6.863J Natural Language Processing Lecture 23: Machine Translation 2

Instructor: Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

Administrivia:
Final project!

- Agenda:

Machine Translation (MT) as a 'litmus test' or
'sandbox' (graveyard?) for putting together all of NLP

- Practical systems: Phraselator; Systran (Babelfish);

Logos,...

- MT: the statistical approach - Star Trek view
- Formalize what we did last time: Shake `n Bake
- Divide \& conquer: 4 steps
- Noisy channel model
- Language Model
- Translation model
- Scrambling \& Fertility

Alien languages: Alpha-centauri \& Betelgeuse
 1a. ok-voon ororok sprok . 2a. ok-drubel ok-voon anok plok sprok 11b. at-voon bichat dat . 2b. at-drubel at-voon pippat rrat dat.
 Ba. erok sprok izok hihok ghirok. 4a. ok-voon anok drok brok jok 3b. totat dat arrat vat hilat . 4b. at-voon krat pippat sat lat .
 5a. wiwok farok izok stok . 6a. lalok sprok izok jok stok .
 5b. totat jjat quat cat . 6b. wat dat krat quat cat.
 7a. lalok farok ororok lalok sprok izok enemok.
 7b. wat jjat bichat wat dat vat eneat .
 8a. lalok brok anok plok nok.9a. wiwok nok izok kantok ok-yurp. 8b. iat lat pippat rrat nnat . 9b. totat nnat quat oloat at-yurp .
 10a. lalok mok nok yorok ghirok clok .
 10b. wat nnat gat mat bat hilat.
 11a. lalok nok crrrok hihok yorok zanzanok .
 11b. wat nnat arrat mat zanzanat.
 12a. lalok rarok nok izok hihok mok.
 12b. wat nnat forat arrat vat gat .

- Assume word-word translation - though not same word order
- Use alignment of words to build translation dictionary
- Use translation dictionary to improve the alignment - because it eliminates some possibilities

```
To begin
1a. ok-voon ororok sprok . 2a. ok-drubel ok-voon anok plok sprok
1b. at-voon bichat dat . 2b. at-drubel at-voon pippat rrat dat
3a. erok sprok izok hihok ghirok . 4a. ok-voon anok drok brok jok .
3b. totat dat arrat vat hilat . 4b. at-voon krat pippat sat lat .
5a. wiwok farok izok stok . 6a. lalok sprok izok jok stok .
5b. totat jjat quat cat . 6b. wat dat krat quat cat .
7a. lalok farok ororok lalok sprok izok enemok.
7b. wat jjat bichat wat dat vat eneat .
8a. lalok brok anok plok nok . 9a. wiwok nok izok kantok ok-yurp .
8b. iat lat pippat rrat nnat . 9b. totat nnat quat oloat at-yurp .
10a. lalok mok nok yorok ghirok clok .
10b. wat nnat gat mat bat hilat.
11a. lalok nok crrrok hihok yorok zanzanok . Translation dictionary:
11b. wat nnat arrat mat zanzanat.
    ghiork - hilat
    ok-drubel - at-drubel
12a. lalok rarok nok izok hihok mok . ok-voon-at-voon
12b. wat nnat forat arrat vat gat .
6.863J/9.611J SP04 Legtrfafnok - zanzanat
```


OK, what does pairing buy us?

- Sentence 1: 2 possibilities left...

1. ororok \leftrightarrow bichat \& sprok \leftrightarrow dat
2. ororok \leftrightarrow dat $\&$ sprok \leftrightarrow bichat
(But also: what if ororok untrans aux v...?)
Which is more likely?
Look for sentence w/ sprok but not ororok
Sentence (2a)
Link throughout corpus (1, 2, 3, 6, 7)
Sentence (2) now looks like a good place to crack...

If you work through it you'll get all, the pairs here, save 1: crrrok

- But you are suddenly abducted to the Federation Translation Center \& presented with this sentence from Betelgeuse to translate into Alpha-Centaurian:
- iat lat pippat eneat hilat oloat at-yurp .

