6.863J Natural Language Processing Lecture 1: Introduction - walking the walk, talking the talk

Instructor: Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

- Administrivia
- All on web page: www.ai.mit.edu/courses/6.863/
- What this course is all about
- What you will learn \& what you have to do in the course
- Why NLP is hard, and interesting
- The ingredients of language
- Why language and computation?
- Words, words, words...

A few applications of NLP

- Spelling correction, grammar checking ...
- Better search engines
- Information extraction
- Psychotherapy; Harlequin romances; etc.
- New interfaces:
. Speech recognition (and text-to-speech)
- Dialogue systems (USS Enterprise onboard computer)
- Machine translation (the Babel fish)

Goals of the course

- Introduce you to NLP problems \& solutions
- Relation to linguistics, cognitive science, \& statistics
- At the end you should:
- Agree that language is subtle \& interesting
- Feel some ownership over the formal \& statistical models
- Understand research papers in the field
- Build your own natural language systems
- Become the next Google...?

And then there's...

Alaska to controller: Ready to taxi
Boeing to controller: Ready to taxi
Cessna to controller* Ready to taxi.
Alaska> Clear to runway twoniner.
Roger.
Horizon to controller* Inbound,
United to controller* Inbound,
Alaska> Taxi to runway ten via echo. I do not think there is such a runway.

Alaska> Taxi to runway twoniner via echo.
Roger.
Alaska to controller: Doing runup++
Alaska to controller: Run up completed. Ready for departure,
Alaska> Position and hold.
Roger.
Alaska to controller: Position and hold. Ready for departure.
Alaska> Clear for takeoff.
Roger.

The next Google? Words, words, words

- How many (English) words on the web? Est. from 2001
- 76,598,718,000
- Many repetitive repetitive words

The next Google? Words, words, words

- Keywords match to match search terms to advertisers: 'hair follicle' \rightarrow 'hair follicle stimulation' \rightarrow Rogaine
- Advertisers pay Google: \$3B for keyword advertising in 2003, expected to grow to over \$8B
- Easy to guess some: 'Rogaine’, 'hair loss’
- Hard to guess others, very low frequency: 'hair falling out'
- Can't maximize marketing reach

- Input: "Rogaine is a drug that helps prevent hair loss"
- Output: keywords causally relevant: "stop hair loss"; "hair loss"; "hair falling out"

Lightweight vs. AI-complete natural language problems

But what's inside the black box?
Lightweight / AI-complete

Lightweight:

It's the year 2004 and still...still....

Dave Bowman: Open the pod bay doors, HAL HAL: I'm sorry Dave, I'm afraid I can't do that.

Natural language at the heart of human intelligence

- The first Turing test:
"Rabbah Zoreh made a Gollum and brought it to Rabbah; he bid it to talk.

Rabbah replied: 'It cannot speak; return it unto the flames'
(Manhet Sahedrin, Babylonian Talmud, approx. 400 BCE)

- Human language is not 'wysiwyg'
- What you see 'on the surface' is not the 'underlying representation' people (or computers) manipulate
- You can't just write down the representation from a simple surface examination of the data
- (Compare: edges in machine vision)

Example of hidden structure

. English plural:

- Toy+s \rightarrow toyz
- Book+s \rightarrow books ; add s
- Church $+\mathrm{s} \rightarrow$ churchiz ; add $i z$
- Box+s \rightarrow boxiz ; add $i z$
- (Sheep+s \rightarrow sheep/sheeps ; add nothing; or s
- What if a nove/ word?
- Bach's many cantatas
- Which pronounciation is it? Sor IZ ?

Bachs many cantatas NOT BachIZ despite
Analogy/similarity to 'box' - why?

Invisible knowledge

- I want to hold your hand
- I wanna hold your hand
- Displacement: I understand these students
- These students I understand
- I want these students to solve the problem
- These students I want [x] to solve the problem [x]= these students
Notice that contraction of want+to is now blocked!

