6.863] Natural Language Processing
Lecture 2: Automata, Two-level
phonology, & PC-Kimmo

4 (the Hamlet lecture)

Instructor: Robert C. Berwick
berwick@ai.mit.edu

‘ I'I'he Menu Bar

STe T Administrivia

web page: www.ai.mit.edu/courses/6.863/ now with
Lecture 1, Lab components I (background), II (Lab
1a) — due date is February 17 (holiday the 16th)

e Whatand How.: word processing, or computational
morphology

What's in a word: morphology

Modeling morphophonology by finite-state devices
Finite-state automata vs. finite state transducers
Some examples from English

PC-Kimmo & Laboratory 1a :how-to

6.8631/9.611] SP04 Lecture 2

| Levels of language

¢ Phonetics/phonology/morphology: what
words (or subwords) are we dealing with?

e Syntax: What phrases are we dealing with?
Which words modify one another?

e Semantics: What's the literal meaning?

e Pragmatics: What should you conclude from
the fact that I said something? How should
you react?

6.8631/9.611] SP04 Lecture 2

Start with words: they illustrate all
‘ lfhe problems (and solutions) in NLP
|

o
e Parsing words

Cats — CAT + N(oun) + PL(ural)
e Used in:
¢ Traditional NLP applications
¢ Finding word boundaries (e.g., Latin, Chinese)
e Text to speech (boathouse)
e Document retrieval (example next slide)

e In particular, the problems of parsing, ambiguity,and
computational efficiency (as well as the problems of
how people do it)

6.8631/9.611] SP04 Lecture 2

erminology
ul

B | [
. Morpheme, etc..
. See webpage

http://pandora.cii.wwu.edu/vajda/ling201/test1 materials/Morphologyoverhead.htm

6.8631/9.611] SP04 Lecture 2

‘ '||'wo parts to the "what”
|

L | |
1. Which units can glue to which others (roots
and affixes) (or stems and affixes), eg,
2. What ‘spelling changes’ (orthographic
changes) occur — like dropping the ein
‘chase + ed’

OK, let’s tackle these one at a time

6.8631/9.611] SP04 Lecture 2

he Knowledge
ol

B | |
v Which units can glue to which others (roots
and affixes) (or stems and affixes)

v" What ‘spelling changes’ (orthographic
changes) occur — like dropping the ein
‘chase + ed’

6.8631/9.611] SP04 Lecture 2

Pur goal: PC-Kimmo

[‘
I

|—'FLY+S
%

Rules

Lexical form —Q_, Lexicon
‘ f I i | e S

Surface form

6.8631/9.611] SP04 Lecture 2

boundary marker

B

‘ '||'erm|nology
I

1
ﬂlllA 1IAdLI AU

Plural marpheme

f 1

Y

~
+

0

>

S

#

N

Lexical form

A

A 4

Finite-state transducer

—O—> Alternation

Classes/spell. ch.

[

f 1

#

Surface form

(orthographic)

6.8631/9.611] SP04 Lecture 2

‘ ’/l/hatis the Knowledge?

| I ‘

. Morpheme classes
. Like beads on a string
. Computational model:

. Finite-state automata

6.8631/9.611] SP04 Lecture 2

B

‘ '||'wo parallel finite-state machines
|

[
. Machine 1: order of morphemes

. Machine 2: spelling changes

6.8631/9.611] SP04 Lecture 2

|

‘ YVhy finite-state machines?
|
|

|
. Minimal model

. Fast
. What makes up a finite-state automaton?
. Linear concatenation of equivalence classses

6.8631/9.611] SP04 Lecture 2

Definition of finite-state automaton

‘ ﬁfsa)

A finite-state automaton (FSA) is a quintuple
(Q12989 qOI F) Where

e Qis a finite set of states

e Y is a finite set of terminal symbols, the

alphabet
* (g € Qis the initial state

e Fc @, the set of final states

¢ 3 is a mapping from @x X — 29 the
transition mapping

6.8631/9.611] SP04 Lecture 2

‘ f‘pplication to morphology

T
. Purely concatenative morphemes like a
rooted tree (but what about prefixes?)

