
6.863J Lecture 3 1

6.863J Natural Language
Processing

Lecture 3: From morphology to
Spanish

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J Lecture 3 2

The Menu Bar
l Administrivia

– Lab1b, Spanish morphology: now posted; (we’ll go over this
at the beginning of class)

– Note due date change: February 24
– Sample lexicon, Kimmo docs posted

l Agenda:
l Summary of two-level machinery
l Some of the computational details of finite-state

transducers, and the problems with ‘conventional’
linguistic rules

l Review lab1b goals and how-to

6.863J Lecture 3 3

Big picture of what Kimmo does

6.863J Lecture 3 4

Summary of two-level morphology

l Two-level Morphology: two FSA devices, one
for words – a “word tree” fsa; one for spelling
change rules
– phonology + “morphotactics” (= morphology)

l Both components use finite-state devices:
– phonology: “two-level rules”, converted to FST’s

u e:0 ⇔ _ +:0 e:e r:r
– morphology: linked lexicons, or FSA’s

u root-dic: book/”book” ⇒ end-noun-reg-dic
u end-noun-reg-dic: +s/”NNS”

l Integration of the two possible (and simple)

6.863J Lecture 3 5

Recognizing (or generating) a word
means following the joint path
through both finite-state devices

+ Word tree transition

6.863J Lecture 3 6

2 tapes

f l

F L

Surface form

Underlying form

Y

Lexicon

+

i

S

se

Finite-state transducer

6.863J Lecture 3 7

Kimmo terminology

f l

F L

Surface form
(orthographic)

Underlying form (caps)
aka lexical form

Y

Alternation
Classes/spell. ch.

+

i

S

#e

Finite-state transducer

s

Affix marker

boundary marker (why
do we need this?)

Plural morpheme

#

6.863J Lecture 3 8

The two components
1. One to check that the right affixes follow the right

stems, e.g., big-er but not big-ly
This includes ‘spelling out’ the right stems, e.g., ‘p n
e u m ...’ but not ‘p t k … ‘
These are called alternation classes in the Kimmo
system (They are in the file english.lex)

2. One to check that the right surface ‘letters’
correspond to the right underlying form letters (or
vice versa), taking into account the
phonological/morphological changes (the spelling
change rules). These are called rules. (They are in
the file english.rul)

6.863J Lecture 3 9

The Word tree is pretty simple as an
fsa

l Just a set of ‘states’ representing root classes
and beginning (or prefix) and ending (suffix)
classes

l Transitions between the classes based on
character sequences

l Example: er glued onto big transition to:
Comparative

6.863J Lecture 3 10

We trace through the finite-state
devices in tandem

recognizing ‘foxes’
root root= always 1st ‘class’

= FST1 (word
classes)

= FST2 (spell
changes)

leftover input s

F/f

O/o

Fox+s, Plural

#/#

+/0

0/e

Automaton blocks+/e

X/x

Noun0/e

C1

C2

S/s END!

6.863J Lecture 3 11

Let’s see an example - English
races’

- note that each of the 5 automata are running

“in parallel” (what is the first one?)

6.863J Lecture 3 12

Backup search
Problem: e is paired with 0 (null)…!
(which is wrong - it’s guessing that the form is
“racing” - has stuck in an empty (zero) character
after c but before e) - elision automaton has 2 choices
This is nondeterminism in action (or inaction)!

6.863J Lecture 3 13

22 steps later

6.863J Lecture 3 14

What is the source of this
nondeterminism?

1. Empty elements inserted/deleted
(optionally)- we don’t know until we see
more
• rac… could be racing: so it pairs surface 0 with

underlying e. (oops, will be a poor guess…)

2. Alternative sublexicons searched (depends
on order they are placed in the .lex file)

6.863J Lecture 3 15

So there can be a lot of searching

C1= class that represents end of word
C2= class that allows plural endings
these fail! Why? (consider form)
Why does epenthesis automaton block?
(consider ‘foxes’ vs. ‘rac’)

