
6.863J Natural Language Processing
Lecture 2: Automata, Two-level

phonology, & PC-Kimmo
(the Hamlet lecture)

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 2

The Menu Bar

• Administrivia
web page: www.ai.mit.edu/courses/6.863/ now with

Lecture 1, Lab components I (background), II (Lab
1a) – due date is February 17 (holiday the 16th)

• What and How: word processing, or computational
morphology

• What’s in a word: morphology
• Modeling morphophonology by finite-state devices
• Finite-state automata vs. finite state transducers
• Some examples from English
• PC-Kimmo & Laboratory 1a :how-to

6.863J/9.611J SP04 Lecture 2

Levels of language

• Phonetics/phonology/morphology: what
words (or subwords) are we dealing with?

• Syntax: What phrases are we dealing with?
Which words modify one another?

• Semantics: What’s the literal meaning?
• Pragmatics: What should you conclude from

the fact that I said something? How should
you react?

6.863J/9.611J SP04 Lecture 2

Start with words: they illustrate all
the problems (and solutions) in NLP

• Parsing words
Cats → CAT + N(oun) + PL(ural)

• Used in:
• Traditional NLP applications
• Finding word boundaries (e.g., Latin, Chinese)
• Text to speech (boathouse)
• Document retrieval (example next slide)

• In particular, the problems of parsing, ambiguity,and
computational efficiency (as well as the problems of
how people do it)

6.863J/9.611J SP04 Lecture 2

Terminology

• Morpheme, etc..
• See webpage

http://pandora.cii.wwu.edu/vajda/ling201/test1materials/Morphologyoverhead.htm

6.863J/9.611J SP04 Lecture 2

Two parts to the “what”

1. Which units can glue to which others (roots
and affixes) (or stems and affixes), eg,

2. What ‘spelling changes’ (orthographic
changes) occur – like dropping the e in
‘chase + ed’

OK, let’s tackle these one at a time

6.863J/9.611J SP04 Lecture 2

The Knowledge

Which units can glue to which others (roots
and affixes) (or stems and affixes)

What ‘spelling changes’ (orthographic
changes) occur – like dropping the e in
‘chase + ed’

6.863J/9.611J SP04 Lecture 2

Our goal: PC-Kimmo

f l

Surface form

Lexicon

i se

Rules

F L Y + S

Lexical form

6.863J/9.611J SP04 Lecture 2

Terminology

f l

f l

Lexical form

Surface form
(orthographic)

i

Alternation
Classes/spell. ch.

0

Y

e

s+

Finite-state transducer

0

Affix marker
boundary marker

Plural morpheme

s #

#

6.863J/9.611J SP04 Lecture 2

What is the Knowledge?

• Morpheme classes
• Like beads on a string
• Computational model:

• Finite-state automata

6.863J/9.611J SP04 Lecture 2

Two parallel finite-state machines

• Machine 1: order of morphemes
• Machine 2: spelling changes

6.863J/9.611J SP04 Lecture 2

Why finite-state machines?

• Minimal model
• Fast
• What makes up a finite-state automaton?
• Linear concatenation of equivalence classses

6.863J/9.611J SP04 Lecture 2

Definition of finite-state automaton
(fsa)

• A finite-state automaton (FSA) is a quintuple
(Q,Σ,δ, q0, F) where
• Q is a finite set of states
• Σ is a finite set of terminal symbols, the

alphabet
• q0 ∈ Q is the initial state
• F ⊆ Q, the set of final states
• δ is a mapping from Q x Σ → 2Q, the

transition mapping

6.863J/9.611J SP04 Lecture 2

Application to morphology

• Purely concatenative morphemes like a
rooted tree (but what about prefixes?)

6.863J/9.611J SP04 Lecture 2

English morphology: what states do
we need for the fsa?

• As an example, consider adjectives
Big, bigger, biggest
Cool, cooler, coolest, coolly
Red, redder, reddest
Clear, clearer, clearest, clearly, unclear, unclearly
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Real, unreal, silly

6.863J/9.611J SP04 Lecture 2

FSA states

• Equivalence classes under the notion of
‘substitution’: elements that ‘behave alike’

• Consider: ___er What goes in the space?
• Cool, big, happy (Adjectives that can be

comparative)
• If we need to make more refinements, we

need a new class

6.863J/9.611J SP04 Lecture 2

Will this fsa work?

0

6.863J/9.611J SP04 Lecture 2

Ans: no!

• Accepts all adjectives above, but
• Also accepts unbig, readly, realest
• Common problem: overgeneration
• Solution?

6.863J/9.611J SP04 Lecture 2

Revised picture

6.863J/9.611J SP04 Lecture 2

Extension to politics: an alien
language

• Bush could win the election
• Bush will win the election
• Bush did win the election
• Bush could have won the election
• Bush will have won the election
…

6.863J/9.611J SP04 Lecture 2

Structural linguistics circa 1940s

“[Words] are assigned to classes on the basis of
the environments in which they occur. Each
environment determines one and only one
class, namely the class of all [words]
occurring in that environment… A word A
belongs to the class determined by the
environment ____X if X is either an utterance
or occurs as part of some utterance.” Wells,
1947, pp. 81-82.

