our organization research has two missions
 - In our missions research organization has two
- What is time complexity? What K does this use?

Estimating P(e)

- IBM used trigrams
- LOTS of them... we'll see details later
- For now...

6.863J/9.611J Lecture 19 Sp03

P(f|e) - Recall Model 3 story: French mustard

- Words in English replaced by French words, then scrambled
- · Let's review how
- Not word for word replacement (can't always have same length sentences)

Notation

- e= English sentence
- f = French sentence
- $\bullet \ \ e_i = i^{th} \ english \ word$
- $f_j = j^{th}$ french word
- I = # of words in English sentence
- m = # words in French sentence
- a = alignment (vector of integers $a_1\,a_2\,...\,a_m$ where each a_j ranges from 0 to I)
- a_j = actual English position connected to by the $j^{th}\mbox{ French}$ word in alignment a
- + e_{aj} = actual English word connected to by the $j^{th}\mbox{ French}$ word in alignment a
 - Φ_{i} = fertility of English word i (i = 1 to l) given alignment a

6.863J/9.611J Lecture 19 Sp03

OK, what parameters do we need?

- English sentence i= 1, 2, ..., I words
- Look at dependencies in the generative story!
- 3 basic parameters
- Parameter 1: Which f word to generate depends only on English word e that is doing generating
- Example: prob(fromage | monkey)
- Denote these by $t(\tau_i | e_i)$

6.863J/9.611J Lecture 19 Sp03

Procrustean bed

- For each word e_i in the english sentence e, i= 1, 2, ..., I, we choose a <u>fertility</u> φ(e_i), equal
- i = 1, 2, ..., i, we choose a <u>tertility</u> $\phi(e_i)$, equal to 0, 1, 2,...[25]
- This value is <u>solely</u> dependent on the English word, not other words or the sentence, or the other fertilities
- The French words are permuted ('distorted') assigned a position slot (this is the scrambling phase)
- Call this a <u>distortion parameter</u> d(i|j)
- Note that distortion_needn't be careful why?

Fertility

- Prob that <u>monkey</u> will produce certain # of French words
- Denoted $n(\phi_i \mid e_i) e.g.$, n(2|monkey)

Fertility

- The fertility of word i does not depend on the fertility of previous words.
 - Does not always concentrate its probability on events of interest.
- This deficiency is no serious problem.
- It might decrease the probability of all well-formed strings by a constant factor.

6.863J/9.611J Lecture 19 Sp03

Distortion

- Where the target position of the French word is, compared to the English word
- Think of this as distribution of alignment links
- First cut: d(k|i)
- Second cut: distortion depends on english and french sentence lengths (why?)
- So, parameter is: d(k|i, I, m)

6.863J/9.611J Lecture 19 Sp03

To fix the fertility issue...

- Final Procrustean twist
- Add notion of a <u>Null</u> word that can appear before beginning of english & french sentence, e_0 and f_0
- Purpose: account for 'spurious' words like function words (á, la, le, the, ...)
- Example in this case:

6.863J/9.611J Lecture 19 Sp03

Alignment as the "Translation Model" 4 0 1 2 3 5 6 • e₀ And the program has been implemented • f₀ Le programme a été mis en application 0 1 2 3 4 5 6 7 • Notation: f₀(1) Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) = 6.863J/9.611J Lecture 19 Sp03

What about...

- · Fertility of Null words?
- Do we want n(2 | null), etc.?
- Model 3: longer S's have more null words... (!) & uses a single parameter p1
- So, picture is: after fertilities assigned to all the real English words (excluding null), then will generate (perhaps) z French words
- As we generate each french word, throw in spurious French word with probability p1
- Finally: what about distortion for null words?

6.863J/9.611J Lecture 19 Sp03

Distortions for null words

- Since we can't predict them, we generate the french words first, according to fertilities, and then put null words in spots left over
- Example: if there are 3 null generated words, and 3 empty slots, there are 6 ways for putting them in, so the pr for the distortion is 1/6
- OK, the full monty...

