
6.863J Natural Language Processing
Lecture 4: My Fair Lady Lecture

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 4

My Fair Lady

• “Words, words, words, I’m so sick of words I
get words all day through; First from him,
now from you…” - Eliza Doolittle

6.863J/9.611J SP04 Lecture 4

The Menu Bar

• Administrivia
Lecture 3 posted; Lab 1a (aka “component

II”) due today; Lab 1b, due next Monday
• Kimmo & Laboratory 1b: how-to
• Postmortem: Complexity of Kimmo/fst’s – too

weak? Too strong? What makes a good
computational linguistics representation? A
good linguistic representation? A good
algorithm?

• Alternatives: morphology w/o a dictionary

6.863J/9.611J SP04 Lecture 4

Why do we care?

• We need to recover information about root +
affixes even for simple IR (though this has
been questioned)

• We need information for later analysis…

6.863J/9.611J SP04 Lecture 4

Morphology: why do we need it for
language analysis?

• Inflectional Morphology:
• Agreement-features (person, number, gender)

• Examples: movies, blonde, actress
• Irregular examples: appendices, geese

• Case
• Examples: he/him, who/whom

• Comparatives and superlatives
• Examples: happier/happiest

• Tense
• Examples: drive/drives/drove (-ed)/driven

6.863J/9.611J SP04 Lecture 4

Morphology

• Derivational Morphology
• Nominalization

• Examples: formalization, informant, informer, refusal, lossage

• Deadjectivals
• Examples: weaken, happiness, simplify, formalize, slowly, calm

• Deverbals
• Examples: see nominalizations, readable, employee

• Denominals
• Examples: formal, bridge, ski, cowardly, useful

6.863J/9.611J SP04 Lecture 4

Part of the English Tense System

to have been
eating

to be eating

to have
eaten

to eat

Infinitive

will have
been eating

had
been
eating

has been
eating

Perfect+
progressive

will be
eating

was
eating

is eatingprogressive

will have
eaten

had
eaten

has eatenPerfect

will eatateeats(basic)

FuturePastPresent

6.863J/9.611J SP04 Lecture 4

Morphology and Semantics

• Suffixation
• Examples:

• x employ y
employee: picks out y
employer: picks out x

• x read y
readable: picks out y

• Prefixation
• Examples:

• undo, redo, un-redo, encode, defrost, asymmetric,
malformed, ill-formed, pro-Chomsky

6.863J/9.611J SP04 Lecture 4

The Three Ideas of Two-Level
Morphology

• Rules are symbol-to-symbol constraints that
are applied in parallel, not sequentially like
rewrite rules, via sets of transducers

• The constraints can refer to the lexical
context, to the surface context or to both
contexts at the same time.

• Lexical lookup and morphological analysis are
performed in tandem.

6.863J/9.611J SP04 Lecture 4

Laboratory 1b – remaining details

• What phenomena you’re covering
• How to build spelling-change fsa’s - details
• How to build morpheme automaton - details

6.863J/9.611J SP04 Lecture 4

The phenomena

• You are given the orthography, including some special
characters to stand for the accented ones á,é,ó,ü,ñ ;
and some underlying characters you may find
essential, such as J, C, Z.

• Wise to proceed by first building the automata (rul)
file; then the lexicon(s) - because you can test the
rules without any lexicon by generation of a surface
form

• The automata can be built (roughly) by considering
each phenomenon separately

• 3 kinds of phenomena & 2 morpheme patterns

6.863J/9.611J SP04 Lecture 4

The phenomena

Spelling changes:
1. g-j mutation
2. z-c mutation
3. Pluralization

Morpheme automaton:
Noun endings
Verb conjugation - 1 form

6.863J/9.611J SP04 Lecture 4

Phenomenon 2: z-c mutation

• z-c mutation
z → c before front vowels, z otherwise
cruzar (to cross); cruzo, cruzas, cruza,
cruzamos, cruzan, cruce

• If s causes a front vowel (e.g., e) to surface,
then the rule still applies:
lápiz, lápices (pencil, pencils) [l^piz, l^pices]

6.863J/9.611J SP04 Lecture 4

Example: look at phenomenon, then
see first how to describe

• What is the left and right context of the
change?

