
6.863J Natural Language Processing
Lecture 3: The end of the word

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 3

The Menu Bar

• Administrivia
Lecture 2 posted; Lab 1b(“component III”)

out today
• Finite-state transducer model: the wrapup
• Kimmo & Laboratory 1b: how-to
• Complexity of fst’s – too weak? Too strong?

What makes a good computational linguistics
representation? A good algorithm?

6.863J/9.611J SP04 Lecture 3

The Three Ideas of Two-Level
Morphology

• Rules are symbol-to-symbol constraints that
are applied in parallel, not sequentially like
rewrite rules, via sets of transducers

• The constraints can refer to the lexical
context, to the surface context or to both
contexts at the same time.

• Lexical lookup and morphological analysis are
performed in tandem.

6.863J/9.611J SP04 Lecture 3

Word of the day

• Turkish word:
uygarlas,tiramadiklarimizdanmis,sinizcasina
=
uygar+las,+tir+ama+dik+lar+imiz+dan+mis,+siniz+
casina

(behaving) as if you are among those whom we could
not cause to become civilized

6.863J/9.611J SP04 Lecture 3

Two fs machines in tandem

s p
i

e

Y:i
Rule

0:e
Rule

s p i e s #

S P Y 0 +
0

6.863J/9.611J SP04 Lecture 3

Declarative filtering

• ALL possible string pairs come in
• Spelling change fst’s only allow valid spelling

pairs through the door (doesn’t care about
what a valid morpheme is): g:g o:o s:s

• Morpheme tree allows only valid root + affix
sequences through the door (doesn’t care
about spelling): b e e r ↔ b e + e r

• Combination admits only permissible
lexical:surface word forms

X

X

6.863J/9.611J SP04 Lecture 3

Conceptually:…

define L2 "+Vb":0 | "+V3s":s | "+Vpr":{ing} | "+Vpst":{ed} ;

+Vb:0
+V3s:s

+VPst:e
0:d

0:n 0:g
+VPpr:i

define L1 {talk}|{walk}|{work};

o r

t a
w a l k

Root + suffix #

6.863J/9.611J SP04 Lecture 3

Machines

Set of parallel
of two-level rules

compiled into finite-state automata
interpreted as transducers

Koskenniemi ‘83

fst 1 fst 2 fst n...

Surface form

Lexical form

6.863J/9.611J SP04 Lecture 3

In practice

veut

vouloir +IndP +SG + P3

Finite-state
transducer

inflected form

canonical form inflection codes
v o u l o i r +IndP +SG +P3
v e u t

• Bidirectional: generation or analysis
• Compact and fast
• Commercially available for about 20

languges including English, German,
Dutch, French, Italian, Spanish,
Portuguese, Finnish, Russian, Turkish,
Japanese, ...

• Research systems for many other
languages, including Arabic, Malay, ...

6.863J/9.611J SP04 Lecture 3

Ambiguities

payer+IndP+SG+P1

paie
paye

French Transducer

suis

suivre+Imp+SG + P2

suivre+IndP+SG+P2

suivre+IndP+SG+P1

être+IndP +SG + P1
“upper language”

“lower language”

6.863J/9.611J SP04 Lecture 3

c:c

h:h

0:e

+:0

s:s

#:#

6.863J/9.611J SP04 Lecture 3

Insert ‘e’ before non-initial z, s, x
(“epenthesis”)

0

0 0
0

f o x 0 e s # surface
F O X + 0 S # lexical

6.863J/9.611J SP04 Lecture 3

Successful pairing of foxes,fox+s

f:f, o:o
s:s+:0 0:ex:x

#:#

f o x 0 e s # surface
F O X + 0 S # lexical

0

0

0

6.863J/9.611J SP04 Lecture 3

Can a transducer do this?

• igpay atinlay is unfay
• define Cons [b] ;

define Vowel [a | e | i | o | u] ;
define Ltr [Cons | Vowel]+ ;
define Limit [" " | "\t" | .#.] ;

• Suppose just one consonant, e.g, be
• Strategy?

