6.863J Natural Language Processing
Lecture 19: Machine translation 3

Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

• Administrivia:
 • Start w/ final projects – (final proj: was 20%
 - boost to 35%, 4 labs 55% ?)
 • Agenda:
 • MT: the statistical approach
 • Formalize what we did last time
 • Divide & conquer: 4 steps
 • Noisy channel model
 • Language Model
 • Translation model
 • Scrambling & Fertility: NULL words

Submenu

• The basic idea: moving from Language A to
 Language B
• The noisy channel model
• Juggling words in translation – bag of words
 model; divide & translate
• Using n-grams – the Language Model
• The Translation Model
• Estimating parameters from data
• Bootstrapping via EM
• Searching for the best solution

Like our alien system

• We will have two parts:
 1. A bi-lingual dictionary, that will tell us
 what e words go w/ what f words
 2. A shake-n-bake idea of how the words
 might get scrambled around
We get these from cycling between
alignment & word translations – re-
estimation loop on which words linked
with which other words
'George Bush' model of translation (noisy channel)

French text f

Same French text

f, e are strings of (french, english) words

IBM “Model 3”

- We’ll follow that paper & 1993 paper on estimating parameters

Summary of components – Model 3

- The language model: P(e)
- The translation model for P(f|e)
 - Word translation t
 - Distortion (scrambling) d
 - Fertility \(\phi \)
 - (really evil): null words \(e_0 \) and \(f_0 \)
- Maximize (A* search) through product space

OK, what are the other models?

- Model 1 – just t
- Model 2 – just t & simple d

- What are they for?
- As we'll see – used to pipeline training - get estimates for Model 3
The training data - Hansard

Q: What do you think is the biggest error source in Hansard? e.g. which P(f|e), or P(??| e_1 e_2)
A: How about this - P(?? | hear, hear) as in "Hear Hear!"

Fundamentals

• The basic equation
 \[\hat{e} = \text{argmax } P(e) \ P(f|e) \]
• Language Model Probability Estimation - Pr(e)
• Translation Model Probability Estimation - Pr(f|e)
• Search Problem - maximizing their product

Finding the pr estimates

• Usual problem: sparse data
 • We cannot create a “sentence dictionary” E ⇔ F
 • we do not see a sentence even twice, let alone once

How to estimate?

• Formalize alignment
• Formalize dictionary in terms of P(f|e)
• Formalize shake-n-bake in terms of P(e)
• Formalize re-estimation in terms of the EM Algorithm
 • Give initial estimate (uniform), then up pr’s of some associations, lower others
Let’s see what this means

\[P(e) \times P(f|e) \]

Factor 1: Language Model
Factor 2: Translation Model

P(e) – Language model

- Review: it does the job of ordering the English words
- We estimate this from monolingual text
- Just like our alien language bigram data

Bag translation?
- Take sentence, cut into words, put in bag, shake, recover original sentence
- Why? (why: show how it gets order of English language, for P(e) estimate)
- How? Use n-gram model to rank different arrangements of words:
 - S better than S’ if P(S) > P(S’)
 - Test: 100 S’s, trigram model

Bag results?
- Exact reconstruction (63%)
 - Please give me your response as soon as possible
 - Please give me your response as soon as possible
 - Reconstruction that preserves meaning (20%)
 - Now let me mention some of the disadvantages
 - Let me mention some of the disadvantages
 - Rest – garbage
 - In our organization, research has two missions
 - In our missions, research organization has two
 - What is time complexity? What K does this use?
Estimating $P(e)$

- IBM used trigrams
- LOTS of them... we'll see details later
- For now...

P(f|e) - Recall Model 3 story: French mustard

- Words in English replaced by French words, then scrambled
- Let's review how
- Not word for word replacement (can't always have same length sentences)

Alignment as the “Translation Model”

0 1 2 3 4 5 6
- e_0 And the program has been implemented

0 1 2 3 4 5 6 7
- f_0 Le programme a été mis en application

- Notation:
 $f_0(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) = [2 3 4 5 6 6]

Example alignment

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

4 parameters for $P(f|e)$

1. Word translation, t
2. Distortion (scrambling), d
3. Fertility, Φ
4. Spurious word toss-in, p
OK, what parameters do we need?