R/r A/a C/c 0/e…

6.863J Lecture 3 16

Also nondeterminism in generation
of word forms

l Because automaton can posit null characters (zeroes)
on the surface, as in ‘foxes’

l Generate from ‘FOX+S’:
1. f 15. fox0
2. fo 16. fox0s epenthesis
3. fox 17. foxe
4. foxt (gem. fails) 18. foxes
5. foxs (gem. Fails)
6. foxr “
7. foxp
8. foxn
9. …

6.863J Lecture 3 17

The problem with classical
sequential rewrite rules

l Get different results when you go in different
directions – let’s see an example

l Upshot: deterministic in one direction
(unambiguous), but not in another

6.863J Lecture 3 18

Finite-state transducers + replacing
‘classical’ rules – trickier – an
Intractable problem?
l Example showing the important of order
l iNpractical vs. iNtractable
l How do these surface?

l The underlying N surfaces differently!

l To ensure that these and only these results are
obtained, the following rules must be treated as
obligatory and taken in the order given

6.863J Lecture 3 19

Rules needed

Rule 1
N→m / ___ [+labial]

Rule 2
N → n

First rule must feed the second – otherwise, we would
be inpracticable as well (must kill off the N)

This gives a unique result in this ‘forward’ order, but
not in the reverse order…

6.863J Lecture 3 20

Reverse gear often ambiguous

l intractable → apply Rule 2 inverted → results?

l iNtractable and intractable produced

l Also, sometimes no results when inverting
iNput cannot be generated by Rule 1, because the N always

gets converted to m
So, no output at all when Rule 1 is inverted on iNput

BUT if you invert Rule 2 on iNput you get 2 results, as
we have seen (input and iNput)

Inverting Rule 1 removes the ambiguity created by
inverting Rule 2

6.863J Lecture 3 21

And in general…

l If recognition is carried out by inverting
grammar rules in turn, then later rules in the
sequence act as filters on ambiguities
produced by later ones

l This effect is multiplicative in a cascade, since
the info to cut off paths does not become
available until quite far down the road, in
some cases

6.863J Lecture 3 22

Finite state transducer

l Imagine two tapes (lexical, surface)
l Transition arcs between states in form x:y
l A transition can be taken if the two symbols

separated by the colon in its label are found at the
current position on the corresponding tapes, and the
current position advances across those tape symbols.

l A pair of tapes is accepted if a sequence of transitions
can be taken starting at the start-state (conventionally
labeled 0) and at the beginning of the tapes and
leading to a final state (indicated by double circles) at
the end of both tapes.

6.863J Lecture 3 23

Let’s consider the obligatory
transducer versions of these rules –
Rule 2 first (n-machine)

Assume 2 tapes: top, bottom symbol
This machine accepts just in case a pair of strings (tapes)
stands in a certain relation w/ e.o – viz., N on first tape is
replaced with n on the second, and no N:N possible
I.e., this is Rule 2, obligatory

6.863J Lecture 3 24

Rule 1 – more complicated
N→m / ___ [+labial]

6.863J Lecture 3 25

Rule 1 (m-machine) description

l This machine blocks in state 1 if it sees the pair N : m
not followed by one of the labials p, b, m

l It blocks in state 2 if it encounters the pair N : N
followed by a labial on both tapes, thus providing for
the situation in which the rule is not applied even
though its conditions are satisfied

l If it does not block and both tapes are eventually
exhausted, it accepts them just in case it is then in one
of the final states, 0 or 2, shown as double circles

l It rejects the tapes if it ends up in the nonfinal state
1, indicating that the second tape is not a valid
translation of the first one

6.863J Lecture 3 26

Advantages of transducer model

l Goes both ways – generate or recognize
(depending on which tape contains the input)

l A pair of transducers connected through a
common tape models the composition of the
relations that those transducers represent

l That is, the relations accepted by finite-state
transducers are closed under serial
composition

6.863J Lecture 3 27

Picture please… model the cascade =
composition of the 2 transducers

This machine is constructed so that it encodes all the possible
ways in which the m-machine and n-machine could interact
through a common tape. The only interesting interactions
involve N, and these are summarized in the following table:

6.863J Lecture 3 28

Composition of the 2 machines

Rule 1 Rule 2

An N in the input to the m-machine is converted to m before a labial and this m remains
unchanged by the n-machine.

