The Menu Bar

- Administrivia:
 - Final project!
- Agenda:
 - Formalize what we did last time: Shake ‘n Bake
 - Divide & conquer: 4 steps
 - Noisy channel model
 - Language Model
 - Translation model
 - Scrambling & Fertility
Alien languages: Alpha-centauri & Betelgeuse

1a. ok-foon ororok sprok . 2a. ok-drubel ok-foon anok ploksprok
1b. at-foon bichat dat . 2b. at-drubel at-foon pippat rrat dat .
3a. erok sprok izok hihok ghirok . 4a. ok-foon anok drok brok jok
3b. totat dat arrat vat hilat . 4b. at-foon krat pippat sat lat .
5a. wiwok farok izok stok . 6a. lalok sprok izok jok stok .
5b. totat jjatquat cat . 6b. wat dat kratquat cat .
7a. lalok farok ororok lalok sprok izok enemok .
7b. wat jjat bichat watdat vat eneat .
8a. lalok brok anok ploksnak . 9a. wiwok nok izok kantok ok-yurp .
8b. istlat pippat rratntat . 9b. totatntatquat oloat at-yurp .
10a. lalok mok nok yokorok ghirok clok .
10b. watntat gatlmatbat hilat .
11a. lalok nok crrrok hihok yokorok zanzanok .
11b. watntatarratmatzanzanat .
12a. lalok rarok nok izok hihok mok .
12b. watntatforarratvat gatl .

We will build two things

- Assume word-word translation – though not same word order
- Use alignment of words to build translation dictionary
- Use translation dictionary to improve the alignment – because it eliminates some possibilities
OK, what does pairing buy us?

- Sentence 1: 2 possibilities left...
 1. ororok ↔ bichat & sprok ↔ dat
 2. ororok ↔ dat & sprok ↔ bichat
 (But also: what if ororok untrans aux v...?)
Which is more likely?
Look for sentence w/ sprok but not ororok
Sentence (2a)
Link throughout corpus (1, 2, 3, 6, 7)
Sentence (2) now looks like a good place to crack...
Sentences 2, 3...

- S2: anok plok/pippat rrat
- S4: 4a. ok-voon anok drok brok jok .
 4b. at-voon krat pippat sat lat .

Ok, anok ↔ pippat & plok ↔ rrat

S3: So far we have:

<table>
<thead>
<tr>
<th>erok</th>
<th>sprok</th>
<th>izok</th>
<th>hihok</th>
<th>ghirok</th>
</tr>
</thead>
<tbody>
<tr>
<td>totat</td>
<td>dat</td>
<td>arrat</td>
<td>dat</td>
<td>hilat</td>
</tr>
</tbody>
</table>

Look at 8; 11; 3 & 12; 5, 6, 9

This suggests

- erok sprok izok hihok ghirok
- totat dat arrat vat hilat
Note:

- Aligning builds the translation dictionary
- Building the translation dictionary aids alignment
- “Decipherment”
- We shall see how this can be automated next time

The dictionary so far...

- anok - pippat
- erok - total
- ghirok - hilat
- hihok - arrat
- izok - vat/quat
- ok-drubel - at-drubel

- ok-yurp - at-yurp
- ok-voon - at-voon
- ororok - bichat
- plok - rrat
- sprok - dat
- zanzanok - zanzanat
Full dictionary

<table>
<thead>
<tr>
<th>anok</th>
<th>pippat</th>
<th>mok</th>
<th>gat ok-yurp</th>
<th>at-yurp</th>
</tr>
</thead>
<tbody>
<tr>
<td>brok</td>
<td>lat</td>
<td>nok</td>
<td>nnat clok</td>
<td>bat</td>
</tr>
<tr>
<td>crrok</td>
<td>none?</td>
<td>ok-drubel</td>
<td>at-drubel</td>
<td></td>
</tr>
<tr>
<td>drok</td>
<td>sat</td>
<td>ok-yurp</td>
<td>at-yurp</td>
<td></td>
</tr>
<tr>
<td>enemok</td>
<td>eneat</td>
<td>ororok</td>
<td>bichat</td>
<td></td>
</tr>
<tr>
<td>erok</td>
<td>total</td>
<td>plok</td>
<td>rrat</td>
<td></td>
</tr>
<tr>
<td>farok</td>
<td>jjat</td>
<td>rarok</td>
<td>forat</td>
<td></td>
</tr>
<tr>
<td>ghirok</td>
<td>hilat</td>
<td>sprok</td>
<td>dat</td>
<td></td>
</tr>
<tr>
<td>hihok</td>
<td>arrat</td>
<td>stok</td>
<td>cat</td>
<td></td>
</tr>
<tr>
<td>izok</td>
<td>vat/quat</td>
<td>wiwok</td>
<td>totat</td>
<td></td>
</tr>
<tr>
<td>jok</td>
<td>krat</td>
<td>yorok</td>
<td>mat</td>
<td></td>
</tr>
<tr>
<td>kantok</td>
<td>oloat</td>
<td>zanzanok</td>
<td>zanzanat</td>
<td></td>
</tr>
<tr>
<td>lalok</td>
<td>wat/iat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you work through it you’ll get all the pairs here, save 1: crrrok