• Write it as a declarative constraint
• Remember that you can use both the surface

and the lexical characters to admit or to rule
out a possibility

• Thinking in terms of constraints (what is ruled
out by the rule) is the most difficult ‘mindset’
to attain…

6.863J/9.611J SP04 Lecture 4

Build automaton for lex, surface pairs

• But what are the lexical pairs?
• Ah, your job!
• Trying pairings – not generally the infinitive,

e.g.
cruzar, cruzamos → legit pair?
cruzar
cruzamos

Look at the other pairs – what do you think the
root is?

6.863J/9.611J SP04 Lecture 4

Writing rules

• cruzar/cruzamos cruzar/cruce ?
• We can try a (tentative) lexical/surface pair, and from

that extract the right spelling change
• Do it step by step: use the alignment to write down

the ‘straight-line’ acceptance path:
cruz
cruce

Pad out length by using 0’s (nulls) (why important)?
cruz0 cruz0
cruce cruzo

Outline context – hmm, perhaps we do need root?

6.863J/9.611J SP04 Lecture 4

Writing rules

From context to rule:
cruz0,cruce c:c, r:r, u:u, z:c,
0:e - accept

cruz+
cruce

cruz+
cruzo

0:ez:c

c:c
r:r,
u:u,…

But… is this the correct
root?

6.863J/9.611J SP04 Lecture 4

Some format details
• For the automata: the .rul file:

ALPHABET
a ^ b c C d e < f g . . .
NULL 0
ANY @
BOUNDARY #
RULE “Default characters" 1 33

a ^ c d e … z
1: a ^ c d e … z ; WHY Needed?

RULE “z goes to c” 3 4
@ z + +
@ c e o

1: 1 2 0 0
2. ? 3 0 0
3. 1 2 1 1
RULE “PLURALIZE” n m
<automaton table>

6.863J/9.611J SP04 Lecture 4

Instead of writing fst tables…

• You can use the program fst
• To run:

build fst type rules in file spanish.fst, then
fst -o ~yourpath/spanish.rul ~yourpath/spanish.fst

• Also script to print fst files to dot, for ps viewing
• Format for fst rules:

6.863J/9.611J SP04 Lecture 4

FST rules
• “z before high vowel to c”
subset hivowel e i
machine “ztoc”
state one
z:hivowel two
c:c one
z:z one
others reject

state two
+:e three
+:0 reject
…
others one

6.863J/9.611J SP04 Lecture 4

Design of morpheme machine

• One big fsa, that handles two phenomena:
plurals and verb endings

6.863J/9.611J SP04 Lecture 4

Automaton design for lexicon
initial

Root: noun Root: verb

Q: what do we need to add to noun sequence?

6.863J/9.611J SP04 Lecture 4

The morpheme tree: Adding plurals -
ciudades

Begin

Noun_root verb

Suffix
singular

End
End

[

Output:

Noun(city)

+Number: Plural

]

Final output: [Noun(city)+Number: Plural]

plural

6.863J/9.611J SP04 Lecture 4

The lexicon – take 2

• You will deal with two types of ‘endings’
1. Noun endings: plural suffix +s
2. Verb endings: verb stem + tense markers

Simplest: infinitive marker +ar, +er, +ir
See table in lab file for details: 5 x 3 table for

Present tense; ditto for Subjunctive tense (“I
might….”)

6.863J/9.611J SP04 Lecture 4

PictureTurkish

6.863J/9.611J SP04 Lecture 4

Specification details

• List states – in cyan – followed by sets of
transition labels (possible outgoing arcs)

Begin: N_Root1 Adj_Root V_Root
N_root: Poss To_adj
…

N_Root1 Adj_Root V_Root

Begin

N_root

Poss To_Adj

6.863J/9.611J SP04 Lecture 4

Specifying transition arcs

• For each arc: List transitions & next states, and
output

Transitions from
State next-state Gloss (output)
N_root1:
kol N_root Noun(‘arm’)
kitab N_root Noun(‘book’)

6.863J/9.611J SP04 Lecture 4

The End

End:
0 # “ “

Final output is concatenation of all the outputs
along the path, eg,:

[Noun(arm)+plural]

6.863J/9.611J SP04 Lecture 4

Kimmo: its use and abuse or: Post-
mortem

• Criteria to evaluate: scientific, engineering
• Scientific: is this a sufficient representation to cover

the linguistic possibilities?
• Is this a necessary representation: does it

appropriately represent space of possibilities? (all and
only the natural morphophonological rule systems)

• Engineering/computational: what is its computational
power? Is it strong enough? Is it too strong?

