6.863J Natural Language Processing Lecture 19: Machine translation 3

Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

- Administrivia:

- Start w/ final projects - (final proj: was 20\% - boost to 35\%, 4 labs 55\% ?)
- Agenda:
- MT: the statistical approach
- Formalize what we did last time
- Divide \& conquer: 4 steps
- Noisy channel model
- Language Model
- Translation model
- Scrambling \& Fertility; NULL words
6.863//9.611J Lecture 19 Sp03

Like our alien system

- We will have two parts:

1. A bi-lingual dictionary that will tell us what e words go w/ what f words
2. A shake-n-bake idea of how the words might get scrambled around
We get these from cycling between alignment \& word translations - reestimation loop on which words linked with which other words

Summary of components - Model 3

- The language model: P(e)
- The translation model for $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$
- Word translation t
- Distortion (scrambling) d
- Fertility ϕ
- (really evil): null words e_{0} and f_{0}
- Maximize (A* search) through product space

IBM "Model 3"

- First to do this, late 80s: Brown et al, "The Mathematics of Statistical Machine Translation", Computational Linguistics, 1990 (orig 1988 conference) - "Candide"
- We'll follow that paper \& 1993 paper on estimating parameters
- 1993: Brown, Della Pietra, et al, "The mathematics of statistical MT" J. Assoc. Comp. Ling, 19:2, 264-311.

OK, what are the other models?

- Model 1 - just t
- Model 2 - just t \& simple d
-What are they for?
- As we'll see - used to pipeline training get estimates for Model 3

How to estimate?

- Formalize alignment
- Formalize dictionary in terms of $P(f \mid e)$
- Formalize shake-n-bake in terms of $P(e)$
- Formalize re-estimation in terms of the EM Algorithm
- Give initial estimate (uniform), then up pr's of some associations, lower others

Finding the pr estimates

- Usual problem: sparse data
- We cannot create a "sentence dictionary" $\mathrm{E} \leftrightarrow \mathrm{F}$
- we do not see a sentence even twice, let alone once
- Language Model Probability Estimation - Pr(e)
- Translation Model Probability Estimation $\operatorname{Pr}(f \mid e)$
- Search Problem - maximizing their product

Fundamentals

- The basic equation

$$
\hat{\mathrm{e}}=\operatorname{argmax} \operatorname{Pr}(\mathrm{e}) \operatorname{Pr}(\mathrm{f} \mid \mathrm{e})
$$

- manern maming tiren prouace

$\mathrm{P}(\mathrm{e})$ - Language model

- Review: it does the job of ordering the English words
- We estimate this from monolingual text
- Just like our alien language bigram data

Bag translation?

- Take sentence, cut into words, put in bag, shake, recover original sentence
- Why? (why: show how it gets order of English language, for $\mathrm{P}(\mathrm{e})$ estimate)
- How? Use n-gram model to rank difft arrangements of words:
- S better than S^{\prime} if $\mathrm{P}(\mathrm{S})>\mathrm{P}\left(\mathrm{S}^{\prime}\right)$
- Test: 100 S's, trigram model

Bag results?

- Exact reconstruction (63\%)
- Please give me your response as soon as possible
- Please give me your response as soon as possible
- Reconstruction that preserves meaning (20\%)
- Now let me mention some of the disadvantages
- Let me mention some of the disadvantages
- Rest - garbage
- In our organization research has two missions
- In our missions research organization has two
- What is time complexity? What K does this use?

Estimating $\mathrm{P}(\mathrm{e})$

- IBM used trigrams
- LOTS of them... we'll see details later
- For now...

P(f|e) - Recall Model 3 story: French mustard

- Words in English replaced by French words, then scrambled
- Let's review how
- Not word for word replacement (can't always have same length sentences)

Alignment as the "Translation Model"

0	1	2	3	4	5	6

- e_{0} And the program has bqen iphplemented
- f_{0} Le programme a été mis en application $\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
- Notation:
$f_{0}(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) $=\left[\begin{array}{ll}2 & 3\end{array} 4566\right.$ 6]