6.863J/9.611J Lecture 19 Sp03

Model 3 in full

- 1. For each English word $e_{i, i} = 1,...l$, pick fertility Φ_{i} with probability $n(\Phi_{i} | e_{i})$
- 2. Pick the # of spurious french words ϕ_0 generated from $e_0=$ null
 - Use probability p_1 and the Σ of fertilities from Step 1
- 3. Let m be the sum of <u>all</u> the fertilities, incl null = total length of the output french sentence
- 4. For each i=0,1,...,I & each k=1,2,..., Φ_{I} pick french translated words τ_{ik} with prob t ($\tau_{ik} \mid e_{i}$)
- 5. For each i=1,2,...,I & each k=1,2,... Φ_i pick french target positions with prob d(t | i, I, m)

6.863J/9.611J Lecture 19 Sp03

And 2 more steps

- 6. [sprinkle jimmies] For each k=1,2,..., Φ_i choose positions in the Φ₀ k + 1 remaining vacant slots in spots 1,2,...,m, w/ total prob (1/Φ₀!)
- 7. Output French sentence with words τ_{ik} in the target positions, accdg to the probs $t(\tau_i | e_i)$

Model 3 in full

- Has four parameters: t, n, d, p
- t and n are 2-d tables of floating point numbers (words x fertilities)
- d is 1-d table of numbers
- p is just 1 number
- But...where can we can these numbers?
- How do we compute P(f|e)?

6.863J/9.611J Lecture 19 Sp03

Finding parameter values

- Suppose we had the actual step-by-step transform of english sentences into french...
- We could just count: e.g., if <u>did</u> appeared in 24,000 examples and was deleted 15,000 times, then n(0|did)= 5/8
- Word-word alignments can help us here

Alignment as the "Translation Model"	
0 1 2 3 4 5 6	
• e ₀ And the program has been in plemented	
 f₀ Le programme a été mis en application 	
0 1 2 3 4 5 6 7	
Notation:	
f ₀ (1) Le(2) programme(3) a(4) été(5) mis(6) en(6 application(6) = [2 3 4 5 6 6 6]	5)
6.863J/9.611J Lecture 19 Sp03	

OK, so how do we get d & p_1 ?

- · Can also get that from aligned pairs
- Every connection in alignment contributes to a particular parameter like d(3 | 2, 5,6)
- Get counts, dc, & normalize: d(3 | 2, 5, 6) = dc(3 | 2, 5, 6)/Σ dc(j|2, 5, 6)
- Finally, p₁. From alignments, N words in total french corpus, M generated by null.
- So, after each of the N-M real word cases, a spurious word is generated M times, or $p_1 = M/N\text{-}M_{\text{\tiny 6A8J99.611J \, Lecture 19 Sp03}}$

- We need aligned sentences to get parameter values...
- We need parameter values to get aligned sentences.... i.e., we want to maximize

P(a|e,f)

6.863J/9.611J Lecture 19 Sp03

comment amorçons-nous? ¿Cómo atamos con correa? Laying an egg: The magic
You can actually get estimates from non-aligned sentence pairs!!!
Exactly as you did in your (ahem) alien assignment
English & French words that co-occur in sentence translations might/might not be translations, <u>but</u> if we have a rough idea about correspondences, we can get idea about distortion probs... e.g., if first english word/first french word correspond, then what about d(1|1, l,m)?

The key: alignments

- Suppose we have a single correct alignment for each sentence pair
- We could collect all parameter counts directly
- But we don't...
- Suppose we have 2 equally good looking candidates...
- Then we weight the counts from each by 0.5 (a fractional count)

Exam	nple: ea	asy as a	ı, b,		
	b c v x y	b x y	b K x y	b C x y	
b=		NOUSE; X=		=bleue	

Can we figure out which alignment works best?

- Idea 1: use alignment weights
- Idea 2: actually use counts as proxies for probabilities

Better to compute alignment probabilities

- Let <u>a</u> be an alignment just a vector of integers
- We want highest P(a|e,f) (e & f are a particular sentence pair)
- What would make alignment more probable?
- If we had the translation t parameters, we could judge a good alignment ought to connect words that are already known to be high prob translations of one another
- An alignment summarizes (some of) the choices that get made

6.863J/9.611J Lecture 19 Sp03

P(a,f|e)

- BUT We can convert P(a|e,f) to: P(a,f|e)/P(f|e)
- P(a|e,f) = P(a,e,f)/P(e,f) = ...

6.863J/9.611J Lecture 19 Sp03

How to compute P(a|f,e) ?

- First term P(a,f|e) can be found from the story of Model 3: start with english string e, blah blah ... get alignment and french string (can have same alignment and two or more different french strings)
- Second term P(f|e) is what we've been after...it is all the ways of producing f, over all alignments, so in fact...