- English sentence $i = 1, 2, \ldots, l$ words
- Look at dependencies in the generative story!
- 3 basic parameters
- Parameter 1: Which f word to generate depends only on English word e that is doing generating
- Example: $\text{prob(fromage | monkey)}$
- Denote these by $t(\tau | e_i)$

Fertility

- Prob that monkey will produce certain # of French words
- Denoted $n(\phi_i | e_i)$ e.g., $n(2 | \text{monkey})$

Procrustean bed

1. For each word e_i in the English sentence e, $i = 1, 2, \ldots, l$, we choose a fertility $\phi(e_i)$, equal to $0, 1, 2, \ldots, 25$
 - This value is solely dependent on the English word, not other words or the sentence, or the other fertilities
2. For each word e_i, we generate $\phi(e_i)$ French words – not dependent on English context
3. The French words are permuted ('distorted') – assigned a position slot (this is the scrambling phase)
 - Call this a distortion parameter $d(i|j)$
 - Note that distortion needn't be careful – why?

Fertility

- Prob that monkey will produce certain # of French words
- Denoted $n(\phi_i | e_i)$ e.g., $n(2 | \text{monkey})$
Fertility

- The fertility of word i does not depend on the fertility of previous words.
- Does not always concentrate its probability on events of interest.
- This deficiency is no serious problem.
- It might decrease the probability of all well-formed strings by a constant factor.

Distortion

- Where the target position of the French word is, compared to the English word
- Think of this as distribution of alignment links
- First cut: $d(k|i)$
- Second cut: distortion depends on English and French sentence lengths (why?)
- So, parameter is: $d(k|i, l, m)$

To fix the fertility issue...

- Final Procrustean twist
- Add notion of a Null word that can appear before beginning of English & French sentence, e_0 and f_0
- Purpose: account for 'spurious' words like function words (à, la, le, the, ...)
- Example in this case:

Alignment as the “Translation Model”

0 1 2 3 4 5 6
- e_0 And the program has been implemented
- f_0 Le programme a été mis en application

Notation:
- $f(i)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6)
What about...

- Fertility of Null words?
- Do we want \(n(2 \mid \text{null}) \), etc.?
- Model 3: longer S's have more null words... (!) & uses a single parameter \(p_1 \)

So, picture is: after fertilities assigned to all the real English words (excluding null), then will generate (perhaps) \(z \) French words

As we generate each French word, throw in spurious French word with probability \(p_1 \)

Finally: what about distortion for null words?

Distortions for null words

- Since we can't predict them, we generate the French words first, according to fertilities, and then put null words in spots left over
- Example: if there are \(3 \) null generated words, and \(3 \) empty slots, there are \(6 \) ways for putting them in, so the pr for the distortion is \(1/6 \)
- OK, the full monty...

Model 3 in full

1. For each English word \(e_i \), \(i=1,...,l \), pick fertility \(\Phi_i \) with probability \(n(\Phi_i \mid e_i) \)
2. Pick the # of spurious French words \(\varphi_0 \) generated from \(e_0 = \text{null} \)
 - Use probability \(p_1 \) and the \(\Sigma \) of fertilities from Step 1
3. Let \(m \) be the sum of all the fertilities, incl \(\text{null} \) = total length of the output French sentence
4. For each \(i=0,1,...,l \) & each \(k=1,2,..., \Phi_i \) pick French translated words \(\tau_{ik} \) with prob \(t(\tau_{ik} \mid e_i) \)
5. For each \(i=1,2,...,l \) & each \(k=1,2,..., \Phi_i \) pick French target positions with prob \(d(t \mid i, l, m) \)
6. [sprinkle jimmies] For each \(k=1,2,..., \Phi_i \) choose positions in the \(\Phi_0 - k + 1 \) remaining vacant slots in spots \(1,2,...,m \), w/ total prob \((1/\Phi_0!) \)
7. Output French sentence with words \(\tau_k \) in the target positions, accdg to the probs \(t(\tau \mid e_i) \)

And 2 more steps
Model 3 in full

- Has four parameters: t, n, d, p
- t and n are 2-d tables of floating point numbers (words x fertilities)
- d is 1-d table of numbers
- p is just 1 number
- But...where can we can these numbers?
- How do we compute P(f|e)?