- But you are suddenly abducted to the Federation Translation Center & presented with this sentence from Betelgeuse to translate into Alpha-Centaurian:

 iat lat pippat eneat hilat oloat at-yurp.
Translation B to A

- 13(B) iat lat pippat eneat hilat oloat at-yurp
- Consult dictionary – 7 words can be directly looked up
- iat lat pippat eneat hilat oloat at-yurp
- Many possible word orders for ‘felicitous’ translation!...how do we decide?

You are given this fragment of Alpha-C text & its bigrams... to help
The translation (answer sheet)

• iat lat pippat eneat hilat oloat at-yurp
• Word for word:
 (13a) Lalok brok anok enemok ghirok kantok ok-yurp
 Lalok brok anok {enemok ghirok kantok ok-yurp}
 Lalok brok anok ghirok {enemok kantok ok-yurp}
 Lalok brok anok ghirok enemok (kantok ok-yurp)
 Final: Lalok brok anok ghirok enemok kantok ok-yurp

• (14b) totat nnat forat arrat mat bat
erok? wiwok?
Now what? Wiwok to...?

Various possibilities

Wiwok...

(14a) Wiwok rarok nok crrrok hihok yorok clok...
How is this like/unlike ‘real’ translation

- Only 2 of the 27 AlphaC words were ambiguous
- Sentence length unchanged in all but one
- Sentences much shorter than typical
- Words & context -
 - Output word order should be sensitive to input word order (J. loves M, M loves J)
- Data cooked
- No phrasal dictionary (amok plok = pippat rrat)

The actual sentences

1. Garcia and associates.
 Garcia y asociados.
2. Carlos Garcias has three associates.
 Carlos Garcias tiene tres asociados.
3. His associates are not strong.
 Sus asociados no son fuertes.
4. Garcia has a company also.
5. Its clients are angry.
6. The associates are also angry.
7. The clients and the associates are enemies.
Statistical Machine Translation

- The fundamental idea of statistical MT is to let the computer learn how to do MT through studying the translation statistics from a bilingual corpus.

What’s the data? What are we doing?

- Pairs of sentences that are translations of one another are used.
- Learn parameters for a probability model.
- Source, Target pairs (S,T)

Find pr distribution over (S,T)
Let’s see what this means

\[P(t|s) = P(t) \times P(s|t) \]

Factor 1: Language Model

Factor 2: Translation Model
Statistical Machine Translation

- Warren Weaver (4 March 1947): (letter to Weiner)

Weaver, 1947

When I look at an article in Russian, I say, 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode'.
Example of what Weaver had in mind?

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

Example alignment

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant
We have to estimate these

- Training model from parallel aligned sentences (where do we get parallel texts; how do we align?)
- How much data needed?
So, how does English become French?

• Story 1. English gets converted to some sort of mental logic (predicate logic, or lexical-conceptual structures...), e.g., “I must not like ice-cream” into
 (obligatory (not (event like :obj ice-cream...)))
 blah blah blah
 Rest of story: how this gets mapped to French
 Call this story interlingua

How does English become French?

• Story 2. English sentences gets syntactically parsed, into heads & modifiers, a binary tree say – phrases
• Then transformed into a French tree (a vine, say) – phrases swapped, english words replaced by french words.
• Call this syntactic transfer
How does English become French?

- Story 3. Words in English sentence replaced by French words, which are scrambled
- Zany!
- Heh: this is IBM Model 3 story

Like our alien system

- We will have two parts:
 1. A bi-lingual dictionary that will tell us what e words go w/ what f words
 2. A shake-n-bake idea of how the words might get scrambled around

We get these from cycling between alignment & word translations – re-estimation loop on which words linked with which other words
What’s the data? What are we doing?