6.863J/9.611J Lecture 19 Sp03

All we need to find is

- $P(f|e) = \Sigma_a P(a,f|e)$
- OK, let's see about this formula

P(a,f|e)

- e= English sentence
- f = French sentence
- $e_i = i^{th} english word$
- f_j = jth french word
- I = # of words in English sentence
- m = # words in French sentence
- a = alignment (vector of integers $a_1\,a_2\,...\,a_m$ where each a_j ranges from 0 to I)
- a_{j} = actual English position connected to by the j^{th} French word in alignment a
- + e_{aj} = actual English word connected to by the $j^{th}\,\mbox{French}$ word in alignment a
- + ϕ_i = fertility of English word i (i = 1 to I) given alignment a _____6863J/9.611J Lecture 19 Sp03

P(a,f|e)

 word translation values implied by alignment & French string

$$P(a,f|e) = \prod_{i=1}^{l} n(f_i | e_i) * \prod_{j=1}^{m} t(f_j | e_{aj}) * \prod_{j=1}^{m} d(j|a_j, l, m)$$

• We will have to correct this a bit...for the null words...

6.863J/9.611J Lecture 19 Sp03

Adjustments to formula - 4

- 1. Should only count distortions that involve real english words, not <u>null</u> eliminate any <u>d</u> value for which $a_j = 0$
- 2. Need to include probability "costs" for spurious french words there are Φ_0 null french words, and m- Φ_0 real french words

How many ways to sprinkle in ϕ_0 'jimmies' – pick ϕ_0 balls out of urn that has m- ϕ balls, or, [(m- Φ_0) choose Φ_0] Must multiply these choices by prob costs:

- We choose to add spurious word ϕ_0 times, each with probability p_1 so total pr of this is $p_1 \phi_0$
- We choose to <u>not</u> add spurious word ((m- Φ_0) Φ_0) times, so total pr of this factor is $p_0^{(m-2\Phi_0)}$

Adjustments - last 2

 Probability Cost for placing spurious french words into target slots – there are <u>no</u> distortions for the null words, eg, d(j |0, I, m) Instead we put them in at the end, as the final step of generating the french string

There are Φ_0 ! possible orderings, all equally likely, so that adds cost factor of 1/ Φ_0 !

4. For 'fertile' words, e.g., english word x generates french p, q, r – then there are 6 (in general Φ_i) ways to do this (order is not known) In general, we must add this factor: $\prod \Phi_i$!

What is EM about?

- Learning: improve prob estimates
- Imagine game:
- I show you an English sentence e
- I hide a French translation f in my pocket
- You get \$100 to bet on French sentences how you want (all on one, or pennies on lots)
- I then show you the French translation if you bet \$100 on it, you get a lot; even if just 10 cents. But if you bet 0, you lose all your money (P(f|e)=0, a mistake!)
- That's all EM learns to do
 6.863J/9.611J Lecture 19 Sp03

A question

- If you're good at this game, would you be a good translator?
- If you're a good translator, would you be good at this game?

How?

- Begin with uniform parameter values
 Eg, if 50,000 French words, then t(f|e)=1/50000
 - Every word gets same set of fertilities
 - Set p1=0.15
 - Uniform distortion probs (what will these be?)
- Use this to compute alignments
- Use new alignments to refine parameters [Loop until (local) convergence of P(f|e)]

6.863J/9.611J Lecture 19 Sp03

How?

- Corpus: just two paired sentences (english, french)
 - b c/x y & b/y Q: is y a translation of c?
- Assume: Forget about null word, fertility just 1, no distortion;
- So, just 2 alignments for first pair, and one for the second:

- game we played)
 Boosting t(x|c) means lowering t(y|c) because they must sum to 1...
- So even though y and c co-occur, wiped out... 6.863J/9.611J Lecture 19 Sp03

EM, step by step (hill climbing)

• Step 1[initial only]: set parameter values uniformly

• t(x|b) = 1/2; t(y|b) = 1/2; t(x|c) = 1/2; t(y|c) = 1/2

Cook until done...

- Feed these new t values back to Step 2! $$^{2^{nd}}$ iteration: $t(x \mid b) = 1/8$$
 - t(y | b) = 7/8t(x | c) = 3/4t(y | c) = 1/4
- EM <u>guarantees</u> that this will monotonically increase P(a,f|e) (but only local maxima)
- EM for Model 3 is <u>exactly</u> like this, but we have difft formula for P(a|f,e) & we collect fractional counts for n, <u>p</u>_dd_from the alignments

Exercise...

- The blue house / la maison bleue
- The house / la maison
- 6 alignments for sentence 1, two for sentence 2
- Start w/ all t's set to 1/3 i.e., t(la|the)=1/3...