How is this like/unlike 'real' translation

- Only 2 of the 27 AlphaC words were ambiguous
- Sentence length unchanged in all but one
- Sentences much shorter than typical
- Words \& context -
- Output word order should be sensitive to input word order (J. loves M, M loves J)
- Data cooked
- No phrasal dictionary (amok plok = pippat rrat)

Statistical Machine Translation

- The fundamental idea of statistical MT is to let the computer learn how to do MT through studying the translation statistics from a bilingual corpus

What's the data? What are we doing?

- Pairs of sentences that are translations of one another are used
- Learn parameters for a probability model
- Source, Target pairs (S,T)

Find pr distribution over (S,T)

Example of what Weaver had in mind?

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

Honourable Members of the Senate,
Members of the House of Commons,
Ladies and Gentlemen:
Honorables sentateurs et sénatrices.
Mesclames et Messieurs les députés,
Mesdames et Messieuts.
My wife, Diana, and I were happy to welcome Her Majesty the Queen and the Duke of Edinburgh when they arived in Canada last June and to be their hosts chucing their stay in the National Capital over Canada Day.
Ma femme et moi wons eu la joied'accueillir Sa Majeste la Reine et le duc d'Edimboung à leur arrivée au Canada en juin demiet et d'être leuts hotes pendant leut sejout dans la region de la capitale nationale à loccasion de la Féte chu Canada.

As Governor General I have yisited every province and teritory, and I wish every Canadian could share that experience.
De phs en tant que Gouverneur général j "ai Fisite toutes les provinces ainsi que les tectitoires. C"est une experience que je souhaite ì tous les Canadiens.

- Training model from parallel aligned sentences (where do we get parallel texts; how do we align?)
- How much data needed?

So, how does English become French?

- Story 1. English gets converted to some sort of mental logic (predicate logic, or lexicalconceptual structures...), e.g., "I must not like ice-cream" into
(obligatory (not (event like :obj ice-cream...))) blah blah blah
Rest of story: how this gets mapped to French Call this story interlingua

How does English become French?

- Story 2. English sentences gets syntactically parsed, into heads \& modifiers, a binary tree say - phrases
- Then transformed into a French tree (a vine, say) - phrases swapped, english words replaced by french words.
- Call this syntactic transfer

How does English become French?

- Story 3. Words in English sentence replaced by French words, which are scrambled
- Zany!
- Heh: this is IBM Model 3 story

What's the data? What are we doing?

- Pairs of sentences that are translations of one another are used
- Learn parameters for a probability model
- Source, Target pairs (S,T)

Find pr distribution over (S,T)

We need to estimate pr's

- Need to know:
- What people say in English (source)
- How E gets turned into French (channel)
- What we see is F
- What we want to find is E (this is like speech...!)

How do we do this?

- English sentence e, French sentence \underline{f}
- An English sentence e can be translated to any French sentence \underline{f}
- But some translations are more equal than others... (more likely)
- We use probabilities to measure this!

OK, to begin

- $\mathrm{P}(\mathrm{e})=$ pr of producing some English sentence e (e.g., "cheese-eating surrender monkeys")
- $\mathrm{P}(\mathrm{e} \mid \mathrm{f})=\mathrm{pr}$ on encountering $\underline{\mathrm{f}}$, will produce $\underline{\mathrm{e}}$
- E.g., $\mathrm{f}=$ "Lincoln était un bon avocat"
$\mathrm{e}=$ "cheese-eating surrender monkeys"
$\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ Not bloody likely!
Note: in general, e and f can be anything, not just words...

'George Bush' model of translation (noisy channel)

rendered English

French text f (observed)

To be fair: perhaps the Jean Kerrie model

IBM "Model 3"

- First to do this, late 80s: Brown et al, "The Mathematics of Statistical Machine Translation", Computational Linguistics, 1990 (orig 1988 conference) - "Candide"
- We'll follow that paper

How to estimate?

- Formalize alignment
- Formalize dictionary in terms of $P(f \mid e)$
- Formalize shake-n-bake in terms of $P(e)$
- Formalize re-estimation in terms of the EM Algorithm
- Give initial estimate (uniform), then up pr's of some associations, lower others

Bake-off - how to evaluate?

Tricky: not like speech (why?)

- Proposed measures...
- Round-trip - ok, not always. E.g., "why in the world" $\rightarrow \mathrm{Sp} \rightarrow$ English \rightarrow "why in the world" but
- The Spanish is porqué en el mundo (???)