• How well does it work in practice?
• Is there an alternative?

6.863J/9.611J SP04 Lecture 4

Outline: the Use and Abuse of
Kimmo

Kimmo: what is it good for?
• How we return features for parsing

• What can it do? – A longer example of rule ordering
• What can’t it do
• What’s its computational complexity?
• Morphology w/o a dictionary? The Porter algorithm
• Learning morphology – Goldsmith
• On to pr’s and stat. Lang.

6.863J/9.611J SP04 Lecture 4

Criterion 1: linguistic adequacy

• Is Kimmo sufficient?

• Classic rule systems: ordered sets of rewrite
rules

• Can Kimmo do these? (Kimmo rules are
unordered)

6.863J/9.611J SP04 Lecture 4

Constraints on both sides

k a N p a n

k a m m a n

k a N p a n

k a m m a n

N:m correspondence
requires a following p on
the lexical side.

p:m correspondence
requires a preceding m
on the surface side.

In this context, all other
possible realization of a
lexical p are prohibited.

In this context, all other
possible realization of a
lexical N are prohibited.

6.863J/9.611J SP04 Lecture 4

Parallel application – how?

N:m
Rule

p:m
Rule

k a m m a n

k a N p

6.863J/9.611J SP04 Lecture 4

Sequential Application

N -> m / _ p

p -> m / m _

k a N p a n

k a m p a n

k a m m a n

6.863J/9.611J SP04 Lecture 4

Machine Rule 1 (“N goes to m”)

Rule 1: N→m | __ p

6.863J/9.611J SP04 Lecture 4

Machine Rule 2 (“p goes to m”)

Rule 2: p→ m | m___

6.863J/9.611J SP04 Lecture 4

Sequential Application in Detail

k a N p a n

k a m p a n

k a m m a n

0 0 0 2 0 0 0

0 0 0 1 0 0 0

6.863J/9.611J SP04 Lecture 4

Sequential Application in Detail

N:m

N
@

@ 0

2

1

p
N:m

m

p
N

m

p:m

@@ 0 1

mp

m

k a N p a n

k a m p a n

k a m m a n

0 0 0 2 0 0 0

0 0 0 1 0 0 0

6.863J/9.611J SP04 Lecture 4

Rules take into acct each other’s
context k a N p a n

k a m p a n

k a m m a n

1 1 1 3 1 1 1

1 1 1 2 1 1 1

6.863J/9.611J SP04 Lecture 4

What constraint do we need for this
‘parallel’ approach to work?

• Machines must act in lockstep (sequentially
locked) – o.w., won’t be looking at the same
character at the same time

• “Equal length” constraint:
• Pad out lexical, surface strings s.t. they are of

the same length (we’ll see why in a moment)
• Example: consider our 4 ordered rule case…

6.863J/9.611J SP04 Lecture 4

4 ordered rules – classic case

• LR: a+ked re+ked a+sin re+sin
SR: akseyd reseyd assayn rezayn

• Rule 1: Duplication- Cons → Cons Cons | æ + _
• Rule 2: s to z - s → z | _ Vowel
• Rule 3: k to s - k → s | Vowel _ Vowel
• Rule 4: Vowel shift i → ay, e → ey, …
• Q: can we do this in Kimmo??

