6.863] Natural Language Processing
Lecture 3: The end of the word

~

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

e “‘Administrivia
Lecture 2 posted; Lab 1b(“component III")
out today
e Finite-state transducer model: the wrapup
e Kimmo & Laboratory 1b: how-to

e Complexity of fst's — too weak? Too strong?
What makes a good computational linguistics
representation? A good algorithm?

6.8631/9.611] SP04 Lecture 3

The Three Ideas of Two-Level
Morphology

. Rules are symbol-to-symbol constraints that
are applied in parallel, not sequentially like
rewrite rules, via sets of transducers

. The constraints can refer to the lexical
context, to the surface context or to both
contexts at the same time.

. Lexical lookup and morphological analysis are
performed in tandem.

6.8631/9.611] SP04 Lecture 3

\Word of the day

. Turkish word:
uygarlas,tiramadiklarimizdanmis,sinizcasina

uygar+las,+tir+ama+dik+lar+imiz+dan+mis,+siniz+
casina

(behaving) as if you are among those whom we could
not cause to become civilized

6.8631/9.611] SP04 Lecture 3

Jwo fs machines in tandem

Rule Rule

6.8631/9.611] SP04 Lecture 3

Declarative filtering

. ALL possible string pairs come in
. Spelling change fst’s only allow valid spelling

pairs through the

door (doesn’t care about

what a valid morpheme is): g:g 0:0%6:s

. Morpheme tree al
sequences throug
about spelling):

ows only valid root + affix
N the door (doesn’t care

heerd¢be+er

. Combination admits only permissible
lexical:surface word forms

6.8631/9.611] SP04 Lecture 3

Conceptually:...

define L1 {talk}|{walk} | {work};

define L2 "+Vb":0 | "+V3s":s | "+Vpr":{ing} | "+Vpst":{ed} ;

6.8631/9.611] SP04 Lecture 3

Machines

Lexical form

T

fst 1 fst 2 .. fst n

Y
Surface form

Set of parallel
of two-level rules
compiled into finite-state automata
interpreted as transducers
Koskenniemi ‘83

6.8631/9.611] SP04 Lecture 3

In practice

- o= P—~-SE~+P3 . Bidirectional: generation or analysis

. Compact and fast
T Commercially available for about 20
Finite-state languges including English, German,
transducer Dutch, French, Italian, Spanish,
Portuguese, Finnish, Russian, Turkish,
l Japanese, ...

Research systems for many other

veut languages, including Arabic, Malay, ...
canonical form inflection codes
v o) u 1 o i r +IndP +SG +P3
O—O—0—+>0—0—+0—+0—0O0—0—>0—O)
v e u t

inflected form

6.8631/9.611] SP04 Lecture 3

Ambiguities

| “upper language”
—etre+mdP—+S56—+4

suivre+IndP+SG+P1
suivre+IndP+SG+P2

suivre+imp+SG + P2 payer+IndP+SG+P1

! !

French Transducer

' !

Suis

paie
paye

“lower language”

6.8631/9.611] SP04 Lecture 3

e, Cath,+:0.#0: 7

@
e, us,Csih,+:0,0:
@
0

6.8631/9.611] SP04 Lecture 3

Insert ‘e’ before non-initial z, s, x
(“epenthesis”)

0 other

0 e S # surface
+ 0 S # lexical

6.8631/9.611] SP04 Lecture 3

»S | X

Successful pairing of foxes,fox+s

X 0 e S # surface

f o
F O X 6.8637.6117 SHM Lecture 3S # lexical

Can a transducer do this?

. igpay atinlay is unfay

. defineCons[b];

define Vowel [a | e |i|o|u];
define Ltr [Cons | Vowel]+ ;
define Limit [" " | "\t" | .#.] ;

. Suppose just one consonant, e.g, be
. Strategy?

6.8631/9.611] SP04 Lecture 3

What about rule ordering?

6.8631/9.611] SP04 Lecture 3

Rule Conflicts

makun——
General rule
k:0 ma un
.v Exception Pukun
puvun

Vowel _ Vowel

e Resolution by underspecification:

k:0 | k:v <=> Vowel _ Vowel

k:v <=> u u

6.8631/9.611] SP04 Lecture 3

Constraints on both sides

-
Y
2

O
W
o)

k amman

N:m correspondence
requires a following p on
the lexical side.