6.863J/9.611J SP04 Lecture 3

What about rule ordering?

6.863J/9.611J SP04 Lecture 3

Rule Conflicts

Resolution by underspecification:

k:0 | k:v <=> Vowel _ Vowel
k:v <=> u _ u

u _ u

Vowel _ Vowel

k:0

k:v

makun
ma un

Exception pukun
puvun

General rule

6.863J/9.611J SP04 Lecture 3

Constraints on both sides

k a N p a n

k a m m a n

k a N p a n

k a m m a n
N:m correspondence

requires a following p on
the lexical side.

p:m correspondence
requires a preceding m
on the surface side.

In this context, all other
possible realization of a
lexical p are prohibited.

In this context, all other
possible realization of a
lexical N are prohibited.

6.863J/9.611J SP04 Lecture 3

Parallel application – how?

N:m
Rule

p:m
Rule

k a m m a n

k a N p

6.863J/9.611J SP04 Lecture 3

Sequential Application

N -> m / _ p

p -> m / m _

k a N p a n

k a m p a n

k a m m a n

6.863J/9.611J SP04 Lecture 3

Machine Rule 1 (“N goes to m”)

Rule 1: N→m | __ p

6.863J/9.611J SP04 Lecture 3

Machine Rule 2 (“p goes to m”)

Rule 2: p→ m | m___

6.863J/9.611J SP04 Lecture 3

Sequential Application in Detail

k a N p a n

k a m p a n

k a m m a n

0 0 0 2 0 0 0

0 0 0 1 0 0 0

6.863J/9.611J SP04 Lecture 3

When is this possible?

Rule 1

Rule 2

Rule 4

Rule 3

input

output

Single FST

input

6.863J/9.611J SP04 Lecture 3

OK then…

• To apply all 5 rules at once, we can simply
intersect them all, right? (So given character
pair has to pass all the spelling checks at
each point)

• Right?
• Wrong!

6.863J/9.611J SP04 Lecture 3

Relations

Ordered Set: members are ordered.

Ordered Pair: <A,B> vs. <B,A>

Relation: set whose members are ordered pairs
• (lexical, surface)

6.863J/9.611J SP04 Lecture 3

Relations

An Infinite Relation:.

Identity Relation: <“fly”, “fly”>

a
A

b
B

c
C..
.z
Z

6.863J/9.611J SP04 Lecture 3

What does transducer define?

• Lexical form is a finite-state language (a
regular language)

• Surface form is a regular language
• Transducer pairs (lexical form, surface

form)= regular relation (“rational relation:”)
• What are the properties of rational relations?

Is this the same as what Kimmo does?

6.863J/9.611J SP04 Lecture 3

Closure properties of FSTs not same
as FSAs!

• NOT closed under intersection
why? Example: (a:b)*(0:c)* ∩ (0:b)*(a:c)*
Intuition: 1st makes equal a’s, b’s; 2nd, equal a’s

& c’s
So output is: < , >, <a, bc>, <aa, bbcc>, …
• NOT possible to make FTNs deterministic in

general either…
why? Consider following FST:

6.863J/9.611J SP04 Lecture 3

Inherently nondeterministic FTN

6.863J/9.611J SP04 Lecture 3

Composition

Composition is an operation on two
relations.
Composition of the two relations <x,y>
and <y,z> yields <x, z>

Example: <“cat”, “chat”> with <“chat”,
“Katze”> gives <“cat”, “Katze”>

6.863J/9.611J SP04 Lecture 3

Composition

• A c B The relation C such that if A maps x
to y and B maps y to z, C maps x to z.

b:B c:Ca:A

b ca

a:A
b:B

c:C

d:D

6.863J/9.611J SP04 Lecture 3

Composition

K a t z e

c h a t

c a t

c h a t

6.863J/9.611J SP04 Lecture 3

Composition

K a t z e

c a t

c h a t

Merging the two networks

6.863J/9.611J SP04 Lecture 3

Composition

K a t z e

c a t

The Composition of the Networks

What is this reminiscent of?