Finding parameter values

- Suppose we had the actual step-by-step transform of English sentences into French...
- We could just count: e.g., if *did* appeared in 24,000 examples and was deleted 15,000 times, then \(n(0|\text{did}) = 5/8 \)
- Word-word alignments can help us here

Alignment as the “Translation Model”

- \(e_0 \) And the program has been implemented
- \(f_0 \) Le programme a été mis en application
- Notation:
 \[
 f_0(1) \ Le(2) \ programme(3) \ a(4) \ été(5) \ mis(6) \ en(6) \ application(6) = [2 \ 3 \ 4 \ 5 \ 6 \ 6 \ 6]
 \]

Alignments help get all estimates

- Compute \(n \): count how many times *did* connects to 0 French words
- Compute \(t \): count how many times f word connects to e word
- (Note: we assume every French word connects to exactly 1 English word, or null - so never that 2 or more English words jointly give a French word...)
- Also, if 1 English word connects to 2 French words \(f_1 \) and \(f_2 \), we don’t know whether they were generated in that order, or the reverse...
OK, so how do we get d & \(p_1 \)?

- Can also get that from aligned pairs
- Every connection in alignment contributes to a particular parameter like \(d(3 | 2, 5, 6) \)
- Get counts, \(dc \), & normalize:
 \[
d(3 | 2, 5, 6) = \frac{dc(3 | 2, 5, 6)}{\sum dc(j | 2, 5, 6)}
\]
- Finally, \(p_1 \). From alignments, \(N \) words in total french corpus, \(M \) generated by null.
- So, after each of the \(N - M \) real word cases, a spurious word is generated \(M \) times, or
 \[
p_1 = \frac{M}{N - M}
\]

Mais...

- We need aligned sentences to get parameter values...
- We need parameter values to get aligned sentences.... i.e., we want to maximize
 \[
P(a|e,f)
\]

comment amorçons-nous?
¿Cómo atamos con correa?

Laying an egg: The magic

- You can actually get estimates from non-aligned sentence pairs!!!
- Exactly as you did in your (ahem) alien assignment
- English & French words that co-occur in sentence translations might/might not be translations, but if we have a rough idea about correspondences, we can get idea about distortion probs... e.g., if first english word/first french word correspond, then what about \(d(1|1, l,m) \)?
The key: alignments

- Suppose we have a single correct alignment for each sentence pair
- We could collect all parameter counts directly
- But we don't...
- Suppose we have 2 equally good looking candidates...
- Then we weight the counts from each by 0.5 (a fractional count)
- In general, many more than this... (Neglecting nulls, if e has length 'l' and f has length 'm', there are 2^{lm} alignments in all)

Example: easy as a, b,...

```
| b | c |
|x  y |
```

b = blue, c = house; x = maison; y = bleue

Can we figure out which alignment works best?

- Idea 1: use alignment weights
- Idea 2: actually use counts as proxies for probabilities

Example

```
| b | c |
|x  y |
```

Estimate $n(c|b) = 0.3 + 0.1 = 0.4$
Estimate $n(c|b) = 0.2$
Estimate $n(c|b) = 0.4$

Normalise to get fertility $n(c|b) = 0.4 / (0.4 + 0.2 + 0.2) = 0.4$
Can do the same to get $t(y|b)$
Better to compute alignment probabilities

- Let \(a \) be an alignment – just a vector of integers
- We want highest \(P(a|e,f) \) (\(e \) & \(f \) are a particular sentence pair)
- What would make alignment more probable?
 - If we had the translation \(t \) parameters, we could judge - a good alignment ought to connect words that are already known to be high prob translations of one another
 - An alignment summarizes (some of) the choices that get made

\[P(a,f|e) \]

- BUT We can convert \(P(a|e,f) \) to:
 \[P(a,f|e) \] / \[P(f|e) \]
 - \(P(a|e,f) = P(a,e,f)/P(e,f) = ... \)

How to compute \(P(a|f,e) \)?