In this context, all other
possible realization of a
lexical N are prohibited.

k aNpan

k almlm a n

p:m correspondence
requires a preceding m
on the surface side.

In this context, all other

possible realization of a
lexical p are prohibited.

6.8631/9.611] SP04 Lecture 3

Parallel application — how?

6.8631/9.611] SP04 Lecture 3

Sequential Application

k aNpan
l N->m/ p

k ampan
l p->m/ m __

k amman

6.8631/9.611] SP04 Lecture 3

Machine Rule 1 ("N goes to m")

Rule 1: N->m|_p

6.8631/9.611] SP04 Lecture 3

iVIachine Rule 2 ("p goes to m")

Rule 2: p>m|m
p.@
m | @

p:m m,p:m

6.8631/9.611] SP04 Lecture 3

Sequential Application in Detalil

00012000

Se——— 2

w
()

p
00011000
m

6.8631/9.611] SP04 Lecture 3

\When is this possible?

input
<>
| Rule 1 |
= \ inpu
| Rule 2 | G
gy | Single FST|

d

[Rulc3] ~>
output
| Rule 4 |
6.8631/9.611J SP04 Lecture 3

.

OK then...

. To apply all 5 rules at once, we can simply
intersect them all, right? (So given character
pair has to pass all the spelling checks at
each point)

. Right?
. Wrong!

6.8631/9.611] SP04 Lecture 3

Relations

Ordered Set: members are ordered.

Ordered Pair: <A,B> vs. <B,A>

Relation: set whose members are ordered pairs
e (lexical, surface)

6.8631/9.611] SP04 Lecture 3

Relations

An Infinite Relation:. Z

Identity Relation: <“fly”, “fly">

6.8631/9.611] SP04 Lecture 3

What does transducer define?

. Lexical form is a finite-state language (a
reqular language)

. Surface form is a regular language

. Transducer pairs (lexical form, surface
form)= reqular relation (“rational relation:")

. What are the properties of rational relations?
Is this the same as what Kimmo does?

6.8631/9.611] SP04 Lecture 3

Closure properties of FSTs not same
as FSAs!

. NOT closed under intersection

why? Example: (a:b)*(0:0)* ~ (0:b)*(a:c)*

Intuition: 1st makes equal a’s, b’s; 2nd, equal a’s
& C's

So output is: <, >, <a, bc>, <aa, bbcc>, ...

. NOT possible to make FTNs deterministic in
general either...

why? Consider following FST:

6.8631/9.611] SP04 Lecture 3

Inherently nondeterministic FTN

6.8631/9.611] SP04 Lecture 3

Composition

Composition is an operation on two
relations.

Composition of the two relations <x,y>
and <y,z> yields <x, z>

Example: <%cat”, “chat”> with <“chat”
“Katze"”> gives <“cat”, "Katze">

6.8631/9.611] SP04 Lecture 3

~

Composition

. A ¢ B Therelation C such that if A maps x
toy and B maps y to z, C maps x to z.

O—-0-"0—~0
il OHO-0=0
V.

D

6.8631/9.611] SP04 Lecture 3

Composition

6.8631/9.611] SP04 Lecture 3

Composition

Merging the two networks

6.8631/9.611] SP04 Lecture 3

Composition

The Composition of the Networks

What 1s this reminiscent of?

6.8631/9.611] SP04 Lecture 3

Composition

FTNs ARE closed under composition

6.8631/9.611] SP04 Lecture 3

\What are the implications?

. FTNs inherently require backup if simulated
(in the worst case) — Kimmo at least NP-hard
(proof later on)

. Empty elements cause computational
complexity (unless restricted — equal length
condition)

. Composition can save us, but then rule
ordering must be watched carefully

6.8631/9.611] SP04 Lecture 3

Sequential Application in Detalil

6.8631/9.611] SP04 Lecture 3

tet’s see an example - English
aces’

. =Recognizing surface form "races’".
0 (r.r) —> (11 121 1)
EP GYELTI

1 (a.a) ——> (11 412 1)

EP G Y EL I
2 (c.c) --> (1 216 2 11 1)
3 (e.0) --> (1116 1 12 1)
EP G Y EL I
4 Entry |race| ends --> mew lexicon N, config (1 1 16 1 12 1)

EP G Y EL I
- note that each of the 5 automata are running

“in parallel” (what is the first one?)