6.863J/9.611J Lecture 19 Sp03

How good is Model 3? Remember gambler? How good is Model 3 at this game? Distortion – poor description of word order differences – bets on lots of ungrammatical french sentences Nothing stops us from choosing target position

Consider
The proposal will not now be implemented
Les propositions ne seront pas mises en application maintenant
ALL map to Position 5
ព្រះព្រះនិងនិសិចាន 6.8633/9.6111 Lecture 19 Sp03

problemas del entrenamiento

- EM not globally optimal
 - Initial condition: might take 1st two words & always link them, then distortion cost small, word-translation costs high
 - EM doesn't know about linguistics! How to fix?
 - How to fix?
- · More seriously: look at iteration
- Over <u>every</u> alignment: $P(f|e) = \Sigma_a P(a, f|e)$
- 20 words by 20 words gulp
- Solution: iterate only over good-looking ones...
 How to find best 100 w/o enumerating them all??

6.863J/9.611J Lecture 19 Sp03

parámetros rápidos y sucios

- Can use Model 1 counts from all alignments w/o enumerating them all!
- Model 1 easy to figure out what best alignment is – quadratic time in I, m
- In fact, it has a single local maximum, since the objective function is quadratic (won't prove this here...)
- Use this to kick-off Model 3 6.863J/9.611J Lecture 19 5003

Now to the next step...

- Got our P(e), P(f,e)
- To translate given French sentence f, we still need to find the English sentence e that maximizes the product
- Can't search all of these!!!
- How? Basically: A* stack search

6.863J/9.611J Lecture 19 Sp03

Still need

- Unknown words names & technical terms: use phonetics
- Robert Berwick,... (what does Babelfish do?)

6.863J/9.611J Lecture 19 Sp03

¿Tan qué?

- What did IBM actually do? (datawise)
- Remember the British unemployed?

IBM's actual work

- (Remember the British unemployed)
- 1,778,620 translation pairs
- 28, 850, 104 French words
- T array has 2, 437, 020, 096 entries...
- Final English, French dictionaries have 42,006 and 58, 016 words
- In all, about 100mb of storage needed to calculate the pr's

6.863J/9.611J Lecture 19 Sp03

Iteration	In	→	Out	Surviving pr's	Alignments	Perplexity
1	1	\rightarrow	2	12,017,609		71,550.56
2	2	\rightarrow	2	12,160,475		202.99
3	2	\rightarrow	2	9,403,220		89.41
4	2	\rightarrow	2	6,837,172		61.59
5	2	\rightarrow	2	5,303,312		49.77
6	2	\rightarrow	2	4,397,172		46.36
7	2	\rightarrow	3	3,841,470		45.15
8	3	\rightarrow	5	2,057,033	291	124.28
9	5	\rightarrow	5	1,850,665	95	39.17
10	5	\rightarrow	5	1,763,665	48	32.91
11	5	\rightarrow	5	1,703,393	39	31.29
12	5	\rightarrow	5	1,658,364	33	30.65

the				
		the		
	f	t(f e)	phi	n(phi e)
	le	0.497	1	0.746
	la	0.207	0	0.254
	les	0.155		
	1'	0.086		
	ce	0.018		
	cette	0.011		
		6.863J/9.611J Lect	ture 19 Sp03	

Should		should	!		
f	t(f e)	phi	(phi e)		
devrait	0.330	1	0.649		
Devraient	0.123	0	0.336		
devrions	0.109	2	0.014		
faudrait	0.073				
faut	0.058				
doit	0.058				
aurait	0.041				
doivent	0.024				
devons	0.017				
devrais	0.013				
	6.863J/9.611J Lecture 19 Sp03				

What about...

- In French, what is worth saying is worth saying in many different ways
- He is nodding:
 - Il fait signe qui oui
 - Il fait un signe de la tête
 - Il fait un signe de tête affirmatif
 - Il hoche la tête affirmativement

Nodding hill		nodding		
	f	t(f e)	phi	n(phi e)
	signe	0.164	4	0.342
	la	0.123	3	0.293
	tête	0.097	2	0.167
	oui	0.086	1	0.163
	fait	0.073	0	0.023
	que	0.073		
	hoche	0.054		
	hocher	0.048		
	faire	0.030		
	me	0.024		
	approuve	0.019		
	qui	0.019		
	un	0.012		
6.863J/9	faites	0.011 19 Sp03		

Morals? ¿Moralejas????.

- Always works hard even if the input sentence is one of the training examples
- Ignores morphology so what happens?
- Ignores phrasal chunks can we include this? (Do we?)
- What next? Alternative histories...
- Can we include syntax and semantics?
- (why not?)