Figuring out the right representation

- What is the right representation (knowledge of language)
- This is what linguists figure out
- This alone is a daunting task...but wait, there's more
- Computation $=$ data structures + algorithms

Word knowledge is subtle

- He arrived at the lecture
- He chuckled at the lecture
- He arrived drunk
- He chuckled drunk
- He chuckled his way through the lecture
- He arrived his way through the lecture

What is the character of this knowledge?

- Some of it must be memorized (obviously so):
. Singing \rightarrow Sing+ing; Bringing \rightarrow bring+ing
- Cantare, portare; singen, holen
- We must know the endings (suffixes) of words
- What else?
- We must know the roots (stems) of words
. Duckling \rightarrow Duckl + ing ?
- What else?
- We must know which endings go on which roots
- Doer \rightarrow do+er
- Beer \rightarrow ??

But there is too much to memorize!

- Missile
- Antimissile
- Antiantimissile
- Antiantiantimissile...
- Conclusion: we must have a generative system - i.e., a set of rules to do this

The non-WYSIWYG view!

Other languages...

Lexical: Paris+mut+nngau+juma+niraq+lauq+sima+nngit+junga
Surface: Pari mu nngau juma nira lauq sima nngit tunga

Paris	$=$ (root = Paris)
+mut	$=$ terminalis case ending
+nngau	$=$ go (verbalizer)
+juma	$=$ want
+niraq	$=$ declare (that)
+lauq	$=$ past
+sima	$=$ (added to -lauq- indicates "distant past")
+nngit	$=$ negative
+junga	1st person sing. present indic (nonspecific)

Figure 2: Inuktitut: Parimunngaujumaniralauqsimanngittunga $=$ "I never said I wanted to go to Paris"

An ancient tradition

- Insight of Panini (Sanskrit grammarians): circa 400BCE: system of morphological analysis, based on cascaded rules (we will see how to implement this later on)
- Nice to have whole book written to reveal this published in year 2000
- Still, have we made progress in the intervening two millennia...?

What's more...

- On the basis of just under 4000 sutras [rules expressed as aphorisms], he built virtually the whole structure of the Sanskrit language
- Uses a notation precisely as powerful as Backus normal form - an algebraic notation to represent numeral (and other patterns) by letters
- So, we know something about what the representation for language might be

Figuring out the right algorithm

- How is that knowledge is put to use?
- What and how are the cornerstones - the key questions

How can be difficult - why?

- Police police police
- I know that
- I know that block
- I know that blocks the sun
- I know that block blocks the sun
- In a word: ambiguity

Ambiguity

- Iraqi Head Seeks Arms
- Juvenile Court to Try Shooting Defendant
- Teacher Strikes Idle Kids
- Stolen Painting Found by Tree
- Kids Make Nutritious Snacks
- Local HS Dropouts Cut in Half
- Obesity Study Looks for Larger Test Group

Ambiguity

British Left Waffles on Falkland Islands

- Red Tape Holds Up New Bridges
- Man Struck by Lightning Faces Battery Charge
- Bush Wins on Budget, but More Lies Ahead
- Hospitals Are Sued by 7 Foot Doctors

Subtler Ambiguity

- Q: Why does my high school give me a suspension for skipping class?
- A: Administrative error. They're supposed to give you a suspension for auto shop, and a jump rope for skipping class. (*rim shot*)

John stopped at the donut store on his way home from work. He thought a coffee was good every few hours. But it turned out to be too expensive there.

Levels of language

- Phonetics/phonology/morphology: what words (or subwords) are we dealing with?
- Syntax: What phrases are we dealing with? Which words modify one another?
- Semantics: What's the literal meaning?
- Pragmatics: What should you conclude from the fact that I said something? How should you react?

Levels of representation

- Primitives
- Rules of combination (syntax - from Greek $\sigma \psi \nu \tau \alpha \xi_{1 \sigma,}$ 'too arrange together')
- Generative system to produce expressions in the representation language
- Examples: words, phrases,....