IT%ackup search
. _Preblem. eis paired with 0 (null)...!

(which is wrong - it's guessing that the form is
“racing” - has stuck in an empty (zero) character
after ¢ but before €) - eflision automaton has

2 choices
This is nonaeterminism in action (or inaction)!
5 Entry /0 ends --> new lexicon Cl, config (1 1 16 1 12 1)
EP G Y EL I
6 Entry /0 is word-final --> path rejected (leftover input).
5 (+.0) --> (1116113 1)
EP G YELTI
6 Nothing to do.
5 (+.e) -—-> automaton Epenthesis blocks from state 1.
ul Entry |race| ends --> new lexicon P3, config (1 1 16 1 12 1)
EP G Y EL I

6.8631/9.611] SP04 Lecture 3

l22 steps later

3 (e.e) ——> (11 16 1 14 1)

EP G Y EL I
4 Entry |race| ends --> new lexicon N, (1 1 16 1 14 1)

E GYELTI

5 Entry /0 ends --> new lexicon C1, config (1116 1 14 1)
6 Entry /0 is word-final -->rejected (leftover input)
5 (+.0) --=> (1116 1 15 1)
6 (s.s) -—> (141621 1)
7 Entry +/s ends--> new lexicon C2, (1 4 16 2 1 1)
8 Entry /0 is word-final -->rejected(leftover input)
8 (?.?) ——> (111611 1)
9 End --> lexical form ("race+s’" (N PL GEN))

6.8631/9.611] SP04 Lecture 3

Laboratory 1b

Goals:

How to 1ise Kimmo to analyze another language (Spanish)_as

example “front end”

Build automata for some simple Spanish
morphological/phonemic rules (that interact)

Build lexicon
Learn what is Aard and what is easy about this

Recognize a/fand only the words in spanish.rec; Generate all
the surface forms

Resources:

Lab1b pdf file link from web page

File of all the surface words to parse/reject (covering the
phenomena) spanish.rec, also linked from web page

Pykimmo, pcimmo & documentation
Program to " compile’ rules into automata: fst

6.8631/9.611] SP04 Lecture 3

\What you must turn in (via URL)

1) decerint ; ? ?
2. URL ptrs to your .lex and .rul files

span.lex

span.rul

3. A log of a recognition run on the file
spanish.rec which is linked on the web

page & also at toplevel on course locker
4. Discussion of what you built/why
5. YOu must answer 3 gquestions:

6.8631/9.611] SP04 Lecture 3

The questions

What is your name?
. What is your quest?
What...

6.8631/9.611] SP04 Lecture 3

JThe phenomena under study
N vt _

characters to stand for the accented ones §,¢,0,0i,0 ;
and some underlying characters you may find

essential, such as J, C, Z.

. Wise to proceed by /irst building the automata (rul)
file; then the lexicon(s) - because you can test the
rules without any lexicon by generation of a surface
form

. The automata can be built (roughly) by considering
each phenomenon separately

3 kinds of phenomena

6.8631/9.611] SP04 Lecture 3

The phenomena

1. g-J mutation

Z-C mutation

pluralization

Noun endings

5. Verb conjugation - 1 form

woN

N

6.8631/9.611] SP04 Lecture 3

Phenomenon 1: g-j mutation
.« .g-J mutation

g—j before a back vowel

coger (catch, infinitive); cojo, coges, coge, cogemos,
cogen, coja (NOTE: cogeris NOT the lexical
underlying form!!!)

But some verbs not subject to this (exceptions!)
llegar (arrive); llego, llegan, pagar (pay); pago, pagan
Don’t acccept */lejo, *lleja, *cogo, *coga (the words
don’t come marked with * on their sleeves, of
course!)

