#### 6.863J Natural Language Processing Lecture 22: Language Learning, Part 2

Robert C. Berwick berwick@ai.mit.edu

#### The Menu Bar

- Administrivia:
  - Project-p?

- Can we beat the Gold standard?
  - Review of the framework
  - Various stochastic extensions
- Modern learning theory & sample size
  - Gold results still hold!
- Learning by setting parameters: the triggering learning algorithm

### The problem

- From <u>finite</u> data, induce <u>infinite</u> set
- How is this possible, given limited time & computation?
- Children are not told grammar rules

 Ans: put constraints on class of possible grammars (or languages)

#### To review: the Gold framework

- Components:
- Target language  $L_{gt}$  or  $L_t$  (with target grammar  $g_t$ ), drawn from hypothesis family H
- Data (input) sequences D and texts t;  $t_n$
- Learning algorithm (mapping) A; output hypothesis after input  $t_n A(t_n)$
- Distance metric d, hypotheses h
- Definition of learnability:

$$d(g_t, h_n) \rightarrow_{n \rightarrow \infty} 0$$

#### Framework for learning

- 1. Target Language  $L_t \in L$  is a target language drawn from a class of possible target languages  $L_t$ .
- 2. Example sentences  $s_i \in L_t$  are drawn from the target language & presented to learner.
- 3. Hypothesis Languages  $h \in H$  drawn from a class of possible hypothesis languages that child learners construct on the basis of exposure to the example sentences in the environment
- 4. Learning algorithm A is a computable procedure by which languages from H are selected given the examples

#### Some details

- Languages/grammars alphabet Σ\*
- Example sentences
  - Independent of order
  - Or: Assume drawn from probability distribution µ
     (relative frequency of various kinds of sentences) –
     eg, hear shorter sentences more often
  - If  $\mu$  **Î**  $L_t$ , then the presentation consists of <u>positive</u> <u>examples</u>, o.w.,
  - examples in both  $L_t$  &  $\Sigma^* L_t$  (negative examples), I.e., all of  $\Sigma^*$  ("informant presentation")

## Learning algorithms & texts

- A is mapping from set of all finite data streams to hypotheses in H
- Finite data stream of k examples (s<sub>1</sub>, s<sub>2</sub>,..., s<sub>k</sub>)
- Set of all data streams of length k,

$$D^{k} = \{(s_{1}, s_{2}, ..., s_{k}) | s_{i} \hat{\mathbf{I}} \Sigma^{*} \} = (\Sigma^{*})^{k}$$

• Set of all finite data sequences  $D = \bigcup_{k>0} D^k$  (enumerable), so:

$$A:D\to H$$

- Can consider A to flip coins if need be

If learning by enumeration: The sequence of hypotheses after each sentence is h1, h2, ...,

Hypothesis after n sentences is  $h_n$ 

#### ID in the limit - dfns

- <u>Text</u> t of language L is an infinite sequence of sentences of L with each sentence of L occurring at least once ("fair presentation")
- Text t<sub>n</sub> is the first n sentences of t
- Learnability: Language L is learnable by algorithm A if for each t of L if there exists a number m s.t. for all n > m,  $A(t_n) = L$
- More formally, fix distance metric d, a target grammar  $g_t$  and a text t for the target language. Learning algorithm A identifies (learns)  $g_t$  in the limit if

$$d(A(t_k), g_t) \rightarrow 0_{k \rightarrow \infty}$$

# Convergence in the limit

$$d(g_t, h_n) \rightarrow_{n \rightarrow \infty} 0$$

- This quantity is called <u>generalization error</u>
- Generalization error goes to 0 as # of examples goes to infinity
- In statistical setting, this error is a random variable & converges to 0 only in probabilistic sense (Valiant – PAC learning)

# ε-learnability & "locking sequence/data set"



Ball of radius  $\boldsymbol{\mathcal{E}}$ Locking sequence: If (finite) sequence  $\mathbf{l}_{\epsilon}$ gets within  $\epsilon$  of target & then it stays there

6.863J/9.611J Lecture 22 Sp03

#### Locking sequence theorem

• Thm 1 (Blum & Blum, 1975,  $\varepsilon$  version) If A identifies a target grammar g in the limit, then, for every  $\varepsilon>0$ ,  $\exists$  a locking sequence  $l_e \in D$  s.t.

