
6.863J Natural Language Processing
Lecture 2: Automata, Two-level

phonology, & PC-Kimmo
(the Hamlet lecture)

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP03 Lecture 2

The Menu Bar

• Administrivia
web page: www.ai.mit.edu/courses/6.863/ now with

Lecture 1, Lab1
Questionnaire posted (did you email it?)
Lab1: split into Lab1a (this time) Lab1b (next time)

• What and How: word processing, or computational
morphology

• What’s in a word: morphology
• Modeling morpho-phonology by finite-state devices
• Finite-state automata vs. finite state transducers
• Some examples from English
• PC-Kimmo & Laboratory 1:how-to

6.863J/9.611J SP03 Lecture 2

Levels of language

• Phonetics/phonology/morphology: what
words (or subwords) are we dealing with?

• Syntax: What phrases are we dealing with?
Which words modify one another?

• Semantics: What’s the literal meaning?
• Pragmatics: What should you conclude from

the fact that I said something? How should
you react?

6.863J/9.611J SP03 Lecture 2

The “spiral notebook” Model

the dogs ate ice-cream

θε dawgz…

Sentence

‘surface’
form

Noun phrase Verb phrase

Verb Noun Phrase
ate ice-cream

the dogz

λx, xε{dogs}, ate(x, i-c)
‘sound’
form

‘phrase’
form

‘logical’
form

6.863J/9.611J SP03 Lecture 2

Start with words: they illustrate all
the problems (and solutions) in NLP

• Parsing words
Cats → CAT + N(oun) + PL(ural)

• Used in:
• Traditional NLP applications
• Finding word boundaries (e.g., Latin, Chinese)
• Text to speech (boathouse)
• Document retrieval (example next slide)

• In particular, the problems of parsing, ambiguity,and
computational efficiency (as well as the problems of
how people do it)

6.863J/9.611J SP03 Lecture 2

Example from information retrieval

• Keywork retrieval: marsupial or kangaroo or
koala

• Trying to form equivalence classes - ending not
important

• Can try to do this without extensive knowledge,
but then:
organization → organ European → Europe
generalization → generic noise → noisy

6.863J/9.611J SP03 Lecture 2

Morphology

• Morphology is the study of how words are
built up from smaller meaningful units called
morphemes (morph= shape; logos=word)

• Easy in English – what about other
languages?

6.863J/9.611J SP03 Lecture 2

What about other languages?

amarenamarainamaríanamenamaronamaránamambanaman

amáis

amareisamaraisamaríanosamemosamomosamremosamambaisamadamáis

amamos

amáremeamaraamaríaameamóamaráamambaama

ames

amaresamarasamaríasamesamasteamarásamabasamaamas

amareamaraamaríaameaméamaréamabaamo

Future
Subj.

Imp.
Subj.

CondPresent
Subjun

PreteriteFutureImperf
Indic.

ImperfPresent
indicative

How to love in Spanish…incomplete…you can
finish it after Valentine’s Day…

6.863J/9.611J SP03 Lecture 2

What about other languages?

6.863J/9.611J SP03 Lecture 2

What about other processes?

• Stem: core meaning unit (morpheme) of a word
• Affixes: bits and pieces that combine with the stem to

modify its meaning and grammatical functions
Prefix: un- , anti-, etc.
Suffix: -ity, -ation, etc.
Infix:

Tagalog: um+hinigi → humingi (borrow)

Any infixes in ‘nonexotic’ language like English?

Here’s one: un-f******-believable

6.863J/9.611J SP03 Lecture 2

OK, now how do we deal with this
computationally?

• What knowledge do we need?
• How is that knowledge put to use?

• What:
duckling; beer (implies what K…?)
chase + ed → chased (implies what K?)
breakable + un →unbreakable (‘prefix’)

• How: a bit trickier, but clearly we are at least
doing this kind of mapping…

6.863J/9.611J SP03 Lecture 2

Our goal: PC-Kimmo

f l

Surface form

Lexicon

i se

Rules

F L Y + S

Lexical form

6.863J/9.611J SP03 Lecture 2

Two parts to the “what”