6.863J/9.611J SP04 Lecture 2

Finite transition networks (FTNs)

• 1-1 picture of fsa-ftn

• Easy to see, easy to prove certain properties:
closure under concatenation, intersection

• Conversion of nondeterministic to
deterministic fsa – always possible

6.863J/9.611J SP04 Lecture 2

Limits of FTNs

• Finite # of ‘memory states’
• Can distinguish only a finite # of classes

(bins) i.e., the states
• This sets limits on the patterns fsa’s can

recognize
• FSA’s cannot even describe all possible

human words…

6.863J/9.611J SP04 Lecture 2

Then can be indescribable words (for
an fst)

• Can we even do all natural languages?
• Example: Bambarra (African language in Mali)
• Words in form Noun+o+Noun, as in wuluowulo

=‘whichever dog’
• Also have repeated endings (like anti-anti…)

wulu+nyini+la =‘dog searcher’
wulunyinina+ nyini+la =‘one who searches for dog

searchers’
• Fatal bite: combine with word o word formation:

wulunyininanyinila o wulunyininanyinila (arbitrarily
long!)

6.863J/9.611J SP04 Lecture 2

Why is this not describable by an
fsa?

• Intuition: wn o wn language
• Need arbitrary # of bins to keep track of wn

string to match it up with wn after the ‘o’
• Must be able to count to arbitrary n to keep

track of # of copies…
• But, only a finite # of bins…so….

6.863J/9.611J SP04 Lecture 2

What does fsa machine for English
look like?

6.863J/9.611J SP04 Lecture 2

Next: what about the spelling
changes? That’s harder!

Which units can glue to which others (roots
and affixes) (or stems and affixes)

2. What ‘spelling changes’ (orthographic
changes) occur – like dropping the e in
‘chase + ed’

6.863J/9.611J SP04 Lecture 2

Mapping between surface form &
underlying form

c h a s e d

c h a s e + e d

Surface:

Underlying:

But clearly this can go either way – given the underlying
form, we can generate the surface form – so we really
have a relation betw. surface & underlying form, viz.:

6.863J/9.611J SP04 Lecture 2

Conventional notation

Lexical (underlying) form: c h a s e + e d
Surface form: c h a s 0 0 e d

The 0’s “line up” the lexical & surface strings
This immediately suggests a finite-state automaton
‘solution’ : an extension known as a
finite-state transducer

6.863J/9.611J SP04 Lecture 2

Finite-state transducers: a pairing
between lexical/surface strings

C H A S

c h a s

• Or more carefully

lexical string

surface string

6.863J/9.611J SP04 Lecture 2

Definition of finite-state transducer

• state set Q
• initial state q0

• set of final states F
• input alphabet S (also define Σ *, Σ +)
• output alphabet D
• transition function δ : Q x Σ → 2Q

• output function σ: Q x Σ x Q → D*

6.863J/9.611J SP04 Lecture 2

The difference between (familiar)
fsa’s and fst’s: functions from…

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

0:y

a
c

0

{false, true} strings

6.863J/9.611J SP04 Lecture 2

Properties of fst’s – compare to fsa’s

• Closed under concatenation – get another fst
if wired together

• NOT closed under intersection
• NOT always able to make deterministic

6.863J/9.611J SP04 Lecture 2

A Two-Level Transducer

c a n t o

t
i g r e

m
e s a

t
i g r e

c a n t o
m

e s a

m e s aOutput:
m e s aInput:

6.863J/9.611J SP04 Lecture 2

The Big Picture
Language

or
Relation

Regular
Expression

Finite-State
Network

describes encodes

compiles
into

6.863J/9.611J SP04 Lecture 2

Defining an fst for a spelling-change
rule

• Suggests all we need to do is build an FST for
a spelling-change rule that ‘matches’ lexical
and surface strings

• Example: fox+s, foxes; buzz+s, buzzes
• Rule: e before non initial x,s,z
• Instantiation as an FST:

F O X + 0 S # lexical
f o x 0 e s # surface

6.863J/9.611J SP04 Lecture 2

Implication

• 0:e can occur only in this context
• Must write this as a constraint
• Write an FTN that accepts only strings of this

form, e.g., dafjakjdx0:es#

6.863J/9.611J SP04 Lecture 2

FTN imposes a Constraint

f o x + 0 s

f o x 0 e s
0:e correspondence requires

a preceding x on the
lexical side, s:s following

In this context, all other
possible realization of a
0:s are prohibited.