6.8631/9.611] SP04 Lecture 2

English morphology: what states do
‘ we need for the fsa?
|

e As an example, consider adjectives
Big, bigger, biggest
Cool, cooler, coolest, coolly
Red, redder, reddest
Clear, clearer, clearest, clearly, unclear, unclearly
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Real, unreal, silly

6.8631/9.611] SP04 Lecture 2

I|:SA states
|

& I |
. Equivalence classes under the notion of
‘substitution’: elements that ‘behave alike’

. Consider: ___er What goes in the space?

. Cool, big, happy (Adjectives that can be
comparative)

. If we need to make more refinements, we
need a new class

6.8631/9.611] SP04 Lecture 2

‘ YViII this fsa work?
|
B | |

—er -—est
adj-root -ly

0‘0 @ ©

6.8631/9.611] SP04 Lecture 2

ns: no!
}

i
|

¢ Accepts all adjectives above, but
Also accepts wnbig, readly, realest

Common problem: overgeneration
Solution?

6.8631/9.611] SP04 Lecture 2

k ‘

i{evised picture
|

adj-root,

6.8631/9.611] SP04 Lecture 2

Extension to politics: an alien
‘ ianguage
|

&
I

Bush could win the election

.« Bush will win the election

. Bush did win the election

. Bush could have won the election
. Bush will have won the election

6.8631/9.611] SP04 Lecture 2

‘ %tructural linguistics circa 1940s

I
“[Words] are assigned to classes on the basis of

the environments in which they occur. Each
environment determines one and only one
class, namely the class of all [words]
occurring in that environment... A word A
belongs to the class determined by the
environment ___ X if X is either an utterance
or occurs as part of some utterance.” Wells,
1947, pp. 81-82.

6.8631/9.611] SP04 Lecture 2

I‘=inite transition networks (FTNs)
|

|l
. 1-1 picture of fsa-ftn

. Easy to see, easy to prove certain properties:
closure under concatenation, intersection

. Conversion of nondeterministic to
deterministic fsa — always possible

6.8631/9.611] SP04 Lecture 2

‘ lrimits of FTNs
|

. Finite # of ‘memory states’

. Can distinguish only a finite # of classes
(bins) i.e., the states

. This sets limits on the patterns fsa’s can
recognize

. FSA’s cannot even describe all possible
human words...

6.8631/9.611] SP04 Lecture 2

&8

Then can be /ndescribable words (for
ar fst)
|

I'“% Can we even do all natural languages?
. Example: Bambarra (African language in Mali)

. Words in form Noun+o+Noun, as in wuluowulo
=‘whichever dog’

. Also have repeated endings (like anti-anti...)
wulu+nyini+/a ='dog searcher’

wulunyinina+ nyini+/a =‘one who searches for dog
searchers’

. Fatal bite: combine with word 0 word formation:
wulunyininanyinila o wulunyininanyinila (arbitrarily
long!)

6.8631/9.611] SP04 Lecture 2

Why is this not describable by an
‘ fsa?
|

| | [
. Intuition: w” o w? language

. Need arbitrary # of bins to keep track of w”
string to match it up with w” after the ‘o’

. Must be able to count to arbitrary nto keep
track of # of copies...

. But, only a finite # of bins...so....

6.8631/9.611] SP04 Lecture 2

What does fsa machine for English
look like?