6.863J/9.611J SP04 Lecture 4

4 ordered rules

• LR: a+ked re+ked a+sin re+sin
SR: akseyd reseyd assayn rezayn

Pad out so LR and SR of equal length, also
noting +:0 correspondence

a+ked re+ked a+sin re+sin
aksed re0sed assin re0zin

6.863J/9.611J SP04 Lecture 4

Extract contexts

a+ked re+ked a+sin re+sin
aksed re0sed assin re0zin

Rule: +:k a:a __ k:s
+:s a:a __ s:s

Rule: k:s e +:0 __ V | +:k __ V
+:s a:a __ s:s

6.863J/9.611J SP04 Lecture 4

The automaton – for one rule

One automaton: s-to-z

6.863J/9.611J SP04 Lecture 4

Method 2 - Retain order:
Composition

N:m

N

@@ 1

4

3

N:m

m

p

N

@

m2

p:m

p:m

N m

N:mk a N p a n

k a m m a n

1 1 1 4 1 1 1

FTNs ARE closed under composition

6.863J/9.611J SP04 Lecture 4

Complete

6.863J/9.611J SP04 Lecture 4

Is Kimmo sufficient?

• Ideally: yes, if locally, purely concatenative
phenomena (obviously, because fsa’s)

• FSAs are based purely on an associative
concatenation operation over strings (i.e., ((a+b)+c)
≡(a+(b+c)) where + denotes concatenation

• Antidisestablishmentarianism
• Turkish word: uygarlas,tiramadiklarimizdanmis,sinizcasina

=
uygar+las,+tir+ama+dik+lar+imiz+dan+mis,+siniz+casina

(behaving) as if you are among those whom we could not
cause to become civilized

6.863J/9.611J SP04 Lecture 4

Is Kimmo sufficient?
• So, this lets us think what the system might not be

good for… let’s look at English first….
• There seem to be some kinds of ‘long distance’

constraints…
• Prefix/suffix links: only some prefixes tied to some

suffixes
• Un---------able
• Undoable, uncanny, ?uncannyable, unthinkable,

thinkable, readable, unreadable, unkind,
*unkindable

• So, we have to ‘keep track’ that the un is first or not
– what does lexicon look like?

6.863J/9.611J SP04 Lecture 4

Lexicon must be (grotesquely)
duplicated

un No un

Rest of
lexicon

Rest of
lexicon

able others able others

6.863J/9.611J SP04 Lecture 4

Similar example of ‘long distance’
constraint

• French elision: le, la: l’arbe; l’homme
• Always put in front, elided if noun/adj begins

w/ a vowel
• However, blocked if noun is plural:

*l’arbes, les arbes

6.863J/9.611J SP04 Lecture 4

This kind of duplication is
a litmus test of something wrong

• Duplication: no relation between the two
lexicons, but we know they’re identical

• Principle AWP
• We will see this again and again
• Usually means we haven’t carved (factored)

the knowledge at the right ‘joints’
• Solution? Usually more powerful machinery

‘overlay’ representations

6.863J/9.611J SP04 Lecture 4

Not all long distance effects are a barrier…

• Phenomena: Vowel harmony
• yourgun + sInIz → yorgunsunuz
• Round vowels assimilate to round vowels;

back vowels to back, etc. - all the way
from left to right

• Can Kimmo do it? What would be your
model? Suppose harmony is right to left?

6.863J/9.611J SP04 Lecture 4

What about nonconcatenative L’s?

• Semitic languages, eg, Arabic
• Intercalated consonants and vowels
• Root: k t b
Cons ‘tier’ C C C CVCVC (“katab”)
Vocalization: V V

Can we do this in Kimmo? (or in a linear system
generally?)

6.863J/9.611J SP04 Lecture 4

Another example: Tagalog

• Root CV+root Gloss
pili pipili ‘choose’
tahi tatahi ‘sew’
kuha kukuha ‘take’

What’s going on? How to do in Kimmo?
What would you propose?

6.863J/9.611J SP04 Lecture 4

Need extensions

• Add multiple intersections to interdigitate:
CCC^VV → CVCVC then go on from
there…

• In general – more powerful machine
• Not yet completely explored

6.863J/9.611J SP04 Lecture 4

And finally…

• Is morphology really linear?

• Un[care –less] [uncare-less] – not really
associative (cf ‘dark blue sky’)

• Somehow, we haven’t captured possibly
hierarchical structure – instead, shoehorned
in

6.863J/9.611J SP04 Lecture 4

Verdict: is Kimmo sufficient?