6.863J/9.611J SP04 Lecture 2

Turning this into an fst

• Write down the left, center, and right context
• In this case:

x:x +:0 0:e s:s #:#
Csib:Csib

• Pad out with nulls (0’s)
• Write an fsa (ftn) that accepts exactly this

string

6.863J/9.611J SP04 Lecture 2

Start with straightline fst

Csib:Csib +:0 0:e s:s #:#

1 2 3 4 5 6=1

6.863J/9.611J SP04 Lecture 2

Now add rejection notices…

Csib:Csib +:0 0:e s:s #:#

1 2 3 4 5 6

reject

@

reject

@

reject

@

6.863J/9.611J SP04 Lecture 2

And acceptance (cook until done)

Csib:Csib +:0 0:e s:s #:#

1 2 3 4 5 6

reject

@

reject

@

@

@

reject

@

1

6.863J/9.611J SP04 Lecture 2

6.863J/9.611J SP04 Lecture 2

6.863J/9.611J SP04 Lecture 2

Tabular format

RULE "3 Epenthesis, 0:e => [Csib|ch|sh|] +:0___s [#]"
7 8

c h s Csib + # 0 @
c h s Csib 0 # e @

1: 2 1 4 3 1 1 0 1
2: 2 3 3 3 1 1 0 1
3: 2 1 3 3 5 1 0 1
4: 2 3 3 3 5 1 0 1
5: 2 1 2 2 1 1 6 1
6. 0 0 7 0 0 0 0 0
7. 0 0 0 0 0 1 0 0

6.863J/9.611J SP04 Lecture 2

And that’s (almost) all folks…

• Except…
• There’s more than one rule…

• Spy+s → spies
• Quiz+s → quizzes
• Make+ing → making

6.863J/9.611J SP04 Lecture 2

Spelling change rules

lie/lyingI goes to y before
vowel

I spelling (I)

try/tries-y changes to -ie
before -ed

Y replacement
(Y)

fox/foxese added after -s, -z, -
ch, -sh before -s

E insertion
(epenthesis,
EP)

make/makingSilent e dropped
before -ing, -ed

E deletion
(elision, EL),

beg/begging1-letter consonant
doubled before -ing/ed

Consonant
Doubling
(gemination, G)

ExampleDescriptionName

6.863J/9.611J SP04 Lecture 2

Set of 5 spelling change FTNs

6.863J/9.611J SP04 Lecture 2

Another…name that automaton…

6.863J/9.611J SP04 Lecture 2

So, we’re done, right?

• So, not so fast…!!!!
• Sometimes, more than 1 spelling change rule

applies. Example: spy+s, spies: y
• y goes to i before an inserted e (compare,

“spying”
• e inserted at affix +s
• Here’s the picture:

6.863J/9.611J SP04 Lecture 2

Two-Level Constraints 2

s p y 0 + s

s p i e 0 s

y:i <=> _ 0:e

s p y 0 + s

s p i e 0 s

0:e <=> Cons: y: _ +:0 s:s

6.863J/9.611J SP04 Lecture 2

Another Example from English
(“gemination”)

quiz + s

quiz + es

quizzes

Rule A: s -> es after z

Rule B: z doubles before
Suffix beginning with
vowel

underlying

intermediate

surface

6.863J/9.611J SP04 Lecture 2

Run transducers in parallel?

fst 1 fst 2 fst n...

Surface form

Lexical form

6.863J/9.611J SP04 Lecture 2

Parallel application – how?

N:m
Rule

p:m
Rule

k a m m a n

k a N p

6.863J/9.611J SP04 Lecture 2

Sequential Application

N -> m / _ p

p -> m / m _

k a N p a n

k a m p a n

k a m m a n

6.863J/9.611J SP04 Lecture 2

Machine Rule 1 (“N goes to m”)

Rule 1: N→m | __ p

6.863J/9.611J SP04 Lecture 2

Machine Rule 2 (“p goes to m”)

Rule 2: p→ m | m___

6.863J/9.611J SP04 Lecture 2

Sequential Application in Detail

N:m

N
@

@ 0

2

1

p
N:m

m

p
N

m

p:m
@@ 0 1

mp
m

k a N p a n

k a m p a n

k a m m a n

0 0 0 2 0 0 0

0 0 0 1 0 0 0

6.863J/9.611J SP04 Lecture 2

Constraints on both sides

k a N p a n

k a m m a n

k a N p a n

k a m m a n
N:m correspondence

requires a following p on
the lexical side.

p:m correspondence
requires a preceding m
on the surface side.

In this context, all other
possible realization of a
lexical p are prohibited.

In this context, all other
possible realization of a
lexical N are prohibited.

6.863J/9.611J SP04 Lecture 2

When is this possible?

Rule 1

Rule 2

Rule 4

Rule 3

input

output

Single FST

input

6.863J/9.611J SP04 Lecture 2

Plus lexicon – lexical forms always
constrained by the path we’re
following through the lexicon tree

6.863J/9.611J SP04 Lecture 2

We trace through the finite-state
devices in tandem

recognizing ‘foxes’
root root= always 1st ‘class’

= FST1 (word
classes)

= FST2 (spell
changes)

leftover input s

F/f

O/o

Fox+s, Plural

#/#

+/0

0/e

Automaton blocks+/0

X/x

Noun0/e

C1

C2

0:e END!S:s