6.8631/9.611] SP04 Lecture 2

Next: what about the spelling
‘ $hanges? That'’s harder!
|

e
v Which units can glue to which others (roots
and affixes) (or stems and affixes)

2. What ‘spelling changes’ (orthographic
changes) occur — like dropping the ein
‘chase + ed’

6.8631/9.611] SP04 Lecture 2

Mapping between surface form &
‘ limderlying form
|

Surface: chased
Underlying: [chase +ed

But clearly this can go either way — given the underlying
form, we can generate the surface form — so we really

have a relation betw. surface & underlying form, viz.:
6.8631/9.611] SP04 Lecture 2

‘ Fonventional notation
|

B | |

Lexical (underlying)form:e¢ h a s e + e d
Surface form: c h a s 0 0 e d

The 0’s “line up” the lexical & surface strings

This immediately suggests a finite-state automaton
‘solution’ : an extension known as a

finite-state transducer

6.8631/9.611] SP04 Lecture 2

Finite-state transducers: a pairing
‘ i)etween lexical/surface strings
|

& . .
[‘ lexical string
C H A S

R T R

O c O h ® a O s O« surface string

» Or more carefully

6.8631/9.611] SP04 Lecture 2

‘ IPefinition of finite-state transducer

S

L state set Q

initial state q,

set of final states F

input alphabet S (also define = *, = +)
output alphabet D

transition function § : Q x ¥ — 2%
output function 5: Q x = x Q —» D*

6.8631/9.611] SP04 Lecture 2

The difference between (familiar)
‘ ﬁsa’s and fst’s: functions from...
|

Acceptors (FSAs) Transducers (FSTs)

{false, true} strings

@\7©@%X/@

6.8631/9.611] SP04 Lecture 2

‘ Ifroperties of fst's — compare to fsa’s

. Closed under concatenation — get another fst
if wired together

- NOT closed under intersection
. NOT always able to make deterministic

6.8631/9.611] SP04 Lecture 2

A Two-Level Transducer

Input: ‘sm-eNs a-
Qutput: m e s a

6.8631/9.611] SP04 Lecture 2

he Big Picture
ul

Language
e or
Relation
describe/wdes
Regular Finite-State
Expression Network
compiles

into

6.8631/9.611] SP04 Lecture 2

Defining an fst for a spelling-change
rlule
|

¢ Suggests all we need to do is build an FST for
a spelling-change rule that ‘matches’ lexical
and surface strings

Example: fox+s, foxes; buzz+s, buzzes
Rule: e before non initial x,s,z
Instantiation as an FST:

F O X + 0 S # lexical
f o X 0 e S # surface

6.8631/9.611] SP04 Lecture 2

‘ {mplication
|

B | |
. 0:e can occur only in this context
. Must write this as a constraint

. Write an FTN that accepts only strings of this
form, e.g., dafjakjdx0:es#

6.8631/9.611] SP04 Lecture 2

‘ fTN imposes a Constraint
|

| | |

£ox +[o]s

foxO0es

0:e correspondence requires
a preceding x on the
lexical side, s:s following

In this context, all other
possible realization of a
0:s are prohibited.

6.8631/9.611] SP04 Lecture 2

8

‘ 'f'urning this into an fst

\
. Write down the left, center, and right context

. In this case:
X:x +:0 O:e S:is #H:#
Csib:Csib
. Pad out with nulls (0’s)

. Write an fsa (ftn) that accepts exactly this
string

6.8631/9.611] SP04 Lecture 2

&8

‘ .'Ftart with straightline fst

Csib:Csib +:0

6.8631/9.611] SP04 Lecture 2

‘ Il\low add rejection notices...
|

reject reject reject

o Q
Csib:Csib +:0 /O:e

@#:#

6.8631/9.611] SP04 Lecture 2

‘ f‘nd acceptance (cook until done)
|
\

S

reject ~ reject reject

6.8631/9.611] SP04 Lecture 2

-

¢l Cab,+ 0,40
@
e lusCoib#:0,0e
[:]

6.8631/9.611] SP04 Lecture 2

@:Cyiy@.+0

LY @1.@

6.8631/9.611] SP04 Lecture 2

abular format
ol

B I |

RULE "3 Epenthesis, 0:e => [Csib|ch|sh]|] +:0 s [#1"
7 8

c hsCsib + # 0 @
c hsCsib 0 # e @
1: 21 4 3 1101
2: 2 333 1101
3: 2133 5101
4: 2 3 3 3 5101
5: 212 2 1161
6. 0070 00O00O
7. 00 0O 0100
6.863J/9.611] SP04 Lecture 2
/
‘ {\nd that’s (almost) all folks...
I
b i

. Except...
. There’s more than one rule...