• Not unless we add some hacks – in this
sense, it is too weak

• OK, onto question 2

6.863J/9.611J SP04 Lecture 4

Is Kimmo necessary? Why the ‘equal
length’ constraint?

• Zeroes (null elts) must be limited or else…
• Unlimited expansion → no longer a finite state

(regular) i/o relation (in fact, Turing complete)
• (Thm: if input-output relation is not bounded by any

size of the input, then it could run arbitrarily long…)
• Can no longer guarantee that you can represent this

as a new FTN (or more…)
• Hints that power here is not necessary

6.863J/9.611J SP04 Lecture 4

Is Kimmo necessary?

• Does it explain why many non-human
systems never occur (ruling them out)

• Or does it overshoot?

• Ans: it seems to overshoot, in at least 2 ways
• Overshoots detected by computational

analysis

6.863J/9.611J SP04 Lecture 4

The power of Kimmo – part 1

• More powerful than well-known grammars in
linguistics (and computational linguistics)

• We can use kimmo to ‘count’ – but natural languages
don’t do this…

• (Recall: we can use Kimmo to output a language with
one counting relation: anbn – not a finite-state
language)

• But we can do more… nothing stops us from
producing a language with m counting relations, e.g,
for any n, {(x, (cx)n) | x ∈ {a* b* }}, e.g., for n=3,
cababcababcabab, cbbbcbbbcbbb…

6.863J/9.611J SP04 Lecture 4

Kimmo admits more than context-
free languages

• Fact: context-free languages can never define more
than one counting dependency

• (Intuition: they use a stack for this – can only push
and pop to match)

• So Kimmo is more powerful than this!
(still, might be ok – can parse these in cubic time)
• How powerful is it?
• Conjecture: as powerful as all the context-sensitive

languages (even given limited erasing)

6.863J/9.611J SP04 Lecture 4

Complexity of Kimmo word
recognition

• All these finite-state devices, working in
parallel

• There is backup
• Is it intrinsic to the system? Or eradicable?

Or, doesn’t matter in practice?

6.863J/9.611J SP04 Lecture 4

Litmus test #2 – computational
complexity of Kimmo – word parsing
is intractable!

• Kimmo Recognition Problem (KRP):
Given a language defined by an arbitrary (finite)
Kimmo dictionary (lexical automata) and a finite set
of Kimmo rules, how long in the worst case will it
take to recognize whether a form is or is not in the
language?

• Kimmo recognition problem is NP-hard
• As hard as any other problem solvable by a

nondeterminstic Turing machine in polynomial time
• No known det polytime (eg, cubic) algorithm for NP-

hard problems…

6.863J/9.611J SP04 Lecture 4

Complexity hierarchy

Exp-time

Pspace (CSL recog,
intersection fsa’s,

NP (traveling sales
3-SAT)

P (CFL recog, fsa)

6.863J/9.611J SP04 Lecture 4

Parsing words with Kimmo is
computationally intractable

• Intuition: what if the characters on the surface don’t give
any clues as to what ‘features’ they ought to have
underlyingly? (e.g., whether a Noun or a Verb, as in
police police police)

• This seems awfully close to the famous 3-SAT problem:
is there an assignment of T(rue), F(alse) to the literals of
an arbitrary Boolean formula in 3-conjunctive normal
form s.t. the formula evaluates to true?

• In fact, we can simulate this problem using Kimmo

6.863J/9.611J SP04 Lecture 4

3-Sat (3-satisfiability) is NP-complete

• Given (arb) 3-Sat formula, e.g.,

• There is no known deterministic Turing machine that
can figure out quickly (in polynomial time) whether
there is an assignment of true or false to literals x,y,
z in order to make the formula evaluates to true just
by inspecting the local surface string

• We could guess this in polynomial time – i.e.,
Nondeterministic Polynomial, or NP time (time
measured in length of the formula)

() () ()x y z y q p x q z∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

6.863J/9.611J SP04 Lecture 4

Reduction of 3-Sat to Kimmo
recognition problem

• For every 3-Sat problem, we can find, in
polynomial time, a corresponding Kimmo
word recognition problem where there’s a
valid word if the 3-Sat problem was
satisfiable