1. Which units can glue to which others (roots
and affixes) (or stems and affixes), eg,

2. What ‘spelling changes’ (orthographic
changes) occur – like dropping the e in
‘chase + ed’

OK, let’s tackle these one at a time, but first
consider a (losing) alternative…

6.863J/9.611J SP03 Lecture 2

KISS: A (very) large dictionary

1. Impractical: some languages associate a single meaning w/ a
Sagan number of distinct surface forms (600 billion in
Turkish)
German: Leben+s+versichergun+gesellschaft+s+angestellter

(life+CmpAug+insurance+CmpAug+company+CompAug
+employee)

Chinese compounding: about 3000 ‘words,’ combine to yield
tens of thousands

2. Speakers don’t represent words as a list
Wug test (Berko, 1958)
Juvenate is rejected slower than pertoire (real prefix

matters)

6.863J/9.611J SP03 Lecture 2

Representing possible roots + affixes
as a finite-state automaton

/usr/dict/words
FSM

17728 states,
37100 arcs

2 sec

25K words
206K chars

clear
clever
ear
ever
fat

father

Wordlist

compile

rlc ae

v e
e

t h
f

a

Network

6.863J/9.611J SP03 Lecture 2

Now add in states to get possible
combos, as well as features

+Adj

r

+Comp

b i g e

This much is easy – a straightforward fsa
States = equivalence classes

l

fail

accept
0

6.863J/9.611J SP03 Lecture 2

English morphology: what states do
we need for the fsa?

• As an example, consider adjectives
Big, bigger, biggest
Cool, cooler, coolest, coolly
Red, redder, reddest
Clear, clearer, clearest, clearly, unclear, unclearly
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Real, unreal, silly

6.863J/9.611J SP03 Lecture 2

Will this fsa work?

0

6.863J/9.611J SP03 Lecture 2

Ans: no!

• Accepts all adjectives above, but
• Also accepts unbig, readly, realest
• Common problem: overgeneration
• Solution?

6.863J/9.611J SP03 Lecture 2

Revised picture

6.863J/9.611J SP03 Lecture 2

How does PC-Kimmo represent this?

Here’s what the pc-kimmo fsa
looks like – the fsa states are
called ‘alternation classes’ or
‘lexicons’

6.863J/9.611J SP03 Lecture 2

PC-Kimmo states for affix combos
(portion) = lexicon tree

Begin (Initial)

N_root Adj_prefix V_prefix

(at start of file english.lex)

N_root2N_root1

N_suffix GenitiveNumber

END
ENDEND

END
END

Adj_root

6.863J/9.611J SP03 Lecture 2

Next: what about the spelling
changes? That’s harder!

ü Which units can glue to which others (roots
and affixes) (or stems and affixes)

2. What ‘spelling changes’ (orthographic
changes) occur – like dropping the e in
‘chase + ed’

6.863J/9.611J SP03 Lecture 2

Mapping between surface form &
underlying form

c h a s e d

c h a s e + e d

Surface:

Underlying:

But clearly this can go either way – given the underlying
form, we can generate the surface form – so we really
have a relation betw. surface & underlying form, viz.:

6.863J/9.611J SP03 Lecture 2

Conventional notation

Lexical (underlying) form: c h a s e + e d
Surface form: c h a s 0 0 e d

The 0’s “line up” the lexical & surface strings
This immediately suggests a finite-state automaton
‘solution’ : an extension known as a
finite-state transducer

6.863J/9.611J SP03 Lecture 2

Finite-state transducers: a pairing
between lexical/surface strings

C H A S

c h a s

• Or more carefully

lexical string

surface string

6.863J/9.611J SP03 Lecture 2

Definition of finite-state automaton
(fsa)

• A (deterministic) finite-state automaton
(FSA) is a quintuple (Q,Σ,δ, q0, F) where
• Q is a finite set of states
• Σ is a finite set of terminal symbols, the

alphabet
• q0 ∈ Q is the initial state
• F ⊆ Q, the set of final states
• δ is a function from Q x Σ → Q, the

transition function

6.863J/9.611J SP03 Lecture 2

Definition of finite-state transducer

• state set Q
• initial state q0

• set of final states F
• input alphabet S (also define Σ *, Σ +)
• output alphabet D
• transition function δ : Q x Σ → 2Q

• output function σ: Q x Σ x Q → D*

6.863J/9.611J SP03 Lecture 2

Regular relations on strings

• Relation: like a function, but multiple outputs ok
• Regular: finite-state
• Transducer: automaton w/ outputs