6.863J/9.611J SP04 Lecture 3

Composition
N:m

N

?? 0

3

1

N:m

m

p

N
?

m2

p:m

p:m

N m

N:mk a N p a n

k a m m a n
0 0 0 3 0 0 0

FTNs ARE closed under composition

6.863J/9.611J SP04 Lecture 3

What are the implications?

• FTNs inherently require backup if simulated
(in the worst case) – Kimmo at least NP-hard
(proof later on)

• Empty elements cause computational
complexity (unless restricted – equal length
condition)

• Composition can save us, but then rule
ordering must be watched carefully

6.863J/9.611J SP04 Lecture 3

Sequential Application in Detail

k a N p a n

k a m p a n

k a m m a n

0 0 0 2 0 0 0

0 0 0 1 0 0 0

6.863J/9.611J SP04 Lecture 3

Let’s see an example - English
races’

- note that each of the 5 automata are running

“in parallel” (what is the first one?)

6.863J/9.611J SP04 Lecture 3

Backup search
Problem: e is paired with 0 (null)…!
(which is wrong - it’s guessing that the form is
“racing” - has stuck in an empty (zero) character
after c but before e) - elision automaton has
2 choices
This is nondeterminism in action (or inaction)!

6.863J/9.611J SP04 Lecture 3

22 steps later

6.863J/9.611J SP04 Lecture 3

Laboratory 1b
• Goals:

• How to use Kimmo to analyze another language (Spanish), as
example “front end”

• Build automata for some simple Spanish
morphological/phonemic rules (that interact)

• Build lexicon
• Learn what is hard and what is easy about this
• Recognize all and only the words in spanish.rec; Generate all

the surface forms
• Resources:

• Lab1b pdf file link from web page
• File of all the surface words to parse/reject (covering the

phenomena) spanish.rec, also linked from web page
• Pykimmo, pcimmo & documentation
• Program to `compile’ rules into automata: fst

6.863J/9.611J SP04 Lecture 3

What you must turn in (via URL)
1. A description of how your system operates
2. URL ptrs to your .lex and .rul files

span.lex
span.rul

3. A log of a recognition run on the file
spanish.rec which is linked on the web
page & also at toplevel on course locker

4. Discussion of what you built/why
5. You must answer 3 questions:

6.863J/9.611J SP04 Lecture 3

The questions

• What is your name?
• What is your quest?
• What…

6.863J/9.611J SP04 Lecture 3

The phenomena under study

• You are given the orthography, including some special
characters to stand for the accented ones á,é,ó,ü,ñ ;
and some underlying characters you may find
essential, such as J, C, Z.

• Wise to proceed by first building the automata (rul)
file; then the lexicon(s) - because you can test the
rules without any lexicon by generation of a surface
form

• The automata can be built (roughly) by considering
each phenomenon separately

• 3 kinds of phenomena

6.863J/9.611J SP04 Lecture 3

The phenomena

1. g-j mutation
2. z-c mutation
3. pluralization
4. Noun endings
5. Verb conjugation - 1 form

6.863J/9.611J SP04 Lecture 3

Phenomenon 1: g-j mutation
• g-j mutation

g→j before a back vowel
coger (catch, infinitive); cojo, coges, coge, cogemos,
cogen, coja (NOTE: coger is NOT the lexical
underlying form!!!)

• But some verbs not subject to this (exceptions!)
llegar (arrive); llego, llegan, pagar (pay); pago, pagan

• Don’t acccept *llejo, *lleja, *cogo, *coga (the words
don’t come marked with * on their sleeves, of
course!)