The only instances of N that reach the n-machine must
therefore be followed by nonlabials and these must be converted to n.

Accordingly, after converting N to m, the composed machine is in state 1, which it can
leave only by a transition over labials. After converting N to n, it enters state 2, from which
there is no labial transition. Otherwise, state 2 is equivalent to the initial state.

6.863J Lecture 3 29

Generation from iNtractable

Starting in state 0, the first transition over the "other" arc produces i on the output tape
and returns to state 0.
Two different transitions are then possible for the N on the input tape.
These carry the machine into states 1 and 2 and output the symbols m and n respectively.
The next symbol on the input tape is t. Since this is not a labial, no transition is possible from
state 1, and that branch of the process therefore blocks.
On the other branch, the t matches the "other" transition back to state 0 and the machine stays
in state 0 for the remainder of the string. Since state 0 is final, this is a valid derivation

6.863J Lecture 3 30

Generation of impracticable

6.863J Lecture 3 31

Same machine, as recognizer

6.863J Lecture 3 32

Conditions on re-write rules for
these to be re-expressed as an fst

l ϕ →χ /λ__ρ
l The part of the string that is actually rewritten

by a rule is excluded from further rewriting by
that same rule

l The following optional rule shows that this
restriction is necessary to guarantee regularity:
ε →ab/a____b

If this rule applies repeatedly, what language
does it produce? This is not a finite-state
language!

6.863J Lecture 3 33

Context conditions

l Rule cannot apply to itself
l But material produced in one application of a rule

can serve as the context (triggering condition) for
subsequent application of that rule

l Example: vowel harmony, as in Turkish:
YorgIn+sIniz → Yorgunsunuz
Context refers to that part of the string that the current

application of the rule does not change, but which
may have been changed in a previous application –
so allows for interaction between successive rule
applications

• Further constraint: no real ε transitions

6.863J Lecture 3 34

Actually leaves a puzzle open

Consider: unenforceable

This is usually analyzed as ‘bracketed’ &
analyzed from the ‘inside out’:
[un [en [force] able]]

Hmm… is this finite-state?
Suppose we need to add this

6.863J Lecture 3 35

Laboratory 1b
l Goals:

– How to use Kimmo to analyze another language (Spanish), as
example “front end”

– Build automata for some simple Spanish
morphological/phonemic rules (that interact)

– Build lexicon
– Learn what is hard and what is easy about this
– Recognize all and only the words in spanish.rec; Generate all the

surface forms
l Resources:

– Lab1b pdf file link from web page
– File of all the surface words to parse/reject (covering the

phenomena) spanish.rec, also linked from web page
– PC-Kimmo & documentation
– Program to `compile’ rules into automata: fst

6.863J Lecture 3 36

What you must turn in (via URL)
1. A description of how your system operates
2. URL ptrs to your .lex and .rul files

span.lex
span.rul

3. A log of a recognition run on the file
spanish.rec which is linked on the web
page & also at toplevel on course locker

4. Discussion of what you built/why
5. You must answer 3 questions:

6.863J Lecture 3 37

The questions

l What is your name?
l What is your quest?
l What…

6.863J Lecture 3 38

The phenomena under study
l You are given the orthography, including some

special characters to stand for the accented ones
á,é,ó,ü,ñ ; and some underlying characters you may
find essential, such as J, C, Z.

l Wise to proceed by first building the automata (rul)
file; then the lexicon(s) - because you can test the rules
without any lexicon by generation of a surface form

l The automata can be built (roughly) by considering
each phenomenon separately

l 3 kinds of phenomena

6.863J Lecture 3 39

The phenomena

1. g-j mutation
2. z-c mutation
3. pluralization
4. Noun endings
5. Verb conjugation - 1 form

6.863J Lecture 3 40

What output should look like -
recognition

PC-KIMMO>recognize spanish.rec

coger

coger [V(catch, seize, grab)Infinitival]

cojo

coger+o [V(catch, seize, grab)1p, sg, indicative]

coges

coger+es [V(catch, seize, grab)2p, sg, indicative]

coge

coger+e [V(catch, seize, grab)3p, sg, indicative]