• If Kimmo recognition could be done in
deterministic polynomial time (P) then so
could 3-SAT

6.863J/9.611J SP04 Lecture 4

Reduction
Any 3-Sat problem

Equivalent
Kimmo recognition problem

Answer to original SAT
problem

Efficient (polynomial
time) transformation

6.863J/9.611J SP04 Lecture 4

The reduction:
Given: arbitrary 3-SAT problem instance, e.g.,

If we could solve Kimmo recognition easily,
Then we could solve 3-Sat easily

(fixed)
Lexicon, L

Fst’s, 1
per variable

Fast
(polytime)
transformation

word∈L if Sat instance satisfiable

(x v ¬y v z) (¬x v ¬z) (x v y)

6.863J/9.611J SP04 Lecture 4

Two components to 3-Sat

• The fact that an x that has a truth
assignment in one place, must have the same
truth assignment everywhere - what
morphological process is that like?

• The fact that every triple must have at least 1
‘T’ underlyingly (so that the triple is true) -
what morphological process is that like?

6.863J/9.611J SP04 Lecture 4

How the reduction works

• Given arbitrary 3-sat formula φ, e.g.,
(x v ¬y v z) (¬x v ¬z) (x v y)

• Represent in the form, a ‘word’:
x-yz,-xz,xy

• For each variable x, we have an ‘assignment
machine’ that ensures that x is mapped to T or F
throughout the whole formula

• We have one machine (and a fixed dictionary) to
checks each disjunction to make sure that at least
one disjunct is true in every conjunct

6.863J/9.611J SP04 Lecture 4

Two components

• Agreement: vowel harmony (if round at some
point, round everywhere)

• Ambiguity: we can’t tell what the underlying value
of x is from the surface, but if there’s at least one
“t” per ‘part of word’, then we can spell out this
constraint in dictionary

• Note that words (like Sat formulas) must be
arbitrarily long… (pas de probleme)

• Dictionary is fixed…
• # of Vowel harmony processes corresponds to #

of distinct literals

6.863J/9.611J SP04 Lecture 4

Reduce until done: assignment
consistency

6.863J/9.611J SP04 Lecture 4

Reduce until done – formula must
eval to true

6.863J/9.611J SP04 Lecture 4

What are the implications?

• FTNs inherently require backup if simulated
(in the worst case) – Kimmo at least NP-hard
(proof later on)

• Empty elements cause computational
complexity (unless restricted – equal length
condition) – true in all areas of linguistics

• Composition can save us, but then rule
ordering must be watched carefully

6.863J/9.611J SP04 Lecture 4

Implications

• Do we need a machine powerful enough to
represent intractable problems?

• No evidence for unbounded # of counting
dependencies or harmony processes…

• Performance? Or do we need something this
powerful??

6.863J/9.611J SP04 Lecture 4

Why should we care?

• This is typical of a combination of ‘agreement
and ambiguity’ that trickles through all of
natural language

• The agreement part – like Turkish vowel
harmony

• The ambiguity part – like the police police
police example

• Suggests that speed won’t come from the
formalism all by itself

6.863J/9.611J SP04 Lecture 4

Njagalapuripuriwurluwurlu
Parsing Walpiri words

6.863J/9.611J SP04 Lecture 4

Words are fine – but we need more

6.863J/9.611J SP04 Lecture 4

Paradigmatic example for NLP

• Morphophonemic parsing
• Given surface form, recover underlying form:

6.863J/9.611J SP04 Lecture 4

Two ways

• Generative model – concatenate then fix up
joints

• stop + -ing = stopping, fly + s = flies
• Use a cascade of transducers to handle all the

fixups

• Probabilistic model - some constraints on
morpheme sequences using prob of one
character appearing before/after another

prob(ing | stop) vs. prob(ly| stop)

6.863J/9.611J SP04 Lecture 4

The Great Divide in NLP:

“Knowledge
Engineering” approach
Rules built by hand w/
K of Language
“Text understanding”

“Trainable Statistical”
Approach
Rules inferred from lots
of data (“corpora”)
“Information retrieval”

the red pill or the blue pill?