- First term \(P(a,f|e) \) can be found from the story of Model 3: start with english string \(e \), blah blah ... get alignment and french string (can have same alignment and two or more different french strings)
- Second term \(P(f|e) \) is what we’ve been after...it is all the ways of producing \(f \), over all alignments, so in fact...

All we need to find is

- \(P(f|e)=\sum_a P(a,f|e) \)
- OK, let's see about this formula
$P(a, f|e)$

- $e =$ English sentence
- $f =$ French sentence
- $e_i =$ i^{th} English word
- $f_j =$ j^{th} French word
- $l =$ # of words in English sentence
- $m =$ # words in French sentence
- $a =$ alignment (vector of integers $a_1 a_2 \ldots a_m$ where each a_i ranges from 0 to l)
- $a_j =$ actual English position connected to by the j^{th} French word in alignment a
- $e_{aj} =$ actual English word connected to by the j^{th} French word in alignment a
- $\phi_i =$ fertility of English word i ($i = 1$ to l) given alignment a

$P(a, f|e)$

- word translation values implied by alignment & French string

$$P(a, f|e) = \prod_{j=1}^{m} [\prod_{i=1}^{l} a(f_j | e_i) \cdot \prod_{j=1}^{m} [\prod_{i=1}^{l} d(j | a_i, l, m)]$$

Adjustments to formula - 4

1. Should only count distortions that involve real English words, not null – eliminate any $a_j = 0$
2. Need to include probability “costs” for spurious French words – there are Φ_0 null French words, and $m - \Phi_0$ real French words

 How many ways to sprinkle in Φ_0 “jimmies” – pick Φ_0 balls out of urn that has $m - \Phi_0$ balls, or, $\binom{m - \Phi_0}{\Phi_0}$ choose Φ_0

 Must multiply these choices by prob costs:

 - We choose to add spurious word Φ_0 times, each with probability p_1, so total pr of this is $p_1^{\Phi_0}$
 - We choose to not add spurious word $(m - \Phi_0) - \Phi_0)$ times, so total pr of this factor is $p_0^{m-2\Phi_0}$

Adjustments - last 2

3. Probability Cost for placing spurious French words into target slots – there are no distortions for the null words, eg, $d(j | 0, l, m)$ instead we put them in at the end, as the final step of generating the French string

 There are $\Phi_0!$ possible orderings, all equally likely, so that adds cost factor of $1/\Phi_0!$

4. For “fertile” words, eg., English word x generates French p, q, r – then there are 6 (in general Φ_1) ways to do this (order is not known)

 In general, we must add this factor: $\prod_{\Phi_1} \Phi_1!$
All boiled down to one math formula...

\[
P(a,f|e) = \prod_{i} P(f|e) \times \prod_{j} P(a|e, f) \times \text{log} \left(\prod_{i=1}^{m} \Phi_i \right) - \text{log} \left(\prod_{i=1}^{m} \Phi_i \right)
\]

Huhn- und Eiproblem?

Parameter values

\[
P(a,f|e) \quad \text{and} \quad P(a|f,e)
\]

GOAL

EM to the rescue!

What is EM about?

• Learning: improve prob estimates
• Imagine game:
 • I show you an English sentence e
 • I hide a French translation f in my pocket
 • You get $100 to bet on French sentences – how you want (all on one, or pennies on lots)
 • I then show you the French translation – if you bet $100 on it, you get a lot; even if just 10 cents. But if you bet 0, you lose all your money (P(f|e)=0, a mistake!)
• That’s all EM learns to do

A question

• If you’re good at this game, would you be a good translator?
• If you’re a good translator, would you be good at this game?
How?