• b → ? a → ?
• aaaaa → ?

b:b

a:a

a:0

a:c

b:0

b:b

?:c

?:a

?:b

{b} {}
{ac, aca, acab,

acabc}

6.863J/9.611J SP03 Lecture 2

The difference between (familiar)
fsa’s and fst’s: functions from…

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

0:y

a
c

0

{false, true} strings

6.863J/9.611J SP03 Lecture 2

Defining an fst for a spelling-change
rule

• Suggests all we need to do is build an fst for
a spelling-change rule that ‘matches’ lexical
and surface strings

• Example: fox+s, foxes; buzz+s, buzzes
• Rule: Insert e before non initial x,s,z
• Instantiation as an fst (using PC-Kimmo

notation)

f o x 0 e s # surface
F O X + 0 S # lexical

6.863J/9.611J SP03 Lecture 2

Insert ‘e’ before non-initial z, s, x
(“epenthesis”)

0

0 0
0

f o x 0 e s # surface
F O X + 0 S # lexical

6.863J/9.611J SP03 Lecture 2

Successful pairing of foxes,fox+s

f:f, o:o
s:s+:0 0:ex:x

#:#

f o x 0 e s # surface
F O X + 0 S # lexical

0

0

0

6.863J/9.611J SP03 Lecture 2

Now we combine the fst for the rules
and the fsa for the lexicon by
composition

Regular Expression
Lexicon

Lexicon
FSA

Compiler

Regular Expressions
for Rules

Composed
Rule FST

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

b i g +Adj

r

+Comp

b i g g e0

6.863J/9.611J SP03 Lecture 2

So we’re done, no?

ü Which units can glue to which others (roots
and affixes) (or stems and affixes)

ü What ‘spelling changes’ (orthographic
changes) occur – like dropping the e in
‘chase + ed’

6.863J/9.611J SP03 Lecture 2

So, we’re done, right?

• Not so fast…!!!!
• Sometimes, more than 1 spelling change rule

applies. Example: spy+s, spies: y
• y goes to i before an inserted e (compare,

“spying”
• e inserted at affix +s
• Here’s the picture:

6.863J/9.611J SP03 Lecture 2

Simultaneous rules

• All we gotta do is write one fst for each of the
spelling change rules we can think of, no?

• Since fsa’s are closed under intersection, we
can apply all the rules simultaneously… can
we?

• No! Fst’s cannot, in general, be intersected…
(but, they can, under certain conditions…)

6.863J/9.611J SP03 Lecture 2

The classical problem

• Traditional phonological grammars consisted of
a cascade of general rewrite rules, in the form:
x→y/ϕ__γ

• If a symbol x is rewritten as a symbol y, then
afterwards x is no longer available to other rules

• Order of rules is important
• Note this system isTuring complete – can

simulate general steps of any computation.. So,
gulp, how do we cram them into finite-state
devices…?

6.863J/9.611J SP03 Lecture 2

Example from English (“gemination”)

quiz + s

quiz + es

quizzes

Rule A: s -> es after z

Rule B: z doubles before
Suffix beginning with
vowel

underlying

intermediate

surface

6.863J/9.611J SP03 Lecture 2

What’s the difference?

• FSA isomorphic to regular languages (sets of
strings)

• FST isomorphic to regular relations, or sets of
pairs of strings

• Like FSAs, closed under union, but unlike
FSAs, FSTs are not closed under
complementation, intersection, or set
difference

6.863J/9.611J SP03 Lecture 2

But this is a problem…

• How do we know which order of rules?
• A transducer merely computes a static regular

relation, and is therefore inherently reversible –
so equally viable for analysis or synthesis

• The constraints are declarative
• Since the rules describe such relations, in

general, more than one possible answer – which
do we pick? (Inverting the order becomes hard)

• This blocked matters until C. Johnson recalled a
theorem of Schuztenberger [1961] viz.,

6.863J/9.611J SP03 Lecture 2

When is this possible?