1. Compare human \& machines -
2. Categorize as same; equally good; different meaning; wrong; (='fluency'); ungrammatical (= 'adequacy')
3. Humans take test based on translated text...

IBM toujours...

ISSUED: Apr. 23, 1996
FILED: Oct. 28, 1993
US PATENT NUMBER: 5510981
SERIAL NUMBER: 144913
INTL. CLASS (Ed. 6): G06F 17/28;
U.S. CLASS: 364-419.02; 364-419.08; 364419.16; 381-043;

FIELD OF SEARCH: 364-419.02,419.08,419.16,200 MS File ; 381-43,51 ;
ABSTRACT: An apparatus for translating a series of source words in a first language...

- IBM1 - lexical probabilities only
- IBM2 - lexicon plus absolute position
- HMM - lexicon plus relative position
- IBM3 - plus fertilities
- IBM4 - inverted relative position alignment
. IBM5 - non-deficient version of model 4

4 Parameters

- Word Translation, $\mathrm{t}\left(\mathrm{f}_{\mathrm{j}} \mid \mathrm{e}_{\mathrm{i}}\right)$
- Distortion, scrambling, $d\left(a_{j} \mid j\right) d\left(a_{j} \mid j \operatorname{m} I\right)$
- Fertility, phi(n | e_{i})
- Spurious word appearance, p_{i}
- Q: how much space?
- Other:
- Class-based alignment 50 classes
- Nondeficient alignments (nulls)

Bake-off Candide vs. Systran (Darpa) 1995

OK, now back to the game

- Story 3. Words in English sentence replaced by French words, which are scrambled
- Zany!
- Heh: this is IBM Model 3 story

Decoupling by Bayes' Rule

- $P(e \mid f)=P(e) \times P(f \mid e)$
$P(f)$
- We want to maximize this quantity $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$, so we can simply maximize:

$$
P(e) \times P(f \mid e)
$$

Q: What happened to $P(f)$?
A: the F sentence to translate is fixed

What's wrong with just comuting

 $P(e \mid f)$ directly?- We are extending from words:
'sol' \leftrightarrow 'sun'
'to pull the wool over someone's eyes' \leftrightarrow 'deitar areia para os olhos de alguém'
To sentences:
cheese eating surrender monkeys
fromage mangeant des singes de reddition
- What's wrong with this plan?
- Probably won't see a sentence match more than once, probably not at all!

In our case...

- What we see is \underline{f}
- We want to find is e (the most likely translation e)
- In other words, compute: $\operatorname{argmax} \mathrm{P}(\mathrm{e} \mid \mathrm{f})$ e

What's wrong with this plan??? Why can't we just figure out $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$?

- If we compute $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ directly, we had better be good - but there's no data....
- $P(e \mid f)$ directly makes sense only if words in french are translations of words in english...
- A nice model for mutating bad french into bad english
- Note that it also gives no guarantee on the wellformedness of e!
- But: We can use Bayes' Rule to get good translations even if the pr estimates are crummy!

- If it seems backwards, it is
- Imagine you are building an English-French translator, but when you run it, you feed in French and ask, "what English would have caused this French sentence to come out"
- The right answer - a fluent English sentence (language model) that means what you think it means (translation model)

Why not just max $p(e \mid f)$ directly?

- If we are translating french to english, then $P(e \mid f)$ seems more intuitived
- For a given, fixed french sentence f, we would find the English sentence e that maximizes

$$
P(e) \bullet P(e \mid f)
$$

We solve this as $\mathrm{P}(\mathrm{e} \mid \mathrm{s}) \approx \mathrm{P}(\mathrm{e}) \cdot \mathrm{P}(\mathrm{f} \mid \mathrm{e})$ [since french sentence is fixed, $p(f)$ is fixed

- But why is figuring out $P(f \mid e)$ any easier?