- Begin with uniform parameter values
 - Eg, if 50,000 French words, then $t(f|e) = 1/50000$
 - Every word gets same set of fertilities
 - Set $p_1 = 0.15$
 - Uniform distortion probs (what will these be?)
- Use this to compute alignments
- Use new alignments to refine parameters [Loop until (local) convergence of $P(f|e)$]

How?

- Corpus: just two paired sentences (english, french)
 - $b/c\ x\ y$ & b/y Q: is y a translation of c?
 - Assume: Forget about null word, fertility just 1, no distortion;
 - So, just 2 alignments for first pair, and one for the second:

Alignments

\[
P(a, f|e) = \prod_{j=1}^{m} t(f_j | e_m) ^{\prod_{j=1}^{n} X(a_j, l, m)}
\]

Start to Finish: 4 steps in loop

1. Initial:
 - $t(x|b) = 0.5$
 - $t(y|b) = 0.5$
 - $t(x|c) = 0.5$
 - $t(y|c) = 0.5$

2. $P(a|e)$ normalise

3. $P(a|e)$ counts tc

final:
- $t(x|b) = 0.0001$
- $t(y|b) = 0.9999$
- $t(x|c) = 0.9999$
- $t(y|c) = 0.0001$

IBM Model 1
Why does this happen?

- Alignment prob for the crossing case with b connected to y will get boosted
- Because b is also connected to y in the second sentence pair
- That will boost t(b|y), and as side effect will also boost t(x|c), because c connects to x in the same crossed case (note how this is like the game we played)
- Boosting t(x|c) means lowering t(y|c) because they must sum to 1...
- So even though y and c co-occur, wiped out...

EM, step by step (hill climbing)

- Step 1 [initial only]: set parameter values uniformly
 - t(x|b) = 1/2; t(y|b) = 1/2; t(x|c) = 1/2; t(y|c) = 1/2

Loop to Step 2 - update t via counts tc

- (Ps: what is P(a|f,e) for 3rd alignment?
- Step 4: collect fractional counts tc: first local to a single alignment:
 - t(x|c) = 1/2
 - t(y|c) = 1/2

- Step 5: normalize to get new t values:
 - t(x|b) = 1/2
 - t(y|b) = 3/4
 - t(x|c) = 1/2
 - t(y|c) = 1/2
Cook until done...

• Feed these new t values back to Step 2!
 2nd iteration:
 \[t(x | b) = \frac{1}{8} \]
 \[t(y | b) = \frac{7}{8} \]
 \[t(x | c) = \frac{3}{4} \]
 \[t(y | c) = \frac{1}{4} \]
• EM guarantees that this will monotonically increase \(P(a, f | e) \) (but only local maxima)
• EM for Model 3 is exactly like this, but we have different formula for \(P(a | f, e) \) & we collect fractional counts for n, p, d from the alignments

Exercise...

• The blue house / la maison bleue
• The house / la maison
• 6 alignments for sentence 1, two for sentence 2
• Start w/ all t’s set to 1/3 - i.e., \(t(la|the)=1/3... \)

How good is Model 3?

• Remember gambler?
• How good is Model 3 at this game?
• Distortion – poor description of word order differences – bets on lots of ungrammatical French sentences
• Nothing stops us from choosing target position

Consider

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

\[\text{ALL map to position 5} \]
problemas del entrenamiento

- EM not globally optimal
 - Initial condition: might take 1st two words & always link them, then distortion cost small, word-translation costs high
 - EM doesn't know about linguistics!
 - How to fix?
- More seriously: look at iteration
 - Over every alignment: $P(f|e) = \sum_a P(a,f|e)$
 - 20 words by 20 words – gulp
 - Solution: iterate only over good-looking ones...
 - How to find best 100 w/o enumerating them all??

parámetros rápidos y sucios

- Can use Model 1 counts from all alignments w/o enumerating them all!
- Model 1 – easy to figure out what best alignment is – quadratic time in l, m
- In fact, it has a single local maximum, since the objective function is quadratic (won’t prove this here...)
- Use this to kick-off Model 3

