6.863J Natural Language Processing
Lecture 2: Automata, Two-level
phonology, & PC-Kimmo
* (the Hamlet lecture)

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

= Administrivia

web page: www.ai.mit.edu/courses/6.863/ now with
Lecture 1, Labl

Questionnaire posted (did you email it?)
Lab1l: split into Labla (this time) Lablb (next time)

e What and How: word processing, or computational
morphology

e What's in a word: morphology

e Modeling morpho-phonology by finite-state devices
e Finite-state automata vs. finite state transducers

e Some examples from English

e PC-Kimmo & Laboratory 1:how-to

6.863J/9.611J SPO3 Lecture 2

Levels of language

Phonetics/phonology/morphology: what
words (or subwords) are we dealing with?
Syntax: What phrases are we dealing with?
Which words modify one another?
Semantics: What's the literal meaning?
Pragmatics: What should you conclude from

the fact that | said something? How should
you react?

6.863J/9.611J SPO3 Lecture 2

‘ The “spiral notebook” Model ‘Dhrase’
Semtence form

/X
L hrase

N_oun Phrase
ICe-Cream

form ‘sound’
| x, xe{dogs}, ate(x, i-c) 9€dAWOZ... form

6.863J/9.611J SPO3 Lecture 2

Start with words: they illustrate all
the problems (and solutions) in NLP

= Parsing words
Cats ® CAT + N(oun) + PL(ural)
* Used in:
e Traditional NLP applications
e Finding word boundaries (e.g., Latin, Chinese)
e Text to speech (boathouse)
e Document retrieval (example next slide)

e In particular, the problems of parsing, ambiguity,and
computational efficiency (as well as the problems of
how people do it)

6.863J/9.611J SPO3 Lecture 2

Example from information retrieval

I _ :
e Keywork retrieval: marsupial or kangaroo or
koala

e Trying to form equivalence classes - ending not
important

e Can try to do this without extensive knowledge,
but then:

organization ® organ Europeér{ ® Europe
generalization ® generic noise ® noisy

6.863J/9.611J SPO3 Lecture 2

Morphology

e Morphology is the study of how words are
built up from smaller meaningful units called
morphemes (morph= shape; logos=word)

e Easy in English — what about other
languages?

6.863J/9.611J SPO3 Lecture 2

. What about other languages?

Presen Imperf | Imperf Future Preterite [Present Cond Imp.

indi;aﬂLs hadie. Subjun Subj

amo amaba amaré amé ame amaria amara

amas ama amabas amaras amaste ames amarias amaras
ames

ama amamba amara amoé ame amaria amara

amamos

amais amad amambais [amremos |amomos |amemos |amarianos |amarais
amais

aman amamban |[amaran |amaron amen amarian amarain

How to love in Spanish...incomplete...you can
finish it after Vaentine's Day...

6.863J/9.611J SPO3 Lecture 2

What about other languages?

Lexical: FParissmut+nngautjuma+nirag+lsugraine+nogit+junga
Surface: FPari mou nngau juma npires laug sina ongit tunga

Faris = (root = Parls)
+mut = terminalis caae ending
+ingan = g0 (varhalizar)
+juma = Want
+nirag = declare {that)
tlaug = past
taina = (added to -laug- indicates "distant past®)
tnogit = negative
Hjunga = 1st person sing. present indic (nenspecific)
e 22 Trukeitut: Parsrien e IR g I R g “1 mever saidd | wantes s g Tew

n =
Fans

6.863J/9.611J SPO3 Lecture 2

What about other processes?

c Stem: core meaning unit (morpheme) of a word

» Affixes: bits and pieces that combine with the stem to
modify its meaning and grammatical functions

Prefix: un- , anti-, etc.
Suffix: -ity, -ation, etc.

Infix:
Tagalog: um+hinigi ® humingi (borrow)
Any infixes in ‘nonexotic’ language like English?