Example alignment

Les propositions ne seront pas mises en application maintenant

$$
4 \text { parameters for } \mathrm{P}(\mathrm{f} \mid \mathrm{e})
$$

1. Word translation, t

Spurious word toss-in, p
2. Distortion (scrambling), d
3. Fertility, Φ

Notation

- $e=$ English sentence
- $f=$ French sentence
- $e_{i}=i^{\text {th }}$ english word
- $f_{j}=j$ th french word
- I = \# of words in English sentence
- $m=$ \# words in French sentence
- $a=$ alignment (vector of integers $a_{1} a_{2} \ldots a_{m}$ where each a_{j} ranges from 0 to 1)
- $a_{j}=$ actual English position connected to by the $j^{\text {th }}$ French word in alignment a
- $e_{a j}=$ actual English word connected to by the $\mathrm{j}^{\text {th }}$ French word in alignment a
$\Phi_{\mathrm{i}}=$ fertility of English word $\mathrm{i}(\mathrm{i}=1$ to I$)$ given alignment a
6.863/9.611J Lecture 19 Sp03

OK, what parameters do we need?

- English sentence $\mathrm{i}=1,2, \ldots$, I words
- Look at dependencies in the generative story!
- 3 basic parameters
- Parameter 1: Which f word to generate depends only on English word e that is doing generating
- Example: prob(fromage | monkey)
- Denote these by $t\left(\tau_{\mathrm{i}} \mid \mathrm{e}_{\mathrm{i}}\right)$

Procrustean bed

1. For each word e_{i} in the english sentence e, $\mathrm{i}=1,2, \ldots, \mathrm{I}$, we choose a fertility $\phi\left(\mathrm{e}_{\mathrm{i}}\right)$, equal to $0,1,2, \ldots[25]$

- This value is solely dependent on the English word, not other words or the sentence, or the other fertilities

2. For each word e_{i} we generate $\phi\left(e_{i}\right)$ French words - not dependent on English context
3. The French words are permuted ('distorted') assigned a position slot (this is the scrambling phase)

- Call this a distortion parameter $\mathrm{d}(\mathrm{i} \mid \mathrm{j})$
- Note that distorttigneneeforn't be careful - why?

Fertility

- Prob that monkey will produce certain \# of French words
- Denoted $n\left(\phi_{i} \mid e_{i}\right)$ e.g., $n(2 \mid$ monkey $)$

Fertility

- The fertility of word i does not depend on the fertility of previous words.
- Does not always concentrate its probability on events of interest.
- This deficiency is no serious problem.
- It might decrease the probability of all well-formed strings by a constant factor.

Distortion

- Where the target position of the French word is, compared to the English word
- Think of this as distribution of alignment links
- First cut: $\mathrm{d}(\mathrm{k} \mid \mathrm{i})$
- Second cut: distortion depends on english and french sentence lengths (why?)
- So, parameter is: $\mathrm{d}(\mathrm{k} \mid \mathrm{i}, \mathrm{l}, \mathrm{m})$

Alignment as the "Translation Model"

$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

- e_{0} And/the program has been implemented
- f_{0} Le programme a été mis en application $\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
- Notation:
- $f_{0}(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6)=

What about...

- Fertility of Null words?
- Do we want $\mathrm{n}(2 \mid$ null), etc.?
- Model 3: longer S's have more null words... (!) \& uses a single parameter p_{1}
- So, picture is: after fertilities assigned to all the real English words (excluding null), then will generate (perhaps) z French words
- As we generate each french word, throw in spurious French word with probability p_{1}
- Finally: what about distortion for null words?

Distortions for null words

- Since we can't predict them, we generate the french words first, according to fertilities, and then put null words in spots left over
- Example: if there are 3 null generated words, and 3 empty slots, there are 6 ways for putting them in, so the pr for the distortion is $1 / 6$
- OK, the full monty...