Spy+s — spies
Quiz+s — quizzes
Make+ing — making

6.8631/9.611] SP04 Lecture 2

Spelling change rules

‘ '\Iame Description Example
= [TConsonant I-Tetter consonant beg/begging
Doubling doubled before -ing/ed
(gemination, G)
E deletion Silent e dropped make/making
(elision, EL), before -ing, -ed
E insertion e added after -s, -z - |fox/foxes
(epenthesis, ch, -sh before -s
EP)
Y replacement | -y changes to -ie try/tries
(Y) before -ed
{speling () | Tq0es fo ybefore, | lieflying

Set of 5 spelling change FTNs

Another...name that automaton...

vi |

‘ fo, we're done, right?
|

|

So, not so fast...!!!!

Sometimes, more than 1 spelling change rule
applies. Example: spy+s, spies: y

y goes to /before an inserted e (compare,
"spying”

e inserted at affix +s

Here's the picture:

6.8631/9.611] SP04 Lecture 2

‘ i|'wo-LeveI Constraints 2
|

B | |
spy[0]+s s[p v|0[+ s]
s p i[e]0 s spie0s
y:i <=> _ 0O:e O:e <=> Cons: y: _ +:0 s:s
6.8631/9.611] SP04 Lecture 2
Another Example from English
“‘gemination”)
T
:underlying quiz +s

@ Rule A: s -> es after z

quiz + es

Rule B: z doubles before
@ Suffix beginning with
vowel

quizzes

6.8631/9.611] SP04 Lecture 2

‘ i{un transducers in parallel?
R

Lexical form

| l T

[£st 1] [£st 2] If_stlz_nl

[I [
Surface form
6.8631/9.611] SP04 Lecture 2

‘ farallel application — how?
|

| | |

6.8631/9.611] SP04 Lecture 2

‘ fequential Application
|

- —
kaNpan
l N->m/ _p
kampan
l p->m/m_
kamman
6.8631/9.611J SP04 Lecture 2
‘ iVIachine Rule 1 ("N goes to m”)
|
L

I kule 1:No>m|_p

6.8631/9.611] SP04 Lecture 2

‘ iVIachine Rule 2 ("p goes to m”)
|

Rule 2: po>m|m

pim m,pam

6.8631/9.611] SP04 Lecture 2

‘ fequential Application in Detail
|

6.8631/9.611] SP04 Lecture 2

‘ Fonstraints on both sides
|

=B I |
k a n
kamman

N:m correspondence p:m correspondence
requires a following p on requires a preceding m
the lexical side. on the surface side.

In this context, all other In this context, all other
possible realization of a possible realization of a
lexical N are prohibited. lexical p are prohibited.

6.8631/9.611] SP04 Lecture 2

‘ YVhen is this possible?

|
|

input

Rule

input

Rule <
aSa

Rule
output

Rule
6.8631/9.611] SP04 Lecture 2

Satela e el e

Plus lexicon — lexical forms always
constrained by the path we're
‘ following through the lexicon tree

6.8631/9.611] SP04 Lecture 2

We trace through the finite-state
devices in tandem

recognizing ‘foxes’
| @ root= ¢ b4
F/f I O = FST1 (word
classes)
Ol/o

© =FST2 (spell
changes)

Automaton blocks

END!

S:s #I#

t ., 6.8631/9.6111 SP0% Lecture 2 Fox+s, Plural
leftover input s