Rule 1

Rule 2

Rule 4

Rule 3

input

output

Single FST

input

6.863J/9.611J SP03 Lecture 2

Schuztenberger’s condition on
closure of fst’s

• The relations described by the individual
transducers add up to a regular relation (I.e., a
single transducer) when considered as a whole
if

• The transducers act in lockstep: each character
pair is seen simultaneously by all transducers,
and they must all “agree” before the next
character pair is considered

• No transducer can make a move on one string
while keeping the other one in place unless all
the other transducers do the same

6.863J/9.611J SP03 Lecture 2

Simultaneous read heads

6.863J/9.611J SP03 Lecture 2

The condition

• For FSTs to act in lockstep, any 0 transitions
must be synchronized – that is, the
lexical/surface pairing must be equal length

• S. called this an equal length relation
• Under this condition, fst’s can be intersected

– PC-Kimmo program simulates this
intersection, via simultaneous “read heads”

6.863J/9.611J SP03 Lecture 2

Plus lexicon – lexical forms always
constrained by the path we’re
following through the lexicon tree

6.863J/9.611J SP03 Lecture 2

And that’s PC-Kimmo, folks… or
“Two-level morphology”

• A lexicon tree (a fsa to represent the lexicon)
• A set of (declarative) lexical/underlying relations,

represented as a set of fst’s that address both lexical
and surface forms

• For English, roughly 5 rules does most of the work
(you’ve seen 2 already) – 11 rules for a “full scale”
system with 20,000 lexical entries (note that this
typically achieves a 100-fold compression for English)

• The only remaining business is to tidy up the actual
format PC-KIMMO uses for writing fst tables (which is
quite bizarre)

6.863J/9.611J SP03 Lecture 2

Spelling change rules

lie/lyingI goes to y before
vowel

I spelling (I)

try/tries-y changes to -ie
before -ed

Y replacement
(Y)

fox/foxese added after -s, -z, -
ch, -sh before -s

E insertion
(epenthesis,
EP)

make/makingSilent e dropped
before -ing, -ed

E deletion
(elision, EL),

beg/begging1-letter consonant
doubled before -ing/ed

Consonant
Doubling
(gemination, G)

ExampleDescriptionName

6.863J/9.611J SP03 Lecture 2

How do we write these in PC-Kimmo?

6.863J/9.611J SP03 Lecture 2

PC-Kimmo 2-level Rules

• Rules look very similar to phonological rewrite
rules, but their semantics is entirely different

• 2-level rules are completely declarative. No
derivation; no ordering

• Rules are in effect modal statements about
how a form can, must, or must not be
realized

6.863J/9.611J SP03 Lecture 2

Form & Semantics of 2-level Rules

• Basic form is
L:S OP lc … rc:

• Lexical L pairs with surface S in (optional)
left, right context lc, rc. OP is one of
=> Only but not always,
<= Always but not only
<=> Always and only
/<= Never

• lc and rc are 2-level i.e. can address lexical
and surface strings

6.863J/9.611J SP03 Lecture 2

a:b => l_r

• If the symbol pair a:b appears, it must be in
context l_r

• If the symbol pair a:b appears outside the
context l_r, FAIL

lar lar lbr xay
lbr lar lbr xby

6.863J/9.611J SP03 Lecture 2

Example: epenthesis

; LR: fox+0s kiss+0s church+0s spy+0s
; SR: fox0es kiss0es church0es spi0e
(note: we NEED the + to mark the end of the root ‘fox’ – we
can’t just have fox0s paired with fox0es)

RULE "3 Epenthesis, 0:e => [Csib|ch|sh|y:i] +:0___s [+:0|#]" 7 9

6.863J/9.611J SP03 Lecture 2

If a lexical t corresponds to a surface
c, it precedes an i

6.863J/9.611J SP03 Lecture 2

a:b <= l_r

• If lexical a appears in context l_r, then it
must be realized as surface b

• If lexical a appears in context l_r, if it is
realized as anything other than surface b,
FAIL

lar lar lbr xay
lbr lar lbr xby

6.863J/9.611J SP03 Lecture 2

Y-I spelling

; y:i-spelling
; LR: spy+s happy+ly spot0+y+ness
; SR: spies happi0ly spott0i0ness

RULE "5 y:i-spelling, y:i <= :C__+:0 ~[i|']" 4 7

6.863J/9.611J SP03 Lecture 2

a:b <=> l_r

• If the symbol pair a:b appears, it must be in context l_r
• If lexical a appears in context l_r, then it must be

realized as surface b
• If the symbol pair a:b appears outside the context l_r,

FAIL
• If lexical a appears in context l_r, if it is realized as

anything other than surface b, FAIL

lar lar lbr xay
lbr lar lbr xby

6.863J/9.611J SP03 Lecture 2

Possessives with ‘s’