Why not $p(e \mid f)$

- Answer: $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$ does not have to give good french translations
- $P(f \mid e)$ can assign lots of probability weight to bad french sentences, as long as they contain the right words
- $P(f \mid e)$ can be sloppy because $P(e)$ will worry about word order
- If we try to figure out $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ directly we need to get good english translations, all in one step

Estimating P(f|e)

- Given a sentence pair, $P(f \mid e)$ is simply the product of the word translation probabilities between them irrespective of word order

Cheap and dirty P(s|e)

- Just product of individual translation probabilities!
- P (yo no comprendo | I don't understand)=
$P(y o \mid I) x$
P (yo | don't) x
P (yo | understand) x
$P($ no | I) x
P(no | don't) x
P (no | understand) x
P(comprendo | I) x
P (comprendo | don't) x
P (comprendo | understand)

Bilingual corpus

- These can be estimated from a bilingual corpus: just retrieve all sentence pairs containing the word 'understand', count how many times 'comprendo' occurred, divide by total \# of words in Spanish half of corpus
- Problems:
- P (comprendo | understand) will be too low (even if comprendo appears every time understand does, it's normalized by \# words - so say .05)
- Worse: P (la | understand) too high, because 'la' is frequent, you'll often see it with 'comprendo' (remember, word order doesn't matter)

Estimation maximization (EM)

- Key: word alignments
- Word alignment connects words in sentence pair s.t. each English word produces 0 or more French words, and each French word is connected to exactly one English word
- Longer sentence \rightarrow more alignments possible
- Some are more reasonable than others, because they have more reasonable word translations
- Here is our revised approximation of $P(f \mid e)$ or for spanish, P(s|e):

EM iteration for alignment

- Step 1: Assume all alignments for a given sentence pair equally likely (e.g., one S has 256 alignments, $1 / 256$; another, 1 million)
- Step 2: Count up word pair connections in all alignments in all word pairs, weighted by the pr of the alignment in which it occurs (so short, less ambiguous sentences have more weight)
- Step 3: consider each English word in turn ('understand')

Factor 1: P(e), language model

- P(e) says that 'John ate ice-cream' has high pr, but 'ate ice-cream John' has lower pr
- Indeed, ungrammatical sentence - pr 0 (but this could be hard to figure out)
- $P(e)$ is really lowering pr of ungrammatical S^{\prime} s
- So really, this is like our alien language case (what part?)
- Several possible collections of words ('bags') - pick most probable sequence

Language model P(e)

- So in fact, we have to choose between many grammatical sentences, e.g.,
- Which of these is better translation?

Fred viewed Sting in the television
Fred saw Sting on TV

- So, we are back to N-grams again!
- This will let us model word order

Language model \& N-grams

- In general - next word could depend on all preceding context
- But there are too many parameters to estimate, so we use just bigrams or trigrams
- To find pr for a whole sentence, multiply conditional pr's of the n-grams it contains

Language model P(e)

- So, if this does word order...
- Question: restore order for actual the hashing is since not collision-free usually the is less perfectly the of somewhat capacity table
- Question: what knowledge are you using?
- Amazingly, this alone can be used to restore scrambled English sentences (63-80\%)
- Question: restore order for loves John Mary
- Choose between alternative translations

I found the riches in my backyard I found the riches on my backyard In Spanish, 'in' and 'on' correspond to 'en'
We can use trigram counts to tell the difference and select the higher pr one...

Problemes? Problemos?

Estimation

- Acute issue for trigrams - `found riches in' probably never seen
- Solution: smoothing (see textbook \& next lecture - large literature on this)

Problems...

- Won't always work - consider

Underline it
Emphasize it

- English might prefer the first, but must look at Spanish - 'subrayar' translates as both, but mostly as 'underline'; Spanish uses 'accentuar' for emphasis
- But this means we need to look at connections between 2 languages, ie, $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$ that bridge between them, not just in English... that is the job of the Translation Model

Language model \& translation model

- Factoring knowledge out this way makes estimation easier
- Since $P(e)$ takes care of word order, the translation model, $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$ doesn't have to worry about this - it can give crummy pr estimates, it can be sloppy, as long as it has the right words
- But as we've seen, P(e) can't do all the work for this...

Spanish-English

- $P(e) \times P(s \mid e)$ to get $P(e \mid s)$ - assume 'subrayar' input...

1. Underline it.

P (underline) x
P (it | underline) x
P (subrayar | underline)
2. Emphasize it.

P(emphasize) x
P (it \| emphasize) x
P(subrayar | emphasize)

- (1) is preferred because 'underline' is common and it is usually translated as 'subrayar'

Language model can give crummy pr's

- As long as it has the right words
- This gives some measure of robustness
- Example - all of these could have roughly the same pr, despite being lousy translations...