- Pairs of sentences that are translations of one another are used
- Learn parameters for a probability model
- Source, Target pairs (S,T)

Find pr distribution over (S,T)

Noisy channel model to the rescue

Source Language Model \(\rightarrow\) Translation Model

Find pr distribution over (S,T)
Noisy channel model

- The program has been implemented

La programme a été mis en application

French to English decoding (translation)

- The program has been implemented

George Bush Model of translation

- Somewhere in the noisy channel between speaker's brain and mouth, the English sentence E got "corrupted" to its French translation F
- Crazy?
- No stranger than the view that an English sentence gets corrupted into an acoustic signal in passing from the person's brain to his mouth
We need to estimate pr’s

• Need to know:
 • What people say in English (source)
 • How E gets turned into French (channel)
• What we see is F
• What we want to find is E
 (this is like speech...!)

How do we do this?

• English sentence e, French sentence f
• An English sentence e can be translated to any French sentence f
• But some translations are more equal than others... (more likely)
• We use probabilities to measure this!
OK, to begin

- $P(e) = \text{pr of producing some English sentence } e$ (e.g., "cheese-eating surrender monkeys")
- $P(e|f) = \text{pr on encountering } f, \text{ will produce } e$
- E.g., $f = \text{“Lincoln était un bon avocat”}$
 $e = \text{“cheese-eating surrender monkeys”}$

$P(e|f) \text{ Not bloody likely!}$
Note: in general, e and f can be anything, not just words...

'George Bush' model of translation (noisy channel)

French text f (observed)

rendered English

To be fair: perhaps the Jean Kerrie model
Why this order?

- If it seems backwards, it is
- Imagine you are building an English-French translator, but when you run it, you feed in French and ask, “what English would have caused this French sentence to come out?”
- The right answer is: a fluent English sentence (language model) that means what you think it means (translation model)

IBM “Model 3”

- We’ll follow that paper
How to estimate?

- Formalize alignment
- Formalize dictionary in terms of $P(f|e)$
- Formalize shake-n-bake in terms of $P(e)$
- Formalize re-estimation in terms of the EM Algorithm
 - Give initial estimate (uniform), then up pr’s of some associations, lower others

Bake-off – how to evaluate?

Tricky: not like speech (why?)

- Proposed measures...
 - Round-trip – ok, not always. E.g., “why in the world” \rightarrow Sp \rightarrow English \rightarrow “why in the world” but
 - The Spanish is porque en el mundo (???)

1. Compare human & machines –
2. Categorize as same; equally good; different meaning; wrong; (=‘fluency’); ungrammatical (= ‘adequacy’)
3. Humans take test based on translated text...
IBM toujours...

ISSUED: Apr. 23, 1996
FILED: Oct. 28, 1993
US PATENT NUMBER: 5510981
SERIAL NUMBER: 144913
INTL. CLASS (Ed. 6): G06F 17/28;
U.S. CLASS: 364-419.02; 364-419.08; 364-419.16; 381-043;
FIELD OF SEARCH: 364-419.02, 419.08, 419.16, 200
MS File ; 381-43, 51 ;
ABSTRACT: An apparatus for translating a series of source words in a first language...

The IBM series

- IBM1 – lexical probabilities only
- IBM2 – lexicon plus absolute position
- HMM – lexicon plus relative position
- IBM3 – plus fertilities
- IBM4 – inverted relative position alignment
- IBM5 – non-deficient version of model 4
Example alignment

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

4 parameters for $P(f|e)$

1. Word translation, t
2. Distortion (scrambling), d
3. Fertility, f
4. Spurious word toss-in, p

4 Parameters

- Word Translation, $t(f_j \mid e_i)$
- Distortion, scrambling, $d(a_j \mid j)$ $d(a_j \mid j \text{ m l})$
- Fertility, $\phi(n \mid e_i)$
- Spurious word appearance, p_i
- Q: how much space?
- Other:
 - Class-based alignment 50 classes
 - Nondeficient alignments (nulls)
Bake-off Candide vs. Systran (Darpa) - 1995

<table>
<thead>
<tr>
<th></th>
<th>Fluency</th>
<th>Adequacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systran</td>
<td>47%</td>
<td>54%</td>
</tr>
<tr>
<td>Candide</td>
<td>51%</td>
<td>58%</td>
</tr>
<tr>
<td>Human</td>
<td>83%</td>
<td></td>
</tr>
</tbody>
</table>

OK, now back to the game
How does English become French?