Formula about Model 1

$$\sum_a P(a,f|e) = \sum_a \prod_{j=1}^{m} t(f_j|e_{a_j}) = \prod_{j=1}^{m} \sum_{a} t(f_j|e_{a_j})$$

Use factoring to do this
Last expression only takes $l \cdot m$ operations

el kahuna grande

- Uniform t values
- Model 1 iteration (over all alignments)
- Revised t values
- Uniform n, d, p values
- Model 3, start w/ alignment from Model 1
- Local jiggle about alignment
- Revised t, n, d, p values
- All use pr’s + l, n, d, p
- New F’s
- New E’s
Now to the next step...

- Got our $P(e)$, $P(f,e)$
- To translate given French sentence f, we still need to find the English sentence e that maximizes the product
- Can’t search all of these!!!

Still need

- Unknown words – names & technical terms: use phonetics
- Robert Berwick,... (what does Babelfish do?)

¿Tan qué?

- What did IBM actually do? (datawise)
- Remember the British unemployed?

IBM’s actual work

- (Remember the British unemployed)
- 1,778,620 translation pairs
- 28,850,104 French words
- T array has 2,437,020,096 entries...
- Final English, French dictionaries have 42,006 and 58,016 words
- In all, about 100mb of storage needed to calculate the pr’s
Iterations

<table>
<thead>
<tr>
<th>Iteration</th>
<th>In → Out</th>
<th>Surviving pr's</th>
<th>Alignments</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 → 2</td>
<td>12,057,609</td>
<td>71,550.56</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 → 2</td>
<td>12,160,475</td>
<td>202.99</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 → 2</td>
<td>9,403,220</td>
<td>89.41</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 → 2</td>
<td>6,437,172</td>
<td>61.59</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 → 2</td>
<td>5,303,312</td>
<td>49.77</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2 → 2</td>
<td>4,397,172</td>
<td>46.36</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2 → 3</td>
<td>3,841,470</td>
<td>45.15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3 → 5</td>
<td>2,057,033</td>
<td>124.28</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5 → 5</td>
<td>1,856,665</td>
<td>39.17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5 → 5</td>
<td>1,763,393</td>
<td>31.29</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5 → 5</td>
<td>1,658,364</td>
<td>30.65</td>
<td></td>
</tr>
</tbody>
</table>

Should vs. should

| | f t(f|e) phi (phi|e) |
|---------|----------------|
| devrait | 0.330 0.649 |
| devraient | 0.123 0.336 |
| devrions | 0.109 0.014 |
| faudrait | 0.073 |
| faut | 0.058 |
| doit | 0.058 |
| aurait | 0.041 |
| doivent | 0.024 |
| devons | 0.017 |
| devrais | 0.013 |

What about...

- In French, what is worth saying is worth saying in many different ways.
- He is nodding:
 - Il fait signe qui oui
 - Il fait un signe de la tête
 - Il fait un signe de tête affirmatif
 - Il hoche la tête affirmativement
Nodding hill...

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>signe</td>
<td>0.164</td>
<td>4</td>
</tr>
<tr>
<td>la</td>
<td>0.123</td>
<td>3</td>
</tr>
<tr>
<td>ilhe</td>
<td>0.097</td>
<td>2</td>
</tr>
<tr>
<td>oui</td>
<td>0.086</td>
<td>1</td>
</tr>
<tr>
<td>fait</td>
<td>0.073</td>
<td>0</td>
</tr>
<tr>
<td>que</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>hoche</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>hocher</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>faire</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>me</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>approuve</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>qai</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>faites</td>
<td>0.011</td>
<td></td>
</tr>
</tbody>
</table>

Best of 1.9 x 10^6 alignments!

Best of 8.4 x 10^9 alignments!

- Always works hard – even if the input sentence is one of the training examples
- Ignores morphology – so what happens?
- Ignores phrasal chunks – can we include this? (Do we?)
- What next? Alternative histories...
- Can we include syntax and semantics?
- (why not?)

Lecture 19 Sp03