Model 3 in full

1. For each English word $\mathrm{e}_{\mathrm{i}}, \mathrm{i}=1, \ldots \mathrm{I}$, pick fertility Φ_{i} with probability $n\left(\Phi_{i} \mid e_{i}\right)$
2. Pick the \# of spurious french words ϕ_{0} generated from $\mathrm{e}_{0}=$ null

- Use probability p_{1} and the Σ of fertilities from Step 1

3. Let m be the sum of all the fertilities, incl null $=$ total length of the output french sentence
4. For each $\mathrm{i}=0,1, \ldots, \mathrm{l}$ \& each $\mathrm{k}=1,2, \ldots$, Φ i pick french translated words $\tau_{i k}$ with prob $t\left(\tau_{i k} \mid e_{i}\right)$
5. For each $i=1,2, \ldots, l \&$ each $k=1,2, \ldots$. ${ }^{i}$ pick french target positions with prob $\mathrm{d}(\mathrm{t} \mid \mathrm{i}, \mathrm{I}, \mathrm{m})$

And 2 more steps

6. [sprinkle jimmies] For each $\mathrm{k}=1,2, \ldots, \Phi_{\mathrm{i}}$ choose positions in the $\Phi_{0}-\mathrm{k}+1$ remaining vacant slots in spots $1,2, \ldots, \mathrm{~m}$, w/ total prob ($1 / \Phi_{0}$!)
7. Output French sentence with words τ_{ik} in the target positions, accdg to the probs $t\left(\tau_{\mathrm{i}} \mid \mathrm{e}_{\mathrm{i}}\right)$

Model 3 in full

- Has four parameters: $\mathrm{t}, \mathrm{n}, \mathrm{d}, \mathrm{p}$
- t and n are $2-d$ tables of floating point numbers (words x fertilities)
- d is 1-d table of numbers
- p is just 1 number
- But...where can we can these numbers?
- How do we compute $P(f \mid e)$?

Finding parameter values

- Suppose we had the actual step-by-step transform of english sentences into french...
- We could just count: e.g., if did appeared in 24,000 examples and was deleted 15,000 times, then $n(0 \mid d i d)=5 / 8$
- Word-word alignments can help us here

Alignments help get all estimates

- Compute n : count how many times did connects to 0 french words
- Computet: count how many times f word connects to e word
- (Note: we assume every french word connects to exactly 1 english word, or null - so never that 2 or more english words jointly give a french word...)
- Also, if 1 english word connects to 2 french words f1 and f2, we don't know whether they were generated in that order, or the reverse...

OK, so how do we get $d \& p_{1}$?

- Can also get that from aligned pairs
- Every connection in alignment contributes to a particular parameter like d(3|2,5,6)
- Get counts, dc, \& normalize: $d(3 \mid 2,5,6)=d c(3 \mid 2,5,6) / \Sigma d c(j \mid 2,5,6)$
- Finally, p_{1}. From alignments, N words in total french corpus, M generated by null.
- So, after each of the N-M real word cases, a spurious word is generated M times, or

$$
p_{1}=M / N-M-\frac{M}{663}
$$

6.863//9.611J Lecture $19 \mathrm{Sp03}$

Mais...

- We need aligned sentences to get parameter values...
- We need parameter values to get aligned sentences.... i.e., we want to maximize

$$
P(a \mid e, f)
$$

Laying an egg: The magic

- You can actually get estimates from non-aligned sentence pairs!!!
- Exactly as you did in your (ahem) alien assignment
- English \& French words that co-occur in sentence translations might/might not be translations, but if we have a rough idea about correspondences, we can get idea about distortion probs... e.g., if first english word/first french word correspond, then what about $d(1 \mid 1, I, m)$?
6.863J/9.611J Lecture 19 Sp03

The key: alignments

- Suppose we have a single correct alignment for each sentence pair
- We could collect all parameter counts directly
- But we don't...
- Suppose we have 2 equally good looking candidates...
- Then we weight the counts from each by 0.5 (a fractional count)
- In general, many more than this... (Neglecting nulls, if e has length 'l' and f has length ' m ', there are $2^{I m}$ alignments in all)

Example: easy as a, b,...
$\left.\left.\right|_{x y} ^{b}\right|_{x} ^{c}$
$b=$ blue $c=$ house; $x=$ maison; $y=$ bleue
6.863//9.611J Lecture $19 \mathrm{Sp03}$

Example

| b\|c| | b 4 | ${ }^{\mathrm{b}} \mathrm{N}^{\text {c }}$ | b |
| :---: | :---: | :---: | :---: |
| x y | x y | X y | x y |
| 0.3 | 0.2 | 0.4 | 0.1 |

Estimate nc(1|b) $=$
$0.3+0.1=0.4$
Estimate $\mathrm{nc}(0 \mid \mathrm{b})=0.2$
Estimate $\mathrm{nc}(2 \mid \mathrm{b})=0.4$
Normalise to get fertility $=n(1 \mid b)=0.4 / 0.4+0.2+0.2=0.4$ Can do the same to get $t(y \mid b)$