- Story 3. Words in English sentence replaced by French words, which are scrambled
- Zany!
- Heh: this is IBM Model 3 story

Translation by probabilities

- Given French sentence, f
- Find most likely English sentence, e, eg:

$$\arg \max_e P(e|f) \quad \text{[where e, f are sentences]}$$

BUT this means *good* English translation of French...
and this is *hard* – too hard to compute directly...
why?
Decoupling by Bayes’ Rule

• \(P(e|f) = \frac{P(e) \times P(f|e)}{P(f)} \)

• We want to \textit{maximize} this quantity \(P(e|f) \), so we can simply maximize:
 \[P(e) \times P(f|e) \]

Q: What happened to \(P(f) \)?
A: the \(F \) sentence to translate is \textit{fixed}

What’s wrong with just computing \(P(e|f) \) directly?

• We are extending from \textit{words}:
 ‘sol’ \(\leftrightarrow \) ‘sun’
 ‘to pull the wool over someone’s eyes’ \(\leftrightarrow \) ‘deitar areia para os olhos de alguém’

To sentences:
cheese eating surrender monkeys
fromage mangeant des singes de reddition

• What’s wrong with this plan?
• Probably won’t see a sentence match more than once, probably not at all!
In our case...

- What we see is $f(\text{rench})$
- We want to find is e (the most likely translation e)
- In other words, compute:
 $$\underset{e}{\text{argmax}} \ P(e|f)$$

What’s wrong with this plan???
Why can’t we just figure out $P(e|f)$?

Because...Finding the pr estimates

- Usual problem: sparse data
 - We cannot create a “sentence dictionary” $E \leftrightarrow F$
 - we do not see a sentence even twice, let alone once
But why not just compute max $p(e|f)$ directly?

- If we are translating French to English, then finding max $P(e|f)$ seems more intuitive.
- But if we try to figure out $P(e|f)$ directly we need to get good English translations, all in one step.
- So we solve this by finding $P(e|f) \approx P(e) \cdot P(f|e)$ [since French sentence is fixed, $p(f)$ is fixed].

- Why is figuring out $P(f|e)$ any easier??
- Ans: because it’s not really a “good French translation of an English sentence”...

Why $P(f|e)$ is easier...

- If we compute $P(e|f)$ directly, we had better be good – but there’s no data....
- $P(e|f)$ directly makes sense only if words in French are translations of words in English...
- A nice model for mutating bad French into bad English.
- Note that it also gives no guarantee on the well-formedness of e!
- But: We can use Bayes’ Rule to get good translations even if the pr estimates are crummy!
Why not compute $p(e|f)$ directly?

- Answer: $p(f|e)$ does not have to give good French translations (it isn’t really the translation of the English to French — ie, backwards)
- $p(f|e)$ can assign lots of probability weight to bad French sentences, as long as they contain the right words
- $p(f|e)$ can be sloppy because $p(e)$ will worry about word order

Why this order?

- If it seems backwards, it is
- Imagine you are building an English-French translator, but when you run it, you feed in French and ask, “what English would have caused this French sentence to come out?”
- The right answer is: a fluent English sentence (language model) that means what you think it means (translation model)
Estimating $P(f|e)$

- Given a sentence pair, $P(f|e)$ is simply the **product** of the word translation probabilities between them **irrespective** of word order.

Cheap and dirty $P(s|e)$

- Just product of individual translation probabilities!
- Assumes any order (ie, any alignment) is correct
- \[P(\text{yo no comprendo} \mid \text{I don't understand}) = \]
 - $P(\text{yo} \mid \text{I}) \times$
 - $P(\text{yo} \mid \text{don't}) \times$
 - $P(\text{yo} \mid \text{understand}) \times$
 - $P(\text{no} \mid \text{I}) \times$
 - $P(\text{no} \mid \text{don't}) \times$
 - $P(\text{no} \mid \text{understand}) \times$
 - $P(\text{comprendo} \mid \text{I}) \times$
 - $P(\text{comprendo} \mid \text{don't}) \times$
 - $P(\text{comprendo} \mid \text{understand})$
Bilingual corpus

- These can be estimated from a bilingual corpus: just retrieve all sentence pairs containing the word 'understand', count how many times 'comprendo' occurred, divide by total # of words in Spanish half of corpus

- Problems:
 - $P(\text{comprendo} \mid \text{understand})$ will be too low (even if comprendo appears every time understand does, it's normalized by # words – so say .05)
 - Worse: $P(\text{la} \mid \text{understand})$ too high, because 'la' is frequent, you'll often see it with 'comprendo' (remember, word order doesn't matter)

What is the fix?