(i) 
$$l_e \subseteq L_g$$
 (ii)  $d(A(l_e),g) < \varepsilon \&$   
(iii)  $d(A(l_e.s),g) < \varepsilon$ ,  $\forall \sigma \in D$ ,  $\sigma \subseteq L_g$ 

• Proof by contradiction. Suppose no such  $l_e$ 

#### Proof...

- If no such  $l_e$ , then  $\exists$  some  $\sigma_l$  s.t.  $d(A(l \bullet s_l, g) \ge \varepsilon$
- Use this to construct a text q on which A will not identify the target L<sub>g</sub>
- Evil daddy: every time guesses get  $\epsilon$  close to the target, we'll tack on a piece of  $s_l$  that pushes it outside that  $\epsilon$ -ball so, conjectures on q greater than  $\epsilon$  infinitely often

### The adversarial parent...

- Remember:  $d(A(l \bullet s_l, g) \ge \varepsilon$
- Easy to be evil: construct  $r = s_1, s_2, ..., s_n ...$  for  $L_g$
- Let  $q_1 = s_1$ . If  $d(A(q_i,g) < \varepsilon$ , then pick a  $\sigma_{qi}$  and tack it onto the text sequence,

$$q_{i+1} = q_i \, \sigma_{qi} \, s_{i+1}$$

o.w., d is already too large (> $\epsilon$ ), so can leave  $q_{i+1}$  sequence as  $q_i$  followed by  $s_{i+1}$ 

$$q_{i+1} = q_i s_{i+1}$$

# Pinocchio sequence...



#### Gold's theorem

- Suppose A is able to identify the family L. Then it must identify the infinite language,  $L_{inf}$ .
- By Thm, a locking sequence exists,  $\sigma_{inf}$
- Construct a finite language L  $_{\sigma_{inf}}$  from this locking sequence to get locking sequence for L  $_{\sigma_{inf}}$  a different language from  $L_{inf}$
- A can't identify L  $_{\sigma_{inf}}$  , a contradiction

# Example of identification (learning) in the limit – whether TM halts or not

<u>Dfn of learns</u>:  $\exists$  some point m after which (i) algorithm  $\land$  outputs correct answer; and (ii) no longer changes its answer.

The following A will work:

Given any Turing Machine  $M_j$ , at each time i, run the machine for i steps. If after i steps, if M has not halted, output 0 (i.e., "NO"), o.w., output 1 (i.e., "Yes")

Suppose TM halts:

1 2 3 4 5 ... m m+1 ... NO NO NO NO NO NO YES YES YES ...



Suppose TM does not halt:

1 2 3 4 5 ... NO NO NO NO NO NO NO NO NO ...

#### Exact learning seems too stringent

- Why should we have to speak perfect French forever?
- Can't we say "MacDonald's" once in a while?
- Or what about this:
- You say potato; I say pohtahto; You say potato; I say pohtahto;...

#### Summary of learnability given Gold

- With positive-only evidence, <u>no</u> interesting families of languages are learnable
- Even if given (sentence, meaning)
- Even if a stochastic grammar (mommy is talking via some distribution μ)
  - BUT if learner knew what the distribution was, they could learn in this case – however, this is almost like knowing the language anyway

If a parent were to provide true negative evidence of the type specified by Gold, interactions would look like the Osbournes:

Child: me want more.

Father: ungrammatical.

Child: want more milk.

Father: ungrammatical.

Child: more milk!

Father: ungrammatical.

Child: cries

Father: ungrammatical

### When is learnability possible?

- Strong constraints on distribution
- Finite number of languages/grammars
- Both positive <u>and</u> (lots of) negative evidence
  - the negative evidence must also be 'fair' in the sense of covering the distribution of possibilities (not just a few pinpricks here and there...)