6.863J Lecture 3 41

Phenomenon 1: g-j mutation
l g-j mutation

g→j before a back vowel
coger (catch, infinitive); cojo, coges, coge, cogemos, cogen,
coja

l But some verbs not subject to this (exceptions!)
llegar (arrive); llego, llegan, pagar (pay); pago, pagan

l Don’t acccept *llejo, *lleja, *cogo, *coga (the words don’t
come marked with * on their sleeves, of course!)

l Hint: can use the lexical (underlying) character J to
solve (but there are other ways to do it)

6.863J Lecture 3 42

How to build Kimmo systems

How to build lexicons using alternation classes
and the actual lexical entries

How to build automata for spelling changes

6.863J Lecture 3 43

Format for .lex file - 2 parts

1. Alternation classes – name all the states,
some transitions

(1 or more blank lines)
2. Lexicon entries: transitions between the

states
(Recall that we consider only the underyling

form combinations here – stems + affixes,
not spelling change rules on the surface)

6.863J Lecture 3 44

Use alternation classes to choose
between different roots + affixes (to
‘remember’ whether a N or V of a
certain type)

6.863J Lecture 3 45

Example: lexicon design

Phenomena: Nouns and Verbs take different
endings

Answer:

Different alternation classes for Nouns and
Verbs

6.863J Lecture 3 46

Example surface (s) underlying (u)
pairs tell us what to do

l ciudad
ciudad [N(city)]

l ciudades
ciudad+s [N(city)pl]

6.863J Lecture 3 47

Automaton design for lexicon
initial

noun verb

Q: what do we need to add to noun alternation?

6.863J Lecture 3 48

Adding plural
start

noun verb

plural singular

End End

6.863J Lecture 3 49

Lexicon Design

l 2 parts:
1. Alternation classes (specify state names &

most next states)
2. Lexicons (specify transition arcs, a few next

states)

6.863J Lecture 3 50

How does this translate to lexicon
design?

l Alternations specify the possible states in the word tree fsa, and most
of the transitions (though not the transition symbols)

ALTERNATION Start N V

ALTERNATION N SUFFIX_PLURAL

• So this says: in the Start class can be followed by either N or V;
• We want the N class to be followed by Suffix_Plural (actually, of

course, we could put this in V as well, but this would be wrong…)

6.863J Lecture 3 51

How to build the lexicon
; To load this file, enter the command LOAD LEXICON ENGLISH.

ALTERNATION Begin N_ROOT ADJ_PREFIX V_PREFIX

ALTERNATION N_Root1 N_SUFFIX NUMBER

ALTERNATION N_Root2 GENITIVE

ALTERNATION N_Suffix ADJ_SUFFIX3

ALTERNATION Number GENITIVE

ALTERNATION Genitive End

ALTERNATION Adj_Prefix1 ADJ_ROOT1

ALTERNATION Adj_Prefix2 ADJ_ROOT1 ADJ_ROOT2

ALTERNATION Adj_Root1 ADJ_SUFFIX1 ADJ_SUFFIX2 ADJ_SUFFIX3

ALTERNATION Adj_Root2 ADJ_SUFFIX2 ADJ_SUFFIX3

ALTERNATION Adj_Suffix1 End

ALTERNATION Adj_Suffix2 ADJ_SUFFIX3

6.863J Lecture 3 52

End of ‘Alternation classes’
ALTERNATION V_Pref_Non V_ROOT_NO_PREF V_ROOT_REVERSE

V_ROOT_REPEAT V_ROOT_NEG

ALTERNATION V_Pref_Reverse V_ROOT_REVERSE

ALTERNATION V_Pref_Repeat V_ROOT_REPEAT

ALTERNATION V_Pref_Neg V_ROOT_NEG

ALTERNATION V_Root1 End

ALTERNATION V_Root2 V_SUFFIX1

ALTERNATION V_Root3 V_SUFFIX1 V_SUFFIX3

ALTERNATION V_Root4 V_SUFFIX1 V_SUFFIX2 V_SUFFIX3

ALTERNATION V_Suffix1 End

ALTERNATION V_Suffix2 NUMBER

6.863J Lecture 3 53

Lexical entries
LEXICON INITIAL

0 Begin "["

INCLUDE n_root.lex ; file containing noun roots

LEXICON NUMBER

+s Number "+PL"