Better to compute alignment

 probabilities- Let a be an alignment - just a vector of integers
- We want highest $P(a \mid e, f)$ (e \& f are a particular sentence pair)
- What would make alignment more probable?
- If we had the translation t parameters, we could judge - a good alignment ought to connect words that are already known to be high prob translations of one another
- An alignment summarizes (some of) the choices that get made
$P(a, f \mid e)$
- BUT We can convert P(a|e,f) to: $P(a, f \mid e) / P(f \mid e)$
- $P(a \mid e, f)=P(a, e, f) / P(e, f)=\ldots$

How to compute $P(a \mid f, e)$?

- First term $P(a, f \mid e)$ can be found from the story of Model 3 : start with english string e, blah blah ... get alignment and french string (can have same alignment and two or more different french strings)
- Second term $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$ is what we've been after...it is all the ways of producing f, over all alignments, so in fact...

All we need to find is

- $P(f \mid e)=\Sigma_{a} P(a, f \mid e)$
- OK, let's see about this formula

$\mathrm{P}(\mathrm{a}, \mathrm{f} \mid \mathrm{e})$

- $\mathrm{e}=$ English sentence
- f = French sentence
- $e_{i}=i^{\text {th }}$ english word
- $f_{j}=j^{\text {th }}$ french word
- I = \# of words in English sentence
- m = \# words in French sentence
- $a=$ alignment (vector of integers $a_{1} a_{2} \ldots a_{m}$ where each aj ranges from 0 to l)
- $\mathrm{a}_{\mathrm{j}}=$ actual English position connected to by the $\mathrm{j}^{\text {th }}$ French word in alignment a
- $e_{a j}=$ actual English word connected to by the $j^{\text {th }}$ French word in alignment a
- $\phi_{i}=$ fertility of English word $\mathrm{i}(\mathrm{i}=1$ to I$)$ given alignment a $6.6833 / 9.611$ Lecture 19 Spo3

$\mathrm{P}(\mathrm{a}, \mathrm{f} \mid \mathrm{e})$

- word translation values implied by alignment \& French string

$$
P(a, f \mid e)=\prod_{i=1}^{1} n\left(f_{i} \mid e_{i}\right) * \prod_{j=1}^{m} t\left(f_{j} \mid e_{a j}\right) * \prod_{j=1}^{m} d\left(j \mid a_{j}, l, m\right)
$$

- We will have to correct this a bit...for the null words...

Adjustments to formula - 4

1. Should only count distortions that involve real english words, not null - eliminate any d value for which $a_{j}=0$
2. Need to include probability "costs" for spurious french words - there are Φ_{0} null french words, and $m-\Phi_{0}$ real french words
How many ways to sprinkle in ϕ_{0} 'jimmies' - pick ϕ_{0} balls out of urn that has $\mathrm{m}-\phi$ balls, or, [$\left(\mathrm{m}-\Phi_{0}\right)$ choose Φ_{0}] Must multiply these choices by prob costs:

- We choose to add spurious word ϕ_{0} times, each with probability p_{1} so total pr of this is $p_{1} \Phi_{0}$
- We choose to not add spurious word ($\left.\left(\mathrm{m}-\Phi_{0}\right)-\Phi_{0}\right)$ times, so total pr of this factor is $p_{0}{ }^{\left(m-2 \Phi_{0}\right)}$ 6.863//9.611J Lecture 19 Sp03

Adjustments - last 2

3. Probability Cost for placing spurious french words into target slots - there are no distortions for the null words, eg, $\mathrm{d}(\mathrm{j} \mid 0, \mathrm{I}, \mathrm{m})$ Instead we put them in at the end, as the final step of generating the french string
There are Φ_{0} ! possible orderings, all equally likely, so that adds cost factor of $1 / \Phi_{0}$!
4. For 'fertile' words, e.g., english word x generates french p, q, r - then there are 6 (in general Φ_{i}) ways to do this (order is not known) In general, we must add this factor: $\prod_{\mathrm{i}=0}^{1} \Phi_{\mathrm{i}}$!

What is EM about?