#### Positive results from Gold

- Active learning: suppose learner can query membership of arbitrary elts of  $\Sigma^*$
- Then DFAs learnably in poly time, <u>but</u>
   CFGs still unlearnable
- So, does enlarge learnability possibilities but arbitrary query power seems questionable

# Relaxing the Gold framework constraints: toward the statistical framework

- Exact identification  $\rightarrow \varepsilon$ -identification
- Identification on all texts → identification only on > 1-δ (so lose, say, 1% of the time)
  - This is called a  $(\varepsilon, \delta)$  framework

#### Statistical learning theory approach

- Removes most of the assumptions of the Gold framework –
- It does not ask for convergence to exactly the right language
- The learner receives positive and negative examples
- The learning process has to end after a certain number of examples
- Get bounds on the # of examples sentences needed to converge with high probability
- Can also remove assumption of arbitrary resources: efficient (poly time) [Valiant/PAC]

# Modern statistical learning: VC dimension & Vapnik-Chervonenkis theorem (1971,1991)

- Distribution-free (no assumptions on the source distribution)
- No assumption about learning algorithm
- TWO key results:
- Necessary & sufficient conditions for learning to be possible at all ("capacity" of learning machinery)
- Upper & lower bounds on # of examples needed

# Statistical learning theory goes further – but same results

- Languages defined as before:
  - $1_1(s)=1$  if  $s \in L$ , 0 o.w. (an 'indicator function')
- Examples provided by some distribution P on set of all sentences
- Distances between languages defined as well by the probability measure P

$$d(L_1 - L_2) = \Sigma_S | 1_{L1}(s) - 1_{L2}(s) | P(s)$$

This is a 'graded distance' -  $L_1(P)$  topology

### Learnability in statistical framework

#### Model:

- Examples drawn randomly, depending on P
- After *l* data pts, learner conjectures hypothesis
   h<sub>l</sub> note, this is now a <u>random variable</u>, because it depends on the randomly generated data
- Dfn: Learner's hypothesis  $h_l$  converges to the target  $(1_L)$  with probability 1, iff for every  $\varepsilon > 0$

$$\text{Prob}[d(h_l, 1_L) > \varepsilon] \rightarrow_{l \to \infty} 0$$

- P is not known to the learner except through the draws
- (What about how h is chosen? We might want to minimize error from target...)

# Standard P(robably) A(approximately) C(orrect) formulation (PAC learning)

• If  $h_l$  converges to the target  $1_L$  in a weak sense, then for every  $\varepsilon>0$  there exists an  $m(\varepsilon,\delta)$  s.t. for all  $l>m(\varepsilon,\delta)$ 

$$Prob[d(h_l, 1_L) > \varepsilon] < \delta$$

With <u>high probability</u> (> 1- $\delta$ ) the learner's hypothesis is <u>approximately close</u> (within  $\epsilon$  in this norm) to the target language m is the # of samples the learner must draw  $m(\epsilon,\delta)$  is the <u>sample complexity</u> of learning

#### Vapnik- Chervonenkis result

- Gets lower & upper bounds on  $m(\varepsilon, \delta)$
- Bounds depend on  $\varepsilon$ ,  $\delta$  and a measure of the "capacity" of the hypothesis space H called VC-dimension, d

$$m(\varepsilon,\delta) > f(\varepsilon,\delta,d)$$

- What's this d??
- Note: distribution free!

#### VC dimension,"d"

- Measures how much <u>info</u> we can pack into a set of hypotheses, in terms of its discriminability – its <u>learning capacity</u> or <u>flexibility</u>
- Combinatorial complexity
- Defined as the largest d s.t. there exists a set of d points that H can shatter, and ∞ otherwise
- Key result: L is learnable iff it has <u>finite\_VC</u> dimension (<u>d finite\_</u>)
- Also gives <u>lower bound</u> on # of examples needed
- Defined in terms of "shattering"