- Decipherment
 - 'Understand' might co-occur with both 'la' and 'comprendo' but if we have a previous link between 'the' and 'la', then we should weight towards 'comprendo'.
 - In turn, that would reduce translating 'don't' as 'comprendo', because understand and don't will co-occur
 - After decipherment, $P(\text{comprendo} \mid \text{understand})$ should be close to 1; $P(\text{la} \mid \text{the})$, 0.4, with rest of wt there going to $P(\text{el the})$,
 - Need to re-estimate – can't keep assuming previously established links (bootstrap – EM)
Revised estimate

\[P(\text{yo no comprendo} \mid \text{I don't understand}) = \]
\[P(\text{Alignment1}) \times P(\text{yo} \mid \text{I}) \times \]
\[P(\text{no} \mid \text{don't}) \times \]
\[P(\text{comprendo} \mid \text{understand}) \]
\[+ P(\text{Alignment2}) \times P(\text{yo} \mid \text{don't}) \times \]
\[P(\text{no} \mid \text{I}) \times \]
\[P(\text{comprendo} \mid \text{understand}) \]
\[+ P(\text{Alignment3}) \times P(\text{yo} \mid \text{I}) \times \]
\[\ldots \]
\[+ P(\text{Alignment6}) \times P(\text{yo} \mid \text{understand}) \times \]
\[P(\text{no} \mid \text{don't}) \times \]
\[P(\text{comprendo} \mid \text{I}) \]

Estimation maximization (EM)

- Key: word alignments
- Word alignment connects words in sentence pair s.t. each English word produces 0 or more French words, and each French word is connected to exactly one English word
- Longer sentence \(\rightarrow \) more alignments possible
- Some are more reasonable than others, because they have more reasonable word translations
- Here is our revised approximation of \(P(f \mid e) \) or for Spanish, \(P(s \mid e) \):
EM iteration for alignment

- Step 1: Assume all alignments for a given sentence pair equally likely (e.g., one S has 256 alignments, 1/256; another, 1 million)
- Step 2: Count up word pair connections in all alignments in all word pairs, weighted by the pr of the alignment in which it occurs (so short, less ambiguous sentences have more weight)

EM for

- Step 3: consider each English word in turn (eg, ‘understand’)
So, if this works...

- Our job has been reduced to three things:
 1. Estimate the parameters for $P(e)$
 2. Estimate the parameters for $P(f|e)$
 3. Search the product space to maximize

Let’s see what each of the pr quantities mean, and what role they play.

Let’s see what this means

$$P(e|f) = P(e) \times P(f|e)$$

Factor 1: Language Model
Factor 2: Translation Model
Factor 1: P(e), language model

- P(e) says that ‘John ate ice-cream’ has high pr, but ‘ate ice-cream John’ has lower pr
- Indeed, ungrammatical sentence – pr 0 (but this could be hard to figure out)
- P(e) is really lowering pr of ungrammatical S’s
- So really, this is like our alien language case (what part?)
- Several possible collections of words (‘bags’) – pick most probable sequence

Language model P(e)

- So in fact, we have to choose between many grammatical sentences, e.g.,
- Which of these is better translation?
 Fred viewed Sting in the television
 Fred saw Sting on TV
- So, we are back to N-grams again!
- This will let us model word order
Language model & N-grams

- In general – next word could depend on all preceding context
- But there are too many parameters to estimate, so we use just bigrams or trigrams
- To find pr for a whole sentence, multiply conditional pr’s of the n-grams it contains

Language and N-gram example

- \(P(I \text{ found riches in my backyard}) = \)
 - \(P(I \mid \text{ start-of-sentence}) \times \)
 - \(P(\text{found} \mid I) \times \)
 - \(P(\text{riches} \mid \text{found}) \times \)
 - \(P(\text{in} \mid \text{riches}) \times \)
 - \(P(\text{my} \mid \text{in}) \times \)
 - \(P(\text{backyard} \mid \text{my}) \times \)
 - \(P(\text{end-of-sentence} \mid \text{backyard}) \)
- Note how this will be higher pr than “my I in riches backyard found” – just as we want
Language model $P(e)$

