
6.863J Natural Language Processing
Lecture 4: From finite state

machines to part-of-speech tagging

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar
• Administrivia:

• Schedule alert: Lab1 due next Monday (Feb
24)

• Lab 2, handed out Feb 24; due the Weds
after this – March 5

• Agenda:
• Kimmo – its use and abuse
• Part of speech ‘tagging’ (with sneaky

intro to probability theory that we need)
• Ch. 6 & 8 in Jurafsky

What Kimmo is good for

• Ideally: locally, purely concatenative phenomena
(obviously, because fsa’s)

• FSAs are based purely on an associative
concatenation operation over strings (i.e., ((a+b)+c)
= (a+(b+c)) where =+ concat

• Turkish word: uygarlas,tiramadiklarimizdanmis,sinizcasina
=
uygar+las,+tir+ama+dik+lar+imiz+dan+mis,+siniz+casina

(behaving) as if you are among those whom we could not
cause to become civilized

What Kimmo is not good for

• So, this lets us think what the system might
not be good for… let’s look at English first….

• There seem to be some kinds of ‘long
distance’ constraints…

• Prefix/suffix links: only some prefixes tied to
some suffixes
• Un---------able
• Undoable, uncanny, ?uncannyable, unthinkable,

thinkable, readable, unreadable, unkind,
*unkindable

• So, we have to ‘keep track’ that the un is
first or not – what does lexicon look like?

Lexicon must be (grotesquely)
duplicated

un No un

Rest of
lexicon

Rest of
lexicon

able unable
To use able

able unable
To use able

This kind of duplication is
a litmus test of something wrong

• Duplication: no relation between the two
lexicons, but we know they’re identical

• Principle AWP
• We will see this again and again
• Usually means we haven’t carved

(factored) the knowledge at the right
‘joints’

• Solution? Usually more powerful
machinery ‘overlay’ representations

Not all long distance effects are a
barrier…

• Phenomena: Vowel harmony
• yourgun + sInIz → yorgunsunuz
• Round vowels assimilate to round vowels;

back vowels to back, etc. - all the way from
left to right

• Can Kimmo do it? What would be your
model?

Parsing words with Kimmo is
computationally intractable

• Intuition: what if the characters on the
surface don’t give any clues as to what
‘features’ they ought to have underlyingly?
(e.g., whether a Noun or a Verb, as in police
police police)

• This seems awfully close to the famous 3-SAT
problem: is there an assignment of T(rue),
F(alse) to the literals of an arbitray Boolean
formula in 3-conjunctive normal form s.t. the
formula evaluates to true?

• In fact, we can simulate this problem using
Kimmo

3-Sat

• Given (arb) cnf formula, e.g.,

• We can’t figure out quickly (in deterministic
polynomial time) whether there is an
assignment of true or false to literals x,y, z in
order to make the formula eval to true just by
inspecting the local surface string

• We could guess this in polynomial time – i.e.,
Nondeterministic Polynomial, or NP time (time
measured in length of the formula)

() () ()x y z y q p x q z∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

Reduction of 3-Sat to Kimmo
recognition problem

• For every 3-Sat problem, we can find (in
poly time) a corresponding Kimmo word
recognition problem where there’s a valid
word if the 3-Sat problem was satisfiable

• If Kimmo recognition could be done in det
poly time (P) then so could 3-SAT

The reduction

arbitrary 3-SAT problem instance, e.g.,

If we could solve Kimmo recognition easily,
Then we could solve 3-Sat easily

(fixed)
Lexicon, L

Fst’s, 1
per variable

Fast
(polytime)
transformation

word∈L if Sat instance satisfiable

() () ()x y z y q p x q z∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

Why should we care?

• This is typical of a combination of
‘agreement and ambiguity’ that trickles
through all of natural language

• The agreement part – like Turkish vowel
harmony

• The ambiguity part – like the police police
police example

• Suggests that speed won’t come from the
formalism all by itself

Two components to 3-Sat

• The fact that an x that has a truth
assignment in one place, must have the
same truth assignment everywhere - what
morphological process is that like?

• The fact that every triple must have at
least 1 ‘T’ underlyingly (so that the triple
is true) - what morphological process is
that like?