## Shattering

- Suppose we have a set of points  $x_1, x_2, ..., x_n$
- If for every <u>different</u> way of partitioning the set of n points into two classes (labeled 0 & 1), a function in H is able to <u>implement</u> the partition (the function will be different for every different partition) we say that the set of points <u>is shattered</u> by H
- This says "how rich" or "how powerful" H is –
  its representational or informational capacity for
  learning

## Shattering – alternative 'view'

 H can shatter a set of points iff for every possible training set, there are some way to twiddle the h's such that the training error is 0

## Example 1

- Suppose H is the class of linear separators in 2-D (half-plane slices)
- We have 3 points. With +/- (or 0/1) labels, there are 8 partitions (in general: with m pts, 2<sup>m</sup> partitions)
- Then any partition of 3 points in a plane can be separated by a half-plane:

Half-planes can shatter <u>any</u> 3 point partition in 2-D: white=0; shaded =1 (there are 8 labelings)



BUT NOT...

But not 4 points – this labeling can't be done by a half-plane:

...so, VC dimension for H = half-planes is 3



# Another case: class H is circles (of a restricted sort)

$$H = f(x,b) = sign(x.x - b)$$



Can this f shatter the following points?



# Is this *⊢* powerful enough to separate 2 points?



## This *H* can separate one point...



#### VC dimension intuitions

- How many distinctions hypothesis can exhibit
- # of <u>effective</u> degrees of freedom
- Maximum # of points for which H is unbiased

## Main VC result & learning

• If H has VC-dimension d, then  $m(\varepsilon, \delta)$ , the # of samples required to guarantee learning within  $\varepsilon$  of the target language,  $1-\delta$  of the time, is greater than:

$$\log(2)\left(\frac{d}{4}\log(\frac{3}{2}) + \log(\frac{1}{8\boldsymbol{d}})\right)$$

### This implies

- Finite VC dimension of H is <u>necessary</u> for (potential) learnability!
- This is true <u>no matter what</u> the distribution is
- This is true <u>no matter what</u> the learning algorithm is
- This is true <u>even for positive and negative</u> examples

# Applying VC dimension to language learning

 For ⊢ (or ∠) to be learnable, it must have <u>finite</u> VC dimension

So what about some familiar classes?

 Let's start with the class of all <u>finite</u> languages (each L generates only sentences less than a certain length)

## VC dimension of finite languages

- <u>is infinite!</u> So the family of finite languages is <u>not</u> learnable (in  $(\varepsilon, \delta)$ ) or PAC learning terms)!
- Why? the <u>set</u> of finite languages is infinite the # of states can grow larger and larger as we grow the fsa's for them
- It is the # of states that distinguish between different equivalence classes of symbols
- This ability to partition can grow without bound
   so, for every set of d points one can partition
   shatter there's another of size d+1 one can
  also shatter just add one more state

## Gulp!

- If class of all finite languages is not PAC learnable, then neither are:
- fsa's, cfg's,...- pick your favorite general set of languages
- What's a mother to do?

 Well: posit a priori restrictions – or make the class H finite in some way

#### FSAs with *n* states

- DO have finite VC dimension...
- So, as before, they <u>are</u> learnable
- More precisely: their VC dimension is  $O(n \log n)$ , n = # states

## Lower bound for learning

• If H has VC-dimension d then  $m(\varepsilon, \delta)$ , the # of samples required to guarantee learning within  $\varepsilon$  of the target language,  $1-\delta$  of the time, is at least:

$$m(e,d) > \log(2) \left( \frac{d}{4} \log(\frac{3}{2}) + \log(\frac{1}{8d}) \right)$$

## OK, smarty: what can we do?

- Make the hypothesis space finite, small, and 'easily separable'
- One solution: parameterize set of possible grammars (languages) according to a small set of <u>parameters</u>
- We've seen the head-first/final parameter

## English is function-argument form



# Other languages are the mirror-inverse: arg-function

This is like Japanese

```
sold the stock sold at a bargain price greenwith envy over-priced stock
```

## English form



## Bengali, German, Japanese form



## Variational space of languages





## Actual (prolog) code for this diff

% parametersEng.pl %% X-Bar Parameters specInitial. specFinal :- \+ specInitial.

headInitial(\_). headFinal(X) :- \+ headInitial(X).

agr(weak).