6.863J/9.611J SP04 Lecture 4

What if we don’t have a dictionary?

• Don’t use one
• Learn one from data

6.863J/9.611J SP04 Lecture 4

Method 1: don’t use a dictionary

• Best known method – Porter stemming (Porter,
1980)

• http://www.tartarus.org/~martin/PorterStemmer/

http://snowball.tartarus.org/
• For English
• Most widely used system
• Manually written rules
• 5 stage approach to extracting roots
• Considers suffixes only
• May produce non-word roots

6.863J/9.611J SP04 Lecture 4

Porter output
Sample Output (English):

consigned consign knack knack

consignment consign knackeries knackeri

consolation consol knaves knavish

consolatory consolatori knavish knavish

consolidate consolid knif knif

consolidating consolid knife knife

consoling consol knew knew

6.863J/9.611J SP04 Lecture 4

Why?

Algorithmic stemmers can be fast (and lean):

E.g.: 1 Million words in 6 seconds on 500 MHz PC

• It is more efficient not to use a dictionary
(don’t have to maintain it if things change).

• It is better to ignore irregular forms (exceptions)
than to complicate the algorithm (not much lost in
practice).

6.863J/9.611J SP04 Lecture 4

Output - German

aufeinander aufeinand kategorie kategori

auferlegen auferleg kategorien kategori

auferlegt auferlegt kater kat

auferlegten auferlegt katers kat

auferstanden auferstand katze katz

auferstehen auferstand katzen katz

aufersteht aufersteht kätzchen katzch

6.863J/9.611J SP04 Lecture 4

Method

Porter Stemmers use simple algorithms to determine
which affixes to strip in which order and when to
apply repair strategies.

Samples of the algorithms are accessible via the
Web and can be programmed in any language.

Input Strip -ed Affix Repair
hoped hop hope (add -e if word is short)
hopped hopp hop (delete one if doubled)

Advantage: easy to see understand, easy to
implement.

6.863J/9.611J SP04 Lecture 4

Stemming: Methods

• Dictionary approach not enough
• Example: (Porter, 1991)

• routed -> route/rout
At Waterloo, Napoleon’s forces were routed
The cars were routed off the highway

• Here, the (inflected) verb form is polysemous

6.863J/9.611J SP04 Lecture 4

Stemming: Errors

• Understemming: failure to merge
• Adhere/adhesion

• Overstemming: incorrect merge
• Probe/probable

• Claim: -able irregular suffix, root: probare (Lat.)

• Mis-stemming: removing a non-suffix (Porter, 1991)
• reply -> rep

6.863J/9.611J SP04 Lecture 4

Stemming: Interaction

• Interacts with noun compounding:
• Example:

• operating systems
• negative polarity items

• For IR, compounds need to be identified first…

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Rule format:
• (condition on stem) suffix1 -> suffix2

• In case of conflict, prefer longest suffix match
• “Measure” of a word is m in:

• (C) (VC)m (V)
• C = sequence of one or more consonants
• V = sequence of one or more vowels
• Examples:

• tree C(VC)0V
• troubles C(VC)2

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Step 1a: remove plural suffixation
• SSES -> SS (caresses)
• IES -> I (ponies)
• SS -> SS (caress)
• S -> (cats)

• Step 1b: remove verbal inflection
• (m>0) EED -> EE (agreed, feed)
• (*v*) ED -> (plastered, bled)
• (*v*) ING -> (motoring, sing)

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Step 1b: (contd. for -ed and -ing rules)
• AT -> ATE (conflated)
• BL -> BLE (troubled)
• IZ -> IZE (sized)
• (*doubled c & ¬(*L v *S v *Z)) -> single c

(hopping, hissing, falling, fizzing)
• (m=1 & *cvc) -> E (filing, failing, slowing)

• Step 1c: Y and I
• (*v*) Y -> I (happy, sky)