- So, if this does word order...
- Question: restore order for actual the hashing is since not collision-free usually the is less perfectly the of somewhat capacity table
- Question: what knowledge are you using?
- Amazingly, this alone can be used to restore scrambled English sentences (63-80%)
- Question: restore order for loves John Mary

A final use of $P(e)$

- Choose between alternative translations
 - I found the riches in my backyard
 - I found the riches on my backyard
 - In Spanish, ‘in’ and ‘on’ correspond to ‘en’
 - We can use trigram counts to tell the difference and select the higher pr one...
Problemes? Problemos?

The estimation catch

- Where do these pr numbers come from?
 Which has higher pr:
 ‘I hate ice-cream’, or ‘I like ice-cream’?
 use Google!
- What happens when P(y | x) is zero? (not observed in training)
- The whole product would be zero
- Bad, because then “I like cheese eating monkeys” = same pr as “like I monkeys cheese eating”
Estimation

- Acute issue for trigrams - `found riches in’ probably never seen
- Solution: smoothing (see textbook & next lecture - large literature on this)

Problems...

- Won’t always work – consider
 - Underline it
 - Emphasize it
- English might prefer the first, but must look at
 - Spanish – ‘subrayar’ translates as both, but mostly as ‘underline’; Spanish uses ‘acentuar’ for emphasis
- But this means we need to look at connections between 2 languages, ie, P(f|e) that bridge between them, not just in English... that is the job of the Translation Model
Language model & translation model

- Factoring knowledge out this way makes estimation easier
- Since \(P(e) \) takes care of word order, the translation model, \(P(f|e) \) doesn’t have to worry about this – it can give crummy pr estimates, it can be sloppy, as long as it has the right words
- But as we’ve seen, \(P(e) \) can’t do all the work for this...

Translation model \(P(f|e) \)

- What was it in our alien example?
- It was the bilingual dictionary
- What does it do?
- Ensure the words of \(e \) express the ideas of \(f \)
- So, responsibility is divided between \(P(e) \) and \(P(f|e) \)

An example (Spanish)
Spanish-English

- \(P(e) \times P(s|e) \) to get \(P(e|s) \) – assume ‘subrayar’ input...

1. Underline it.
 - \(P(\text{underline}) \times P(\text{it} | \text{underline}) \times P(\text{subrayar} | \text{underline}) \)

2. Emphasize it.
 - \(P(\text{emphasize}) \times P(\text{it} | \text{emphasize}) \times P(\text{subrayar} | \text{emphasize}) \)

- (1) is preferred because ‘underline’ is common and it is usually translated as ‘subrayar’

Language model can give crummy pr’s

- As long as it has the right words
- This gives some measure of robustness
- Example – all of these could have roughly the same pr, despite being lousy translations...
Lousy translations

- $P(\text{Yo no comprendo} | \text{I don't understand})$
- $P(\text{Comprendo yo no} | \text{Don't understand I})$
- $P(\text{No yo comprendo} | \text{I don't understand})$
- $P(\text{Comprendo yo no} | \text{I don't understand})$
- $P(\text{Yo no comprendo} | \text{I understand don't})$
- $P(\text{Yo no comprendo} | \text{Understand I don't})$

- In fact, this gives a first-cut way to estimate $P(f|e)$! Do you see how?

Cheap and dirty $P(s|e)$

- Just product of individual translation probabilities!
- $P(\text{yo no comprendo} | \text{I don't understand}) =$
 - $P(\text{yo} | \text{I}) x$
 - $P(\text{yo} | \text{don't}) x$
 - $P(\text{yo} | \text{understand}) x$
 - $P(\text{no} | \text{I}) x$
 - $P(\text{no} | \text{don't}) x$
 - $P(\text{no} | \text{understand}) x$
 - $P(\text{comprendo} | \text{I}) x$
 - $P(\text{comprendo} | \text{don't}) x$
 - $P(\text{comprendo} | \text{understand})$
Any problemas?

- Si...
- \(P(\text{comprendo} | \text{understand}) \) will be too low
- \(P(\text{la} | \text{understand}) \) will be too high – just because \(\text{la} \) is frequent in Spanish
- Use our method for alien languages!
- If we have previously established a link between ‘the’ and ‘la’, then we should boost ‘comprendo’
- That will reduce translation of ‘don’t’ as ‘comprendo’ because that will co-occur only when ‘understand’ is already nearby
- \(P(\text{comprendo} | \text{understand}) \) should work out close to 1, and \(P(\text{la} | \text{the}) \) say 0.4, rest going to \(P(\text{el} | \text{the}) \)...