• Hint: can use the lexical (underlying) character J to
solve (but there are other ways to do it)

6.863J/9.611J SP04 Lecture 3

How to build Kimmo systems

How to build lexicons using morpheme states
and the actual lexical entries

How to build automata for spelling changes

6.863J/9.611J SP04 Lecture 3

Format for .lex file - 2 parts

1. Lexicon: Morpheme classes – name all the
states, some transitions

(1 or more blank lines)
2. Lexicon entries: transitions between the

states
(Recall that we consider only the underyling

form combinations here – stems + affixes,
not spelling change rules on the surface)

6.863J/9.611J SP04 Lecture 3

Example: lexicon design

Phenomena: Nouns and Verbs take different
endings

Answer:

Different morpheme states for Nouns and
Verbs

6.863J/9.611J SP04 Lecture 3

Example surface (s) underlying (u)
pairs tell us what to do

• ciudad
ciudad [N(city)]

• ciudades
ciudad+s [N(city)pl]

6.863J/9.611J SP04 Lecture 3

Automaton design for lexicon
initial

noun verb

Q: what do we need to add to noun alternation?

6.863J/9.611J SP04 Lecture 3

Adding plural
start

noun verb

plural singular

End End

6.863J/9.611J SP04 Lecture 3

How do we build spelling change
automata?

6.863J/9.611J SP04 Lecture 3

Example: look at phenomenon, then
see first how to describe

• What is the left and right context of the
change?

• Write it as a declarative constraint
• Remember that you can use both the surface

and the lexical characters to admit or to rule
out a possibility

6.863J/9.611J SP04 Lecture 3

Phenomenon 2: z-c mutation

• z-c mutation
z → c before front vowels, z otherwise
cruzar (to cross); cruzo, cruzas, cruza,
cruzamos, cruzan, cruce

• If s causes a front vowel (e.g., e) to surface,
then the rule still applies:
lápiz, lápices (pencil, pencils) [l^piz, l^pices]

6.863J/9.611J SP04 Lecture 3

What’s the automaton got to do?

start

changetoC

keepZ

reject

6.863J/9.611J SP04 Lecture 3

Now add the arcs…

6.863J/9.611J SP04 Lecture 3

Phenomenon 3: pluralization

• Adding s to a noun that ends in a consonant
forces a surface e to appear:
ciudad (city); ciudades

• This can interact with other rules, e.g., z-c-
mutation:
lápiz, lápices

• Nouns ending in a vowel are not subject to
this rule: bota, botas

6.863J/9.611J SP04 Lecture 3

The lexicon – take 2
• Add a gloss at the very end of the process, so as to

return the feature list and ‘translation’, e.g., venzo [1p
sg pres indic conquer, defeat] (first person, singular,
present tense, indicative)

• We’ll show how to add this in a moment
• You will deal with two types of ‘endings’
1. Noun endings: plural suffix +s
2. Verb endings: verb stem + tense markers

Simplest: infinitive marker +ar, +er, +ir
See table in pdf file for details: 5 x 3 table for Present

tense; ditto for Subjunctive tense (“I might….”)

6.863J/9.611J SP04 Lecture 3

Instead of writing fst tables…

• You can use the program fst
• To run:

build fst type rules in file spanish.fst, then
fst -o ~yourpath/spanish.rul ~yourpath/spanish.fst

• Also script to print fst files to dot, for ps viewing
• Format for fst rules:

6.863J/9.611J SP04 Lecture 3

FST rules
• “b after a vowel turns to a”
subset vowel a e
machine “bintoa”
state foo
vowel:vowel bar
b:b foo
c:c foo
d:d foo
others reject

rejecting state bar
b:e foo
b:b reject
others foo

6.863J/9.611J SP04 Lecture 3

6.863J/9.611J SP04 Lecture 3

Design of morpheme machine

• One big fsa
• Like this…

6.863J/9.611J SP04 Lecture 3

Picture

6.863J/9.611J SP04 Lecture 3

Specification details

• List states – in cyan – followed by sets of transition labels
(possible outgoing arcs)

Begin: N_Root1 Adj_Root V_Root
N_root: Poss To_adj

• For each arc: List transitions & next states, and output
N_root1:
Kol N_root Noun[‘arm’]
Kitab N_root Noun[‘book’]
…

N_Root1 Adj_Root V_Root

Begin

N_root

6.863J/9.611J SP04 Lecture 3

The End

End:
0 # “ “