Hint: can use the lexical (underlying) character J to
solve (but there are other ways to do it)

6.8631/9.611] SP04 Lecture 3

How to build Kimmo systems

How to build lexicons using morpheme states
and the actual lexical entries

How to build automata for spelling changes

6.8631/9.611] SP04 Lecture 3

Format for .lex file - 2 parts

1. Lexicon: Morpheme classes — name all the
states, some transitions
(1 or more blank lines)

2. Lexicon entries: transitions between the
states

(Recall that we consider only the underyling
form combinations here — stems + affixes,
not spelling change rules on the surface)

6.8631/9.611] SP04 Lecture 3

Example: lexicon design

Phenomena: Nouns and Verbs take different
endings

Answer:

Different morpheme states for Nouns and
Verbs

6.8631/9.611] SP04 Lecture 3

Example surface (s) underlying (u)
pairs tell us what to do

. cludad
ciudad [N(city)]

. Ccludades
ciudad+s [N(city)pl]

6.8631/9.611] SP04 Lecture 3

Automaton design for lexicon

A=t TN

Irircral

o S

Q: what do we need to add to noun alternation?

6.8631/9.611] SP04 Lecture 3

Adding plural
start

noun /N, verb

O
pIuraI /CD\ Singular
O

P
nd End

6.8631/9.611] SP04 Lecture 3

How do we build spelling change
automata?

6.8631/9.611] SP04 Lecture 3

Example: look at phenomenon, then
see first how to describe

. What is the left and right context of the
change?

. Write it as a declarative constraint

. Remember that you can use both the surface
and the lexical characters to admit or to rule
out a possibility

6.8631/9.611] SP04 Lecture 3

Phenomenon 2: z-¢c mutation

. Z-C mutation
Z —> ¢ before front vowels, zotherwise

cruzar (to cross); cruzo, cruzas, cruza,
Cruzamos, cruzan, cruce

. If scauses a front vowel (e.qg., €) to surface,
then the rule still applies:

lapiz, lapices (pencil, pencils) [/"\piz, /"\pices]

6.8631/9.611] SP04 Lecture 3

\What's the automaton got to do?

6.8631/9.611] SP04 Lecture 3

Now add the arcs...

6.8631/9.611] SP04 Lecture 3

Phenomenon 3: pluralization

. Adding sto a noun that ends in a consonant
forces a surface eto appear:

cluaad (city); cludades

. This can interact with other rules, e.qg., z-c-
mutation.

lapiz, lapices
. Nouns ending in a vowel are not subject to
this rule: bota, botas

6.8631/9.611] SP04 Lecture 3

The lexicon — take 2
4 Add a gloss at the very end of the process, so as to

return the feature list and ‘translation’, e.qg., venzo [1p
sg pres indic conquer, defeat] (first person, singular,
present tense, indicative)

We'll show Aow to add this in a moment
You will deal with two types of ‘endings’
1. Noun endings: plural suffix +s
2. Verb endings: verb stem + tense markers
Simplest: infinitive marker +ar, +er, +ir

See table in pdf file for details: 5 x 3 table for Present
tense; ditto for Subjunctive tense (“1 might....")

6.8631/9.611] SP04 Lecture 3

Instead of writing fst tables...

. You can use the program fst

. [O run:

build fst type rules in file spanish.fst, then

fst -o ~yourpath/spanish.rul ~yourpath/spanish.fst

. Also script to print fst files to dot, for ps viewing

. Format for fst rules:

6.8631/9.611] SP04 Lecture 3

FST rules

“b after a vowel turns to &’
subset vowel a e

machine “bintoa”
state foo
vowel : vowel bar

b:b foo
c:c foo
d:d foo

others reject

rejecting state bar

b:e foo

b:b reject

others foo 6.8631/9.611] SP04 Lecture 3

b.c.d

vowel | vowel,c,d.b:e,@

6.8631/9.611] SP04 Lecture 3

Design of morpheme machine

. One big fsa
. Like this...

6.8631/9.611] SP04 Lecture 3

ADI ROOT

Possessive W_root

WV_negative

ey (rmw)

Bfmit e Tenise Progressive

DPERA0MAL PROGEESS_PERSOHAL

Progress_personal

Possessivel

List states — in cyan — followed by sets of transition labels
(possible outgoing arcs)

Begin: N_Root1 Adj_Root V_Root
N_root: Poss To_adj
For each arc: List transitions & next states, and output
N_rootl:
Kol N_root Noun[‘arm’]
Kitab N_root Noun['book’]

6.8631/9.611] SP04 Lecture 3

Jhe End

End:
O # \\ W\

6.8631/9.611] SP04 Lecture 3