Two components

• Agreement: vowel harmony (if round at some
point, round everywhere)

• Ambiguity: we can’t tell what the underlying
value of x is from the surface, but if there’s at
least one “t” per ‘part of word’, then we can
spell out this constraint in dictionary

• Note that words (like Sat formulas) must be
arbitrarily long… (pas de probleme)

• Dictionary is fixed…
• # of Vowel harmony processes corresponds

to # of distinct literals

Reduce until done – formula
must eval to true

Reduce until done: assignment
consistency

Njagalapuripuriwurluwurlu
Parsing Walpiri words

Then can be indescribable words
(for an fst)

• Can we even do all natural languages?
• Example: Bambarra (African language in Mali)
• Words in form Noun+o+Noun, as in

wuluowulo =‘whichever dog’
• Also have repeated endings (like anti-anti…)

wulu+nyini+la =‘dog searcher’
wulunyinina+ nyini+la =‘one who searches

for dog searchers’
• Fatal bite: combine with word o formation:

wulunyininanyinila o wulunyininanyinila
(arbitrarily long!)

Paradigmatic example for NLP

• Morphophonemic parsing
• Given surface form, recover underlying

form:

morpho-phonem-ic

Two ways

• Generative model – concatenate then fix up
joints

• stop + -ing = stopping, fly + s = flies

• Use a cascade of transducers to handle all the fixups

• Probabilistic model - some constraints on
morpheme sequences using prob of one
character appearing before/after another

prob(ing | stop) vs. prob(ly| stop)
• (much more about prob in just one moment)

Two ways of looking at language
& the Great Divide

• Text understanding vs. Information
Retrieval (IR)

• Info retrieval example: name extraction;
how does Google correct “Britney Speers”

The Great Divide in NLP: the red
pill or the blue pill?

“Knowledge
Engineering” approach
Rules built by hand w/
K of Language
“Text understanding”

“Trainable Statistical”
Approach
Rules inferred from lots
of data (“corpora”)
“Information retrieval”

The big picture II

• In general: 2 approaches to NLP
• Knowledge Engineering Approach

• Grammars constructed by hand
• Domain patterns discovered by human expert via

introspection & inspection of ‘corpus’
• Laborious tuning

• Automatically Trainable Systems
• Use statistical methods when possible
• Learn rules from annotated (or o.w. processed)

corpora

What is part of speech tagging &
why?
Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

Or: BOS the lyric beauties of Schubert ‘s Trout
Quintet : its elemental rhythms and infectious
melodies : make it a source of pure pleasure for
almost all music listeners ./

Tagging for this..

The/DT lyric/JJ beauties/NNS of/IN

Schubert/NNP 's/POS Trout/NNP Quintet/NNP

--/:

its/PRP$ elemental/JJ rhythms/NNS

and/CC infectious/JJ melodies/NNS

--/: make/VBP it/PRP

a/DT source/NN of/IN pure/JJ pleasure/NN

for/IN almost/RB all/DT music/NN listeners/NNS ./.

(Next step: bracketing…)

[The/DT lyric/JJ beauties/NNS]

of/IN

[Schubert/NNP 's/POS Trout/NNP Quintet/NNP]

--/:

[its/PRP$ elemental/JJ rhythms/NNS]

and/CC [infectious/JJ melodies/NNS]

--/: make/VBP [it/PRP]

[a/DT source/NN] of/IN [pure/JJ pleasure/NN]

for/IN almost/RB [all/DT music/NN listeners/NNS] ./.

What’s it good for?

n Tags = parts-of-speech (but see later)
n Uses:

n text-to-speech (how do we pronounce “lead”?)
n can write regexps like Det Adj* N* over the output
n preprocessing to speed up parser (but a little

dangerous)
n if you know the tag, you can back off to it in other

tasks
n Back-off: trim the info you know at that point

An exemplar for the divide:
“tagging” text

• Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

• Can be challenging:
I know that
I know that block
I know that blocks the sun

• new words (OOV= out of vocabulary); words can
be whole phrases (“I can’t believe it’s not butter”)

What are tags?