- Learning: improve prob estimates
- Imagine game:
- I show you an English sentencee
- I hide a French translation f in my pocket
- You get $\$ 100$ to bet on French sentences - how you want (all on one, or pennies on lots)
- I then show you the French translation - if you bet $\$ 100$ on it, you get a lot; even if just 10 cents. But if you bet 0, you lose all your money ($P(f \mid e)=0$, a mistake!)
- That's all EM learns to do 6.863J/9.611J Lecture 19 Sp03

Huhn- und Eiproblem?

6.863//9.611J Lecture $19 \mathrm{Sp03}$

A question

- If you're good at this game, would you be a good translator?
- If you're a good translator, would you be good at this game?

How?

- Begin with uniform parameter values
- Eg, if 50,000 French words, then $\mathrm{t}(\mathrm{f} \mid \mathrm{e})=1 / 50000$
- Every word gets same set of fertilities
- Set $p_{1}=0.15$
- Uniform distortion probs (what will these be?)
- Use this to compute alignments
- Use new alignments to refine parameters [Loop until (local) convergence of $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$]

How?

- Corpus: just two paired sentences (english, french)
- $b c / x$ y \& $b / y \quad Q$: is y a translation of c ?
- Assume: Forget about null word, fertility just 1, no distortion;
- So, just 2 alignments for first pair, and one for the second:

Alignments

$$
\begin{aligned}
& p q \text { be p } \\
& x y \quad x y \quad y \\
& \left.\left.P(a, f \mid e)=\prod_{i=1}^{1} n \mathcal{X}_{i} \mid e_{i}\right) * \prod_{j \neq 1}^{m} t\left(f_{j} \mid e_{a j}\right) * \prod_{j=1}^{m} \mathbf{X} \mid a, 1, m\right) \\
& P(a, f \mid e)=\prod_{j=1}^{m} t\left(f_{j} \mid e_{a j}\right) \quad \text { IBM Model1 ! }
\end{aligned}
$$

Start to Finish: 4 steps in loop

Why does this happen?

- Alignment prob for the crossing case with b connected to y will get boosted
- Because b is also connected to y in the second sentence pair
- That will boost $\mathrm{t}(\mathrm{b} \mid \mathrm{y})$, and as side effect will also boostt($\mathrm{x} \mid \mathrm{c}$), because c connects to x in the same crossed case (note how this is like the game we played)
- Boosting $t(x \mid c)$ means lowering $t(y \mid c)$ because they must sum to $1 . .$.
- So even though y and c co-occur, wiped out...

EM, step by step (hill climbing)

- Step 1 [initial only]: set parameter values uniformly
- $t(x \mid b)=1 / 2 ; t(y \mid b)=1 / 2 ; t(x \mid c)=1 / 2 ; t(y \mid c)=1 / 2$

Loop to Step 2 - update t via counts

 tc- (Ps: what is $\mathrm{P}(\mathrm{a} \mid \mathrm{f}, \mathrm{e})$ for $3^{\text {rd }}$ alignment?
- Step 4: collect fractional counts tc: first local to a single alignment:

$b\|c\|$	$b\rangle$	$b \mid$		
$x y$	$x y$	y		$\operatorname{tc}(x \mid b)=1 / 2$ $t c(y \mid b)=1 / 2+1=3 / 2$ $\operatorname{tc}(x \mid c)=1 / 2$ $t c(y \mid c)=1 / 2$
:---				

- Step 5: normalize to get new t values:

$$
\begin{array}{ll}
t(x \mid b)=1 / 2 / 4 / 2=1 / 4 \ll \quad \text { DOWN } \\
t(y \mid b)=3 / 2 / 4 / 2=3 / 4 & \text { UP } \\
t(x \mid c)=1 / 2 / 1=1 / 2 & \\
t(y \mid c)=1 / 2 / 1=1 / 2 &
\end{array}
$$

Cook until done...

- Feed these new t values back to Step 2!

$2^{\text {nd }}$ iteration:

$$
t(x \mid b)=1 / 8
$$

$$
t(y \mid b)=7 / 8
$$

$$
t(x \mid c)=3 / 4
$$

$$
t(y \mid c)=1 / 4
$$

- EM guarantees that this will monotonically increase $P(a, f \mid e)$ (but only local maxima)
- EM for Model 3 is exactly like this, but we have difft formula for $\mathrm{P}(\mathrm{a} \mid \mathrm{f}, \mathrm{e})$ \& we collect fractional counts for n , p , d from the flillecue t 9 spos

Exercise...