Here sone; un-f***"-believable

6.863J/9.611J SPO3 Lecture 2

OK, now how do we deal with this
computationally?

What knowledge do we need?
How is that knowledge put to use?

What:

duckling; beer (implies what K...?)
chase + ed ® chased (implies what K?)
breakable + un ® unbreakable (‘prefix’)

How: a bit trickier, but clearly we are at least
doing this kind of mapping...

6.863J/9.611J SPO3 Lecture 2

‘ Our goal: PC-Kimmo

|’FLY+S

Rules
L exical form »| Lexicon

> v
‘ f I i e S

Surfaceform

6.863J/9.611J SPO3 Lecture 2

Two parts to the “what”

1. Which units can glue to which others (roots
and affixes) (or stems and affixes), eqg,

2. What ‘spelling changes’ (orthographic
changes) occur — like dropping the e in
‘chase + ed’

OK, let’s tackle these one at a time, but first
consider a (losing) alternative...

6.863J/9.611J SPO3 Lecture 2

KISS: A (very) large dictionary

1. IImpractical: some languages associate a single meaning w/ a
Sagan number of distinct surface forms (600 billion in
Turkish)

German: Leben+s+versichergun+gesellschaft+s+angestellter
(life+CmpAug+insurance+CmpAug+company+CompAug
+employee)

Chinese compounding: about 3000 ‘words,” combine to yield
tens of thousands

2. Speakers don't represent words as a list
Wug test (Berko, 1958)

Juvenate is rejected slower than pertoire (real prefix
matters)

6.863J/9.611J SPO3 Lecture 2

Representing possible roots + affixes
‘ as a finite-state automaton

_ Network
Wordlist . | . a .
cl ear O 'O 'O ‘O ’@
cl ever € v
ear f e
ever a Ot h
f at O > @ >
f at her
FSM
/usr/dict/words 17728 states,
25K words 37100 arcs
206K chars

6.863J/9.611J SPO3 Lecture 2

Now add in states to get possible
combos, as well as features

>
b i

O— 00— O— O ;)—,Oim“,p@ accept
g 0 | e r

fail

This much is easy — a straightforward fsa
States = equivalence classes

6.863J/9.611J SPO3 Lecture 2

English morphology: what states do
we need for the fsa?

e As an example, consider adjectives
Big, bigger, biggest
Cool, cooler, coolest, coolly
Red, redder, reddest
Clear, clearer, clearest, clearly, unclear, unclearly
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Real, unreal, silly

6.863J/9.611J SPO3 Lecture 2

‘ Will this fsa work?

: —€r -esl
adj-root

ORORCRO

6.863J/9.611J SPO3 Lecture 2

Ans: no!

Accepts all adjectives above, but
Also accepts unbig, readly, realest
Common problem: overgeneration
Solution?

6.863J/9.611J SPO3 Lecture 2

‘ Revised picture

adj-root,

6.863J/9.611J SPO3 Lecture 2

How does PC-Kimmo represent this?

Here’s what the pc-kimmo fsa
looks like — the fsa states are
called ‘alternation classes’ or
‘lexicons’

6.863J/9.611J SPO3 Lecture 2

PC-Kimmo states for affix combos
(portion) = lexicon tree

END

/ V

END END END END

(at start of file english.lex)

6.863J/9.611J SPO3 Lecture 2

Next: what about the spelling
changes? That's harder!

v Which units can glue to which others (roots
and affixes) (or stems and affixes)

2. What ‘spelling changes’ (orthographic
changes) occur — like dropping the e in
‘chase + ed’

6.863J/9.611J SPO3 Lecture 2

Mapping between surface form &
underlying form

Surface: chased

TN

4
= x

Underlying: Llchase +ed

But clearly this can go either way — given the underlying
form, we can generate the surface form — so we really
have a relation betw. surface & underlying form, viz.:

6.863J/9.611J SPO3 Lecture 2

Conventional notation

Lexical (underlying) form: ¢ h

a e +
Surface form: c h a s 0 0 e

The 0’s “line up” the lexical & surface strings

This immediately suggests a finite-state automaton
‘solution’ : an extension known as a

finite-state transducer

6.863J/9.611J SPO3 Lecture 2

o o

Finite-state transducers: a pairing
between lexical/surface strings

I [lexical string

C H A S
N N N N

4 4 4 1
QcOh® a @ s O<j surface string

* Or more carefully

6.863J/9.611J SPO3 Lecture 2

Definition of finite-state automaton
(fsa)

« A (deterministic) finite-state automaton
(FSA) is a quintuple (Q,S,d, q,, F) where

e Q is a finite set of states

e Sis a finite set of terminal symbols, the
alphabet

e gyl Qs the initial state

« Fi Q, the set of final states

e dis a function from Q xS ® Q, the
transition function

6.863J/9.611J SPO3 Lecture 2

Definition of finite-state transducer

e state set Q

initial state q,

set of final states F

input alphabet S (also define S*, S™)
output alphabet D

transition functiond : Qx S ® 29
output functions: Qx S xQ ® D*

6.863J/9.611J SPO3 Lecture 2

Reqgular relations on strings

- . . :
Relation: like a function, but multiple outputs ok
Regular: finite-state
Transducer: automaton w/ outputs

b®|{b}| a®|{}
aaaaa ®|{ac, aca, acab,
acabc}

6.863J/9.611J SPO3 Lecture 2

The difference between (familiar)
‘ fsa’s and fst's: functions from...

| Acceptors (FSAS) Transducers (FSTS)

{fase, true} c strings c:z

o o

6.863J/9.611J SPO3 Lecture 2

Defining an fst for a spelling-change
rule

e Suggests all we need to do is build an fst for
a spelling-change rule that ‘matches’ lexical
and surface strings

e Example: fox+s, foxes; buzz+s, buzzes
e Rule: Insert e before non initial X,s.z

e Instantiation as an fst (using PC-Kimmo
notation)

f o X 0 e S # surface
F O X + 0 S # lexical

6.863J/9.611J SPO3 Lecture 2

Insert ‘e’ before non-initial z, s, X
‘ (“epenthesis™)

X 0 e S # surface

f o
F O X + 0 S # lexical

6.863J/9.611J SPO3 Lecture 2

Successful pairing of foxes,fox+s

0 e S # surface
+ 0 S # lexical

6.863J/9.611J SPO3 Lecture 2

f o X
F O X

Now we combine the fst for the rules
and the fsa for the lexicon by
composition
| Oﬁ,@ﬁ@ﬁfﬁ@ﬁ@
big | clear | clever | ear | fat | ... an;ot—'@‘h; e

Regul ar Expressi on Lexi con
lLexi con ESA

Compile

v

Regul ar Expressions Conposed
for Rules Rule EST

v

b i i
O 05 0%, 0 04 0= O (O)
b i g g 0 e r

6.863J/9.611J SPO3 Lecture 2

So we're done, no?

v Which units can glue to which others (roots
and affixes) (or stems and affixes)

v" What ‘spelling changes’ (orthographic
changes) occur — like dropping the e in
‘chase + ed’

6.863J/9.611J SPO3 Lecture 2

So, we're done, right?

Not so fast...!!!!

Sometimes, more than 1 spelling change rule
applies. Example: spy+s, spies: y

y goes to i before an inserted e (compare,
“spying”

e inserted at affix +s

s p y[o]+ s s

e il s TEET R

6.863J/9.611J SPO3 Lecture 2

Simultaneous rules

« All we gotta do is write one fst for each of the
spelling change rules we can think of, no?

e Since fsa’'s are closed under intersection, we
can apply all the rules simultaneously... can
we?

e No! Fst's cannot, in general, be intersected...
(but, they can, under certain conditions...)

6.863J/9.611J SPO3 Lecture 2

The classical problem

e Traditional phonological grammars consisted of
a cascade of general rewrite rules, in the form:
x®ylj_9

e If a symbol x is rewritten as a symbol y, then
afterwards x is no longer available to other rules

e Order of rules is important
e Note this system isTuring complete — can
simulate general steps of any computation.. So,

gulp, how do we cram them into finite-state
devices...?

6.863J/9.611J SPO3 Lecture 2

Example from English (*gemination”)

underI)_[iné quiz +s

1 Rule A: s -> es after z

quiz + es

Rule B: z doubles before
Suffix beginning with
vowel

surface quizzes

6.863J/9.611J SPO3 Lecture 2

What's the difference?

Yo FsA iIsomorphic to regular languages (sets of
strings)

e FST isomorphic to regular relations, or sets of
pairs of strings

e Like FSAs, closed under union, but unlike
FSAs, FSTs are not closed under
complementation, intersection, or set
difference

6.863J/9.611J SPO3 Lecture 2

But this is a problem...

e How do we know which order of rules?

e A transducer merely computes a static regular
relation, and is therefore inherently reversible —
so equally viable for analysis or synthesis

e The constraints are declarative

» Since the rules describe such relations, in
general, more than one possible answer — which
do we pick? (Inverting the order becomes hard)

e This blocked matters until C. Johnson recalled a
theorem of Schuztenberger [1961] viz.,

6.863J/9.611J SPO3 Lecture 2

‘ When is this possible?

=L
LRues]
L input
LRuea] >
< Lsingiorse]
CRues] -~
S output

: 6.863J/9.611J SPO3 Lecture 2

Schuztenberger’s condition on
closure of fst’s

e The relations described by the individual
transducers add up to a regular relation (l.e., a
single transducer) when considered as a whole
if

e The transducers act in lockstep: each character
pair is seen simultaneously by all transducers,
and they must all “agree” before the next
character pair is considered

e No transducer can make a move on one string
while keeping the other one in place unless all
the other transducers do the same

6.863J/9.611J SPO3 Lecture 2

Simultaneous read heads

[N:m p:m
| Rule || Rule

6.863J/9.611J SPO3 Lecture 2

The condition

e For FSTs to act in lockstep, any O transitions
must be synchronized — that is, the
lexical/surface pairing must be equal length

e S. called this an equal length relation

e Under this condition, fst's can be intersected
— PC-Kimmo program simulates this
intersection, via simultaneous “read heads”

6.863J/9.611J SPO3 Lecture 2

Plus lexicon — lexical forms always
constrained by the path we're
‘ following through the lexicon tree

i
1
q
1
f

6.863J/9.611J SPO3 Lecture 2

And that’s PC-Kimmo, folks... or
“Two-level morphology”

I« A lexicon tree (a fsa to represent the lexicon)

e A set of (declarative) lexical/underlying relations,
represented as a set of fst's that address both lexical
and surface forms

e For English, roughly 5 rules does most of the work
(you've seen 2 already) — 11 rules for a “full scale”
system with 20,000 lexical entries (note that this
typically achieves a 100-fold compression for English)

e The only remaining business is to tidy up the actual
format PC-KIMMO uses for writing fst tables (which is

quite bizarre)

6.863J/9.611J SPO3 Lecture 2

Doubling

(aemination. G)
(gemination,)

doubled before -ing/ed

pelling change rules
Name Description Example
Consonant 1-letter consonant beg/begging

E deletion

(elision. EL)
(elision, L),

Silent e dropped
before -ing, -ed

make/making

VOYPEs/9.611) SPO3 Lecture 2

E insertion e added after -s, -z, - |fox/foxes
(epenthesis, ch, -sh before -s

EP)

Y replacement |-y changes to -ie try/tries
) before -ed

I spelling (1) | goes to y before lie/lying

How do we write these in PC-Kimmo?

6.863J/9.611J SPO3 Lecture 2

PC-Kimmo 2-level Rules

e Rules look very similar to phonological rewrite
rules, but their semantics is entirely different

e 2-level rules are completely declarative. No
derivation; no ordering

* Rules are in effect modal statements about
how a form can, must, or must not be
realized

6.863J/9.611J SPO3 Lecture 2

Form & Semantics of 2-level Rules

e Basic form is
L:SOPIc ... rc:

e Lexical L pairs with surface S in (optional)
left, right context Ic, rc. OP is one of

=> Only but not always,
<= Always but not only
<=> Always and only
/<= Never

e |c and rc are 2-level i.e. can address lexical
and surface strings

6.863J/9.611J SPO3 Lecture 2

a:b =>1r

e |If the symbol pair a: b appears, it must be in
context| r

e |If the symbol pair a: b appears outside the
context | _r, FAIL

lar lar |br
Il br lar |br

6.863J/9.611J SPO3 Lecture 2

Example: epenthesis

I
; LR: fox+0s kiss+0s church+0s spy+0s

; SR: foxOes kissOes churchOes spiOe
(note: we NEED the + to mark the end of the root ‘fox’ — we
can’t just have fox0Os paired with fox0es)

RULE "3 Epenthesis, 0:e => [Csib|ch|sh]|y:i] +:0___ s [+:0]#]"7 9

6.863J/9.611J SPO3 Lecture 2

a:b <=1 r

 If lexical a appears in context | _r, then it
must be realized as surface b

e If lexical a appears in context | _r, ifitis
realized as anything other than surface b,

FAIL

| ar | br xay
| br Yar | br xby

6.863J/9.611J SPO3 Lecture 2

Y-1 spelling

; yii-spelling
; LR: spy+s happy+ly spotO+y+ness
; SR: spies happiOly spottOiOness

RULE "5 y:i-spelling, y:i<=:C__ +:0 ~[i|]* 47

6.863J/9.611J SPO3 Lecture 2

a:b <=>1r

e If the symbol pair a:b appears, it must be in context |_r

e |If lexical a appears in context |_r, then it must be
realized as surface b

e If the symbol pair a:b appears outside the context |_r,
FAIL

e If lexical a appears in context |_r, if it is realized as
anything other than surface b, FAIL

| ar | | br
| br IFar™M br 4b

6.863J/9.611J SPO3 Lecture 2

Possessives with ‘s’

|
' s-deletion

' LR: cat+s+'s fox+s+'s
- SR: cat0s0'0 foxes0'0

RULE "7 s-deletion, s:0 <=>+:0 (0:e)s+:0"' "

6.863J/9.611J SPO3 Lecture 2

Example: Japanese past tense

«Voicing: t:d <=> <b m n g>: (+:0) (0:i) ___

bl D1 +:0

00+ (200 @ @
Mibmn g

6.863J/9.611J SPO3 Lecture 2

a:b <=1/ _r

e Lexical a is never realized as b in context
| r

e |If lexical a is realized as b in the context
| r, FAIL

lar | br xay
lar | br xby

6.863J/9.611J SPO3 Lecture 2

Gemination (consonant doubling)
I

; {C} ={b,d,f,g,l,m,n,p,r,s,t}
RULE "16 Gemination, 0:0 /<= ":0 C*V {C} _ +:0[V|y:]" 516

6.863J/9.611J SPO3 Lecture 2

2-Level Rule Semantics: summary

Fa:b <=> | re | ar X | br lexical
B | br ¥ah | br X

surface
| ar | br xay
| br Vax | br xby

S . lar lar |br
ab =>1 _r; |br|ar|br;§<

lar | br xay
lar | br xby

ab <=1 _r;

a:b /<=1 _r;

6.863J/9.611J SPO3 Lecture 2

Automata Notation (.rul file)

e What were those funny 2 numbers at the end
of the ‘rewrite’ notation?

e They specify the rows and columns of the
corresponding automaton

e I'll show you one, but it's like Halloween 6 — a
nightmare you don’'t want to remember

e We have a nicer way of writing them...
e OK, here goes...