• Bridge from words to parsing – but not
quite the morphemic details that Kimmo
provides (but see next slide)

• Idea is more divide-and-conquer – and
depends on task

• “Shallow” analysis for “shallow parsing”

More sophisticated – use features

• Word form: A+ → 2(L,C1,C2,...,Cn) → T
• He always books the violin concert tickets early.

• books → {(book-1,Noun,Pl,-,-),(book-2,Verb,Sg,Pres,3)}
• tagging (disambiguation): ... → (Verb,Sg,Pres,3)

• ...was pretty good. However, she did not realize...
• However → {(however-1,Conj/coord,-,-,-),

(however- 2,Adv,-,-,-)}

• tagging: ... → (Conj/coord,-,-,-)

Why should we care?

• The first statistical NLP task
• Been done to death by different methods
• Easy to evaluate (how many tags are correct?)
• Canonical finite-state task

• Can be done well with methods that look at local context
• Though should “really” do it by parsing!

• Sneaky: Introduce probabilistic models – paradigmatic
contrast investigated in Lab 2.

Why should we care?

• “Simplest” case of recovering surface,
underlying form via statistical means

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the

words
• Is tag sequence X likely with these words?

Two approaches

1. Noisy Channel Model (statistical) –
what’s that?? (we will have to learn
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, …)

Example tagsets

• 87 tags - Brown corpus
• Three most commonly used:
1. Small: 45 Tags - Penn treebank (Medium

size: 61 tags, British national corpus
2. Large: 146 tags
Big question: have we thrown out the right

info? Impoverished? How?

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts

Current performance

• How many tags are correct?
• About 97% currently
• But baseline is already 90%

• Baseline is performance Homer Simpson
algorithm:

• Tag every word with its most frequent tag
• Tag unknown words as nouns

• How well do people do?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Ok, what should we look at?

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Finite-state approaches

• Noishy Chunnel Muddle (statistical)

noisy channel X à Y

real language X

yucky language Y

want to recover X from Y

part-of-speech tags

insert words

text

Noisy channel – and prob intro

noisy channel X à Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

choose sequence of tags X that maximizes p(X | Y)
[oops… this isn’t quite correct… need 1 more step]

Noisy channel maps well to our
fsa/fst notions

• What’s p(X)?
• Ans: p(tag sequence) – i.e., some finite state

automaton
• What’s p(Y|X)?
• Ans: transducer that takes tags→words
• What’s P(X,Y)?
• The joint probability of the tag sequence, given

the words (well, gulp, almost… we will need one
more twist – why? What is Y?)

The plan modeled as composition (x-
product) of finite-state machines

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C/

0.1 b:C/0.8b:D/0.2

a:a/
0.7

b:b/0.3

*

=

a:D
/0.

63a:C/
0.07 b:C/0.24b:D/0.06

Note p(x,y) sums to 1.

Cross-product construction for
fsa’s (or fst’s)

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*
0 1

2

3
4

ε
ε
ε

ε
ε
ε

Pulled a bit of a fast one here…

• So far, we have a plan to compute P(X,Y) – but
is this correct?

• Y= all the words in the world
• X= all the tags in the world (well, for English)
• What we get to see as input is y∈Y not Y!
• What we want to compute is REALLY this:

want to recover x∈X from y∈Y
choose x that maximizes p(X | y) so…

The real plan…

p(X)

p(Y | X)

p(X, y)

*

=

*
p(y | Y)

Find x that maximizes
this quantity

Cartoon version

p(X)

p(Y | X)

p(X, y)

*

==

* *
p(y | Y)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

The plan modeled as composition
(product) of finite-state machines

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C/

0.1 b:C/0.8b:D/0.2

a:a/
0.7

b:b/0.3

*

=

a:D
/0.

63a:C/
0.07 b:C/0.24b:D/0.06

Note p(x,y) sums to 1.
Suppose y=“C”; what is best “x”?

We need to factor in one more machine
that models the actual word sequence, y

p(X)

p(Y | X)

find x to
maximize p(X, y)

*

=

a:D
/0.

9a:C/
0.1 b:C/0.8b:D/0.2

a:a/
0.7

b:b/0.3

*

=

a:C/
0.07 b:C/0.24

* *
c:C/1 p(y | Y)restrict just to

paths compatