

Morphology: why do we need it for language analysis?

- Inflectional Morphology:
 - Agreement-features (person, number, gender)
 - · Examples: movies, blonde, actress
 - · Irregular examples: appendices, geese
 - Case
 - Examples: he/him, who/whom
 - Comparatives and superlatives
 - Examples: happier/happiest
 - Tense
 - . Examples: drive/drives/drove (-ed)/driven

6.863J/9.611J SP04 Lecture 4

Part of the English Tense System				
	Present	Past	Future	Infinitive
(basic)	eats	ate	will eat	to eat
Perfect	has eaten	had eaten	will have eaten	to have eaten
progressive	is eating	was eating	will be eating	to be eating
Perfect+ progressive	has been eating	had been eating	will have been eating	to have been eating

.

Parsing words with Kimmo is computationally intractable

- Intuition: what if the characters on the surface don't give any clues as to what 'features' they ought to have underlyingly? (e.g., whether a Noun or a Verb, as in *police police police*)
- This seems awfully close to the famous 3-SAT problem: is there an assignment of T(rue), F(alse) to the literals of an arbitrary Boolean formula in 3-conjunctive normal form s.t. the formula evaluates to *true*?
- In fact, we can simulate this problem using Kimmo

6.863J/9.611J SP04 Lecture 4

- For every 3-Sat problem, we can find, in polynomial time, a corresponding Kimmo word recognition problem where there's a valid word if the 3-Sat problem was satisfiable
- If Kimmo recognition could be done in deterministic polynomial time (P) then so could 3-SAT

6.863J/9.611J SP04 Lecture 4

	Porter output					
S	Sample Output (English):					
	consigned	consign	knack	knack		
	consignment	consign	knackeries	knackeri		
	consolation	consol	knaves	knavish		
	consolatory	consolatori	knavish	knavish		
	consolidate	consolid	knif	knif		
	consolidating	consolid	knife	knife		
	consoling	consol	knew	knew		

Output - German					
aufeinander	aufeinand	kategorie	kategori		
auferlegen	auferleg	kategorien	kategori		
auferlegt	auferlegt	kater	kat		
auferlegten	auferlegt	katers	kat		
auferstanden	auferstand	katze	katz		
auferstehen	auferstand	katzen	katz		
aufersteht	aufersteht	kätzchen	katzch		

Method						
Porter Stemmers use simple algorithms to determine						
which affixes to strip in which order and when to						
apply repair strategies.						
Input	Strip -ed Affix	Repair				
hoped	hop	hope (add -e if word is short)				
hopped	hopp	hop (delete one if doubled)				
Samples of the algorithms are accessible via the Web and can be programmed in any language.						
Advantage: easy to see understand, easy to						
impleme	nt. 6.86	3J/9.611J SP04 Lecture 4				