In other words...

- Use alignments to assist with \(P(e), P(f|e) \)
- Use \(P(e) \) to assist with alignments
problème de poulet et d'oeufs et
problema del pollo y del huevo y
problema dell'uovo e del pollo e
Huhn- und Eiproblem und

Problemos

- Alignments help us get the translations
- Translations help us get the alignments...

- Where do we start???
For the example...

- Yo no comprendo / I don’t understand
- There are six possible alignments (for now...assuming no null maps, etc)
- All possible word combinations...
- This is just like our alien language case

Like this...

- \[P(yo \text{ no comprendo} | I \text{ don’t understand}) = \]
 \[P(\text{Alignment1}) \times P(yo | I) \times P(no | don’t) \times P(\text{comprendo} | \text{understand}) \]
 \[+ P(\text{Alignment2}) \times P(yo | \text{don’t}) \times P(no | I) \times P(\text{comprendo} | \text{understand}) \]
 \[+ P(\text{Alignment3}) \times P(yo | \text{understand}) \times P(no | I) \times ... \]
 \[+ P(\text{Alignment6}) \times P(yo | \text{understand}) \times P(no | \text{don’t}) \times P(\text{comprendo} | I) \]
Example

- Can’t assume direct word-for-word translation – some sentence pairs are different lengths
- An English word might correspond to more than one French word, or none at all
- So we model this -
Procrustean bed

- For each word e_i in the sentence, $i=1, 2, ..., l$ we choose a fertility $\phi(e_i)$, equal to 0, 1, 2, ...
- This value is dependent solely on the English word, not other words or the sentence, or the other fertilities
- For each word e_i we generate $\phi(e_i)$ French words – not dependent on English context
- The French words are permuted (‘distorted’) – assigned a position slot (this is the scrambling phase)
- Call this a distortion parameter $d(i|j)$

Summary of components

- The language model: $P(e)$
- The translation model for $P(f|e)$
 - Word translation t
 - Distortion (scrambling) d
 - Fertility ϕ
- (really evil): (for next time)
- Maximize (A^* search) through product space
What's the input data? Aligned S's

The high turnover rate was largely due to an increase in the sales volume. Employment and investment levels have also climbed. Following a two-year transitional period, the new Foodstuffs Ordinance for Mineral Water came into effect on April 1, 1988. Specifically, it contains more stringent requirements regarding quality consistency and purity guarantees.

La progression des chiffres d'affaires résulte en grande partie de l'acroissement du volume des ventes. L'emploi et les investissements ont également augmenté. La nouvelle ordonnance fédérale sur les denrées alimentaires concernant entre autre les eaux minérales, entrée en vigueur le 1er avril 1988 après une période transitoire de deux ans, exige surtout une plus grande constance dans la qualité et une garantie de la pureté.

What's the data?

- Hansard – Canadian Parliament since early 1800s, dual language
- 100M words, > 1M sentences
- Each on separate tape (!)
- Corresponding sentences not marked, paragraphs missing
- We want this – how to we get to it?
Issues with alignment

- Clues include...
 - French sentences usually in same order as English sentences (but word order difft)
 - Short French sentences \leftrightarrow short English sentences, and v.v.
 - Corresponding French and English sentences often contain many of the same character sequences (why?)

Weaver knew...

Think, by analogy, of individuals living in a series of tall closed towers, all erected over a common foundation. When they try to communicate with one another, they shout back and forth, each from his own closed tower. It is difficult to make the sound penetrate even the nearest towers, and communication proceeds very poorly indeed.

But, when an individual goes down his tower, he finds himself in a great open basement, common to all the towers. Here he establishes easy and useful communication with the persons who have also descended from their towers.

Thus it may be true that the way to translate from Chinese to Arabic, or from Russian to Portuguese, is not to attempt the direct route, shouting from tower to tower. Perhaps the way is to descend, from each language, down to the common base of human communication—the real but as yet undiscovered universal language—and—then re-emerge by whatever particular route is convenient.
Lost in the translation

- Proust: “A la recherche du temps perdu: “Depuis longtemps...”
- Translation: “For a long time I would go to bed early...”
- Last word in book: depuis