- The blue house / la maison bleue
- The house / la maison
- 6 alignments for sentence 1, two for sentence 2
- Start w/ all t's set to $1 / 3$ - i.e., t (la|the) $=1 / 3$...

How good is Model 3 ?

- Remember gambler?
- How good is Model 3 at this game?
- Distortion - poor description of word order differences - bets on lots of ungrammatical french sentences
- Nothing stops us from choosing target position

Consider

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

problemas del entrenamiento

- EM not globally optimal
- Initial condition: might take $1^{\text {st }}$ two words \& always link them, then distortion cost small, word-translation costs high
- EM doesn't know about linguistics!
- How to fix?
- More seriously: look at iteration
- Over every alignment: $P(f \mid e)=\Sigma_{a} P(a, f \mid e)$
- 20 words by 20 words - gulp
- Solution: iterate only over good-looking ones...
- How to find best $100 \mathrm{w} / \mathrm{o}$ enumerating them all??

Formula about Model 1

$$
\sum_{a} P(a, f \mid e)=\sum_{a} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a j}\right)=\prod_{j=1}^{m} \sum_{i=0}^{1} t\left(f_{j} \mid e_{i}\right)
$$

parámetros rápidos y sucios

- Can use Model 1 counts from all alignments w/o enumerating them all!
- Model 1 - easy to figure out what best alignment is - quadratic time in I, m
- In fact, it has a single local maximum, since the objective function is quadratic (won't prove this here...)
- Use this to kick-off Model 3
6.863J/9.611J Lecture 19 Sp03

Now to the next step...

- Got our P(e), P(f,e)
- To translate given French sentence f, we still need to find the English sentence e that maximizes the product
- Can't search all of these!!!
- How? Basically: A* stack search

Still need

- Unknown words - names \& technical terms: use phonetics
- Robert Berwick,... (what does Babelfish do?)

IBM's actual work

- (Remember the British unemployed)
- 1,778,620 translation pairs
- 28, 850, 104 French words
- T array has 2, 437, 020, 096 entries...
- Final English, French dictionaries have 42,006 and 58, 016 words
- In all, about 100 mb of storage needed to calculate the pr's

Iteration	In		\rightarrow	Out	Surviving pr's	Alignments

the			
the			
f	$\mathrm{t}(\mathrm{f} \mid \mathrm{e})$	phi	n (phi\|e)
le	0.497	1	0.746
la	0.207	0	0.254
les	0.155		
$1 '$	0.086		
ce	0.018		
cette	0.011		
6.863//9.611J Lecture 19 Sp03			

Should	should		
f	$\mathrm{t}(\mathrm{f} \mid \mathrm{e})$	phi	(phile)
devrait	0.330	1	0.649
Devraient	0.123	0	0.336
devrions	0.109	2	0.014
faudrait	0.073		
faut	0.058		
doit	0.058		
aurait	0.041		
doivent	0.024		
devons	0.017		
devrais	0.013		
	6.863//9.61	Lecture	

What about...

- In French, what is worth saying is worth saying in many different ways
- He is nodding:
- Il fait signe qui oui
- Il fait un signe de la tête
- II fait un signe de tête affirmatif
- Il hoche la tête affirmativement

Nodding hill...t nodding			
signe	0.164	4	0.342
la 0	0.123	3	0.293
tête	0.097	2	0.167
oui 0	0.086	1	0.163
fait 0.0	0.073	0	0.023
que	0.073		
hoche 0	0.054		
hocher 0.00	0.048		
faire 0	0.030		
me 0	0.024		
approuve 0	0.019		
qui 0	0.019		
un 0	0.012		
faites	0.011		
6.863//9.611J Lecture $19 \mathrm{Sp03}$			

Morals? ¿Moralejas? ? ? ? ? .

- Always works hard - even if the input sentence is one of the training examples
- Ignores morphology - so what happens?
- Ignores phrasal chunks - can we include this? (Do we?)
- What next? Alternative histories...
- Can we include syntax and semantics?
- (why not?)