; s-deletion
; LR: cat+s+'s fox+s+'s
; SR: cat0s0'0 foxes0'0

RULE "7 s-deletion, s:0 <=> +:0 (0:e) s +:0 '___"

6.863J/9.611J SP03 Lecture 2

Example: Japanese past tense

•Voicing: t:d <=> <b m n g>: (+:0) (0:i) ___

6.863J/9.611J SP03 Lecture 2

a:b <= /l_r

• Lexical a is never realized as b in context
l_r

• If lexical a is realized as b in the context
l_r, FAIL

lar lar lbr xay
lbr lar lbr xby

6.863J/9.611J SP03 Lecture 2

Gemination (consonant doubling)

; {C} = {b,d,f,g,l,m,n,p,r,s,t}
RULE "16 Gemination, 0:0 /<= `:0 C* V {C}___+:0 [V|y:]" 5 16

6.863J/9.611J SP03 Lecture 2

2-Level Rule Semantics: summary

lar lar lbr xay
lbr lar lbr xby

lar lar lbr xay
lbr lar lbr xby

lar lar lbr xay
lbr lar lbr xby

lar lar lbr xay
lbr lar lbr xby

a:b <=> l _ r;

a:b <= l _ r;

a:b => l _ r;

a:b /<= l _ r;

lexical

surface

6.863J/9.611J SP03 Lecture 2

Automata Notation (.rul file)

• What were those funny 2 numbers at the end
of the ‘rewrite’ notation?

• They specify the rows and columns of the
corresponding automaton

• I’ll show you one, but it’s like Halloween 6 – a
nightmare you don’t want to remember

• We have a nicer way of writing them…
• OK, here goes…

6.863J/9.611J SP03 Lecture 2

Shudder…

RULE "16 Gemination, 0:0 /<= `:0 C* V {C}___+:0 [V|y:]" 5 16
` V y b d f g l m n p r s t + @
0 V @ b d f g l m n p r s t 0 @

1: 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2: 2 4 2 2 2 2 2 2 2 2 2 2 2 2 1 2
3: 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
4: 2 1 1 5 5 5 5 5 5 5 5 5 5 5 1 1
5: 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1

6.863J/9.611J SP03 Lecture 2

Limits?

• Can PC-KIMMO do INFIXES?
Infix:

Tagalog: um+hinigi → humingi (borrow)

Any infixes in ‘nonexotic’ language like
English?

Here’s one: un-f******-believable

6.863J/9.611J SP03 Lecture 2

Summary: what have we learned so
far?

• FSTs can model many morphophonological systems -
esp. concatenative (linear) phonology

• You can compose and parallelize the FSTs
• Nulls cause nondeterminism - why can’t we get rid of

nondeterminism like in FSAs
• What can this machine do?
• What can’t it do?
• How complex can it be? (computational complexity in

official sense)
• How complex is it in practice?
• Example from Warlpiri

6.863J/9.611J SP03 Lecture 2

Lab 1: PC-kimmo warmup
Login to Athena SUN workstation
Athena>attach 6.863
Athena> cd /mit/6.863/pckimmo-old
Athena>pckimmo
PC-Kimmo>take english
PC-Kimmo> recognize flies

`fly+s fly+PL
…

PC-Kimmo>generate fly+s
flies

PC-Kimmo>set tracing on
PC-Kimmo>quit

6.863J/9.611J SP03 Lecture 2

An example – try it yourself

6.863J/9.611J SP03 Lecture 2

Outfoxed? Off to the races…
n Trace of an example races’
n The machine has to dive down many paths…

6.863J/9.611J SP03 Lecture 2

More to go…
Problem: e was paired with 0 (null)…!
(which is wrong - it’s guessing that the form is
“racing” - has stuck in an empty (zero) character
after c but before e) - elision automaton has 2 choices
This is nondeterminism in action (or inaction)!

6.863J/9.611J SP03 Lecture 2

And still more maze of twisty
passages, all alike…it’s going to try
all the sublexicons w/ this bad
guess..

6.863J/9.611J SP03 Lecture 2

Winding paths…after 22 steps…

6.863J/9.611J SP03 Lecture 2

The End