Cheap and dirty P(s|e)

- Just product of individual translation probabilities!
- P (yo no comprendo | I don't understand)=
$P(y o \mid I) x$
P (yo | don't) x
P (yo | understand) x
$P($ no $\mid I) x$
P(no|don't) x
P (no | understand) x
P (comprendo | I) x
P(comprendo | don't) x
P (comprendo | understand)

Any problemos?

- Si...
- P(comprendo | understand) will be too low
- $P(l a \mid u n d e r s t a n d)$ will be too high - just because la is frequent in Spanish
- Use our method for alien languages!
- If we have previously established a link between 'the' and 'la', then we should boost 'comprendo'
- That will reduce translation of 'don't' as 'comprendo' because that will co-occur only when 'understand' is already nearby
- P (comprendo | understand) should work out close to 1 , and P (la | the) say $0.4 .863 / 3$ restint qoing to ${ }^{2} P($ el \mid the $) \ldots$

- Use alignments to assist with $\mathrm{P}(\mathrm{e}), \mathrm{P}(\mathrm{f} \mid \mathrm{e})$

- Use $P(e)$ to assist with alignments

problème de poulet et d'oeufs et problema del pollo y del huevo y problema dell'uovo e del pollo e Huhn- und Eiproblem und

- Yo no comprendo / I don't understand
- There are six possible alignments (for now...assuming no null maps, etc)
- All possible word combinations...
- This is just like our alien language case

Procrustean bed

For each word e_{i} in the sentence, $\mathrm{i}=1,2, \ldots, \mathrm{I})$ we choose a fertility $\phi\left(\mathrm{e}_{\mathrm{i}}\right)$, equal to 0,1 , 2,...

- This value is dependent solely on the English word, not other words or the sentence, or the other fertilities
- For each word e_{i} we generate $\phi\left(\mathrm{e}_{\mathrm{i}}\right)$ French words - not dependent on English context
- The French words are permuted ('distorted') - assigned a position slot (this is the scrambling phase)
- Call this a distortion parameter $\mathrm{d}(\mathrm{i} \mid \mathrm{j})$

Summary of components

- The language model: $\mathrm{P}(\mathrm{e})$
- The translation model for $P(f \mid e)$
- Word translation t
- Distortion (scrambling) d
- Fertility ϕ
- (really evil): (for next time)
- Maximize (A* search) through product space

What's the input data? Aligned S's

The high turnover rate was largely due to an increase in the sales volume.
Employment and investment levels have also climbed.
Following a two-year transitional period, the new Foodstuffs Ordinance for Mineral Water came into effect on April 1, 1988.

Specifically, it contains more stringent requirements regarding quality consistency and purity guarantees.

La progression des chiffres d'affaires résulte en grande partie de l'acroissement du volume des ventes.

L'emploi et les investissements ont également augmenté.
La nouvelle ordonnance fédérale sur les denrées alimentaires concernant entre autre les eaux minérales, entrée en vigueur le 1er avril 1988 après une période transitoire de deux ans, exige surtout une plus grande constance dans la qualité et une garantie de la pureté.

- Hansard - Canadian Parliament since early 1800s, dual language
- 100M words, > 1M sentences
- Each on separate tape (!)
- Corresponding sentences not marked, paragraphs missing
- We want this - how to we get to it?
- Clues include...
- French sentences usually in same order as English sentences (but word order difft)
- Short French sentences \leftrightarrow short English sentences, and v.v.
- Corresponding French and English sentences often contain many of the same character sequences (why?)

Think, by analogy, of individuals living in a series of tall closed towers, all erected over a common foundation. When they try to communicate with one another, they shout back and forth, each from his own closed tower. It is difficult to make the sound penetrate even the nearest towers, and communication proceeds very poorly indeed.

But, when an individual goes down his tower, he finds himself in a great open basement, common to all the towers. Here he establishes easy and useful communication with the persons who have also descended from their towers.

Thus it may be true that the way to translate from Chinese to Arabic, or from Russian to Portuguese, is not to attempt the direct route, shouting from tower to tower. Perhaps the way is to descend, from each language, down to the common base of human communicationthe real but as yet undiscovered universal language-and-then re-emerge by whatever particular route is convenient.