6.863J/9.611J SPO3 Lecture 2

Shudder...

RULE "16 Gemination, 0:0 /<= ":0C*V {C}___ +:0[V]y:]" 516

"Vybdfglmnprst+ @
OVvV@bdfglmnprstOo @
1:2111111111111111
2:.2422222222222212
3:2001111111111111
4. 2115555555555511
5:2111111111111131

6.863J/9.611J SPO3 Lecture 2

Limits?

. Can PC-KIMMO do INFIXES?
Infix:
Tagalog: um+hinigi ® humingi (borrow)
Any infixes in ‘nonexotic’ language like
English?

Here sone; un-f***"-believable

6.863J/9.611J SPO3 Lecture 2

Summary: what have we learned so
far?

I FSTs can model many morphophonological systems -
esp. concatenative (linear) phonology
e You can compose and parallelize the FSTs

¢ Nulls cause nondeterminism - why can’'t we get rid of
nondeterminism like in FSAs

 What can this machine do?
e What can't it do?

e How complex can it be? (computational complexity in
official sense)

e How complex is it in practice?
e Example from Warlpiri

6.863J/9.611J SPO3 Lecture 2

Lab 1: PC-kimmo warmup
Login to Athena SUN workstation

I Athena>attach 6.863
Athena> cd /mit/6.863/pckimmo-old
Athena>pckimmo
PC-Kimmo>take english
PC-Kimmo> recognize flies
“fly+s fly+PL

PC-Kimmo>generate fly+s
flies

PC-Kimmo=>set tracing on

PC-Kimmo=>quit

6.863J/9.611J SPO3 Lecture 2

An example — try it yourself

6.863J/9.611J SPO3 Lecture 2

Outfoxed? Off to the races...

example races’
= The machine has to dive down many paths...

Recognizing surface form "races’".
0 (r.x) —-—> (11 121 1)
EPGYELTI

1 (a.a) -——> (11 412 1)

EP GYELTI
2 (c.c) -==> (1216 2 11 1)
3 (.0) --> (1116112 1)
EP G Y EL I
4 Entry |race| ends --> new lexicon N, config (1 1 16 1 12 1)

EP G YELTI

6.863J/9.611J SPO3 Lecture 2

More to go...
Problem: ewas paired with O (null)...!

™ (which iswrong - it's guessing that the form is
“racing” - has stuck in an empty (zero) character
after ¢ but before €) - elison automaton has 2 choices
Thisis nondeterminism in action (or inaction)!

Entry /0 ends --> new lexicon Ci, config (1 1 16 1 12 1)
EP G Y EL I
Entry /0 is word-final --> path rejected (leftover imput).
(+.0) --> (1116 1 13 1)
EP G Y EL I
Nothing to do.
(+.e) --> automaton Epenthesis blocks from state 1.
Entry |race| ends --> new lexicon P3, config (1 1 16 1 12 1)
EP G Y EL I

6.863J/9.611J SPO3 Lecture 2

And still more maze of twisty

all alike...it's going to try
all the sublexicons w/ this bad
guess..

6.863J/9.611J SPO3 Lecture 2

Winding paths...after 22 steps...

3 (e.e) --> (11161 14 1)

EP GYELI
4 Entry |racel| ends --> new lexicon N, (1 1 16 1 14 1)

E GYELTI

5 Entry /0 ends --> new lexicon C1, config (1 1 16 1 14 1)
6 Entry /0 is word-final -->rejected (leftover input)
5 (+.0) ——> (1 116 1 15 1)
6 (s.s) ——> (1416 21 1)
T Entry +/s ends--> new lexicon C2, (1 4 16 2 1 1)
8 Entry /0 is word-final -->rejected(leftover input)
8 () -—> (111611 1)
9 End --> lexical form ("race+s’" (N PL GEN))

6.863J/9.611J SPO3 Lecture 2

The End

6.863J/9.611J SPO3 Lecture 2