0 Number ".SG"

LEXICON GENITIVE

+'s Genitive "+GEN"

0 Genitive "“

LEXICON End

0 # "]"

END

6.863J Lecture 3 54

Need lexicons for beginning & affix
as well

6.863J Lecture 3 55

How do we build spelling change
automata?

6.863J Lecture 3 56

Example: look at phenomenon, then
see first how to describe

l What is the left and right context of the
change?

l Write it as a declarative constraint
l Remember that you can use both the surface

and the lexical characters to admit or to rule
out a possibility

6.863J Lecture 3 57

Phenomenon 2: z-c mutation

l z-c mutation
z → c before front vowels, z otherwise
cruzar (to cross); cruzo, cruzas, cruza, cruzamos,
cruzan, cruce

l If s causes a front vowel (e.g., e) to surface,
then the rule still applies:
lápiz, lápices (pencil, pencils) [l^piz, l^pices]

6.863J Lecture 3 58

What’s the automaton got to do?

start

changetoC

keepZ

reject

6.863J Lecture 3 59

Now add the arcs…

6.863J Lecture 3 60

Automaton

6.863J Lecture 3 61

Z -c mutation
machine "z -> c mutation“

state start

z:z keepZ

z:c changetoC

@:0 start

@:front start

others start

state keepZ

@:0 keepZ

z:z keepZ

z:c changetoC

@:front reject

others start

rejecting state changetoC

@:0 changetoC

z:z reject

z:c reject

@:front start

others reject

Fst description

6.863J Lecture 3 62

Corresponding state table
RULE "z -> c mutation" 3 5

z z @ @ @

z c 0 front @

1: 2 3 1 1 1

2: 2 3 2 0 1

3. 0 0 3 1 0

6.863J Lecture 3 63

Phenomenon 3: pluralization

l Adding s to a noun that ends in a consonant
forces a surface e to appear:
ciudad (city); ciudades

l This can interact with other rules, e.g., z-c-
mutation:
lápiz, lápices

l Nouns ending in a vowel are not subject to
this rule: bota, botas

6.863J Lecture 3 64

The lexicon – take 2
l Add a gloss at the very end of the process, so as

to return the feature list and ‘translation’, e.g.,
venzo [1p sg pres indic conquer, defeat] (first
person, singular, present tense, indicative)
– We’ll show how to add this in a moment

l You will deal with two types of ‘endings’
1. Noun endings: plural suffix +s
2. Verb endings: verb stem + tense markers

Simplest: infinitive marker +ar, +er, +ir
See table in pdf file for details: 5 x 3 table for Present

tense; ditto for Subjunctive tense (“I might….”)

6.863J Lecture 3 65

Some implementation details
l For the automata, we will describe the character set, format of

the .rul file, and the use of fst
l First 9 lines of .rul file: (Note: fst will insert these for you):

ALPHABET
a ^ b c C d e < f g . . .
NULL 0
ANY @
BOUNDARY #
RULE "BOGUS RULE FOR KIMMO BRAIN LOSSAGE" 1 33

<automaton table>
RULE PLURALIZE
<automaton table>

...
END

…

6.863J Lecture 3 66

Instead of writing fst tables…

l You can use the program fst
l This lives in dir /fst/ in course locker
l To run:

build fst type rules in file spanish.fst, then
./fst -o ~yourpath/spanish.rul ~yourpath/spanish.fst

l Format for fst rules:

6.863J Lecture 3 67

FST rules
l “b after a vowel turns to a”
subset vowel a e
machine “bintoa”
state foo
vowel:vowel bar
b:b foo
c:c foo
d:d foo
others reject

rejecting state bar
b:e foo
b:b reject
others foo

6.863J Lecture 3 68

The End