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Step 2: Peel one suffix off for multiple suffixes
• (m>0) ATIONAL -> ATE (relational)
• (m>0) TIONAL -> TION (conditional, rational)
• (m>0) ENCI -> ENCE (valenci)
• (m>0) ANCI -> ANCE (hesitanci)
• (m>0) IZER -> IZE (digitizer)
• (m>0) ABLI -> ABLE (conformabli) - able (step 4)
• …
• (m>0) IZATION -> IZE (vietnamization)
• (m>0) ATION -> ATE (predication)
• …
• (m>0) IVITI -> IVE (sensitiviti)

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Step 3
• (m>0) ICATE -> IC (triplicate)
• (m>0) ATIVE -> (formative)
• (m>0) ALIZE -> AL (formalize)
• (m>0) ICITI -> IC (electriciti)
• (m>0) ICAL -> IC (electrical, chemical)
• (m>0) FUL -> (hopeful)
• (m>0) NESS -> (goodness)

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Step 4: Delete last suffix
• (m>1) AL -> (revival) - revive, see step 5
• (m>1) ANCE -> (allowance, dance)
• (m>1) ENCE -> (inference, fence)
• (m>1) ER -> (airliner, employer)
• (m>1) IC -> (gyroscopic, electric)
• (m>1) ABLE -> (adjustable, mov(e)able)
• (m>1) IBLE -> (defensible,bible)
• (m>1) ANT -> (irritant,ant)
• (m>1) EMENT -> (replacement)
• (m>1) MENT -> (adjustment)
• …

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Step 5a: remove e
• (m>1) E -> (probate, rate)
• (m>1 & ¬*cvc) E -> (cease)

• Step 5b: ll reduction
• (m>1 & *LL) -> L (controller, roll)

6.863J/9.611J SP04 Lecture 4

Stemming: Porter Algorithm

• Misses (understemming)
• Unaffected:

• agreement (VC)1VCC - step 4 (m>1)
• adhesion

• Irregular morphology:
• drove, geese

• Overstemming
• relativity - step 2

• Mis-stemming
• wander C(VC)1VC

6.863J/9.611J SP04 Lecture 4

Basic Morphology

Basic Affix Typology (don’t seem to need more):

• i-suffix: inflectional suffix

English: cheer+ed = cheered, fit+ed = fitted, love+ed =
loved

• d-suffix: derivational suffix, changes word type

English: walk(V)+er = walker(N),
happy(A)+ness=happiness(N)

• a-suffix: attached suffix (enclitics).

Italian mandargli= mandare+gli = to send + to him

6.863J/9.611J SP04 Lecture 4

Algorithmic Method

General Strategy:

• Normal order of suffixes seems to be d, i, a.

• Remove from right in order a, i, d.

• Generally remove all the a and i suffixes,
sometimes leave the d one.

6.863J/9.611J SP04 Lecture 4

Types of Errors

• Conflation: reply, rep. rep

• Overstemming: wander wand
news new

• Misstemming: relativity relative

• Understemming:knavish knavish

6.863J/9.611J SP04 Lecture 4

Algorithmic Method

Strategy for German:

• Leave prefixes alone because they can change
meaning.

• Put everything in small caps.

• Get rid of ge-.

• Get rid of i type: e, em, en, ern, er, es, s, est,
(e.g, armes > arm)

• Get rid of d type: end, ung, ig, ik, isch, lich, heit,
keit

6.863J/9.611J SP04 Lecture 4

Information Retrieval

Does stemming indeed improve IR?

• No: Harman (1991), Krovetz (1993)

• Possibly: Krovetz (1995)
Depends on type of text, and the

assumption is that once one moves beyond
English, the difference will prove
significant.

6.863J/9.611J SP04 Lecture 4

Crosslinguistic Applicability

• Can this type of stemming be applied to all
languages?

— Not to Chinese, for example (doesn’t need it).

• Do all languages have the same kind of
morphology?

— No. Stemming assumes basically agglutinative
morphology. This is not true crosslinguistically (but the
algorithms seem to work pretty well within Indo-

6.863J/9.611J SP04 Lecture 4

Two ways of looking at language &
the Great Divide

• Text understanding vs. Information Retrieval
(IR)

• Info retrieval example: name extraction; how
does Google correct “Britney Speers”