The central problem: parsing

- The problem of mapping from one representational level to another is called parsing
- If there is > 1 possible outcome (the mapping is not a function) then the input expression is ambiguous

$$
\begin{aligned}
\text { dogs } \rightarrow & \text { dog-Noun-plural or } \\
& \text { dog-Verb-presT }
\end{aligned}
$$

Start with words: they illustrate all the problems (and solutions) in NLP

- Parsing words

Cats \rightarrow CAT $+\mathrm{N}($ oun $)+\mathrm{PL}($ ural $)$

- Used in:
- Traditional NLP applications
- Finding word boundaries (e.g., Latin, Chinese)
- Text to speech (boathouse)
- Document retrieval (example next slide)
- In particular, all the problems of parsing, ambiguity,and computational efficiency arise (as well as the problems of how people do it)

Example from information retrieval

- Keywork retrieval: marsupial or kangaroo or koala
- Trying to form equivalence classes - ending not important
- Can try to do this without extensive knowledge, but then:
organization \rightarrow organ \quad Europe $\nmid x \rightarrow$ Europe generalization \rightarrow generic noise \rightarrow noisy

Morphology

- Morphology is the study of how words are built up from smaller meaningfu/ units called morphemes (morph= shape; logos=word)

What about other languages?								
Present indiçtive	Imper	Imperf Indic.	Future	Preterite	Present Subjun	Cond	Imp. Subj.	Future Subj.
amo		amaba	amare	ame	ame	amarla	amara	amare
amas	ama	amabas	amarás	amaste	ames	amarías	amaras	amares
	ames							
ama		amamba	amará	amó	ame	amaría	amara	amáreme
amamos								
amáis	amad	amambais	amremos	amomos	amemos	amaríanos	amarais	amareis
	amáis							
aman	lov	amamban in Spa	amarán nish...	amaron ncom		amarían you ca	amarain	amaren
finish it after Valentine's Day .i. 6.863J/9.611J SP04 Lecture 1								

What about other processes?

- Stem: core meaning unit (morpheme) of a word
- Affixes: bits and pieces that combine with the stem to modify its meaning and grammatical functions
Prefix: un- , anti-, etc.
Suffix: -ity, -ation, etc.
Infix:
Tagalog: um+hinigi \rightarrow humingi (borrow)
Any infixes in 'nonexotic' language like English?

Here's one: un-f*****-believable

OK, now how do we deal with this computationally?

- What knowledge do we need?
- How is that knowledge put to use?
- What:
duckling; beer (implies what K...?)
chase $+e d \rightarrow$ chased (implies what K?)
breakable + un \rightarrow unbreakable ('prefix')
- How: a bit trickier, but clearly we are at least doing this kind of mapping...

Why not a great big dictionary?

1. Impractical: some languages associate a single meaning w/ a Sagan number of distinct surface forms (600 billion in Turkish)
2. Chinese compounding: about 3000 'words,' combine to yield tens of thousands
3. Speakers don't represent words as a list Wug test (Berko, 1958)
Juvenate is rejected slower than pertoire (real prefix matters)

English examples

- As an example, consider adjectives

Big, bigger, biggest
Cool, cooler, coolest, coolly
Red, redder, reddest
Clear, clearer, clearest, clearly, unclear, unclearly
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Real, unreal, silly

What are we modeling - part 2

- Morphemes surface differently in different contexts
- Fox+s \rightarrow foxes; fly $+s \rightarrow$ flies; quiz+s \rightarrow quizzes; dog $+\mathrm{s} \rightarrow$ dogs
- We model this as an extension of std finite-state machine
- Do this in two steps: (1) since the words are spelled out as characters, form an fsa for spelling, a prefix tree automaton:

How was this done in linguistic theory?

- Insert e after 'sh', 'x', etc: "epthenthesis"
- Statement of rule is actually quite complex:
- Rewrite rule: $x \rightarrow y \mid \alpha _\beta$ (Chomsky \& Halle)
- 0:e ==> [Csib (c h) (s h) y:i] +:0 _ s (transducer notation)

- And... they interact: spy+s
- What do we do?
- Ans: more than one FTN, one for each kind of change
- Epenthesis (e insertion)
- consonant doubling (gemination)

Example from English

underlying quiz + s \int Rule A: s-> es after z

intermediate quiz + es

\downarrow| Rule B: z doubles before |
| :--- |
| Suffix beginning with |
| vowel |

underlying quizzes

...and Turkish...