%% V2 Parameters % Q is available as adjunction site boundingNode(i2). boundingNode(np).

%% Case Adjacency Parameter CaseAdjacency. % holds

%% Wh In Syntax Parameter whInSyntax.

%% Pro-Drop Parameter no proDrop.

%% X-Bar Parameters

specInitial.

specFinal :- \+ specInitial.

headFinal.

headInitial :- \+ headFinal. headInitial(X) :- \+ headFinal(X).

headFinal(\_) :- headFinal.

agr(strong).

%% V2 Parameters

%% Subjacency Bounding Nodes boundingNode(i2).

boundingNode(np).

%% Case Adjacency Parameter no caseAdjacency.

%% Wh In Syntax Parameter no whInSyntax.

%% Pro-Drop 6.863J/9.611J Lecture 22 Sp03P.

## Learning in parameter space

- Greedy algorithm: start with some randomized parameter settings
- 1. Get example sentence, s
- 2. If s is parsable (analyzable) by current parameter settings, keep current settings; o.w.,
- 3. Randomly flip a parameter setting & go to Step 1.

#### More details

 1-bit different example that moves us from one setting to the next is called a trigger

 Let's do a simple model – 3 parameters only, so 8 possible languages

## Tis a gift to be simple...

- Just 3 parameters, so 8 possible languages (grammars) – set 0 or 1
- Complement first/final (dual of Head 1st)
  - English: Complement final (value = 1)
- Specifier first/final (determiner on right or left, Subject on right or left)
- Verb second or not (German/not German)

### 3-parameter case

- Specifier first or final
- 2. Complement (Arguments) first/final
- 3. Verb 2<sup>nd</sup> or not



#### **Parameters**

Spec 1st
Subject Verb...

specifier
(subject NP)



Spec final

Verb Subject...

Sentence

specifier (subject NP)

NP Noun specifier

## Comp(lement) Parameter





## Verb second (V2)

• Finite (tensed) verb <u>must</u> appear in exactly 2<sup>nd</sup> position in main sentence

## English / German

$$[0 \ 1 \ 0] = \text{`English'}$$

$$\text{spec 1st/final comp 1st/final } -\text{V2/+V2}$$

$$[0 \quad 0 \quad 1] = 'German'$$

#### Even this case can be hard...

German: dass Karl da Buch kauft
 (that Karl the book buys)

 Karl kauft das Buch

- OK, what are the parameter settings?
- Is German comp-1<sup>st</sup>? (as the first example suggests) or comp-last?
- Ans: V2 parameter in main sentence, this moves verb kauft to 2<sup>nd</sup> position

### Input data – 3 parameter case

- Labels: S, V, Aux, O, O1, O2
- All unembedded sentences (psychological fidelity)
- Possible English sentences:
  - S V, S V O1 O2; S Aux V O; S Aux V O1 O2; Adv S V; Adv S V O; Adv S V O1 O2; Adv S Aux V; Adv S Aux V O; Adv S Aux V O1 O2
- Too simple, of course: collapses many languages together...
- Like English and French...oops!

## Sentences drawn from target

- Uniformly
- From possible target patterns
- Learner starts in random initial state,
   1,...8
- What drives learner?
- Errors

# Learning driven by language triggering set differences

A <u>trigger</u> is a sentence in one language that Isn't in the other



## How to get there from here



transitions based on example sentence
 Prob(transition) based on <u>set differences</u> between
 languages, normalized by target language |L<sub>target</sub>| examples (in our case, if t=English,36 of them)

#### Formalize this as...

- A Markov chain relative to a target language, as matrix M, where M(i,j) gives the transition pr of moving from state i to state j (given target language strings)
- Transition pr's based on cardinality of the set differences
- M x M = pr's after 1 example step; in the limit, we find M<sup>∞</sup>
- Here is M when target is  $L_5 = 'English'$

The Ringstrasse (Pax Americana version)



## Markov matrix, target = 5 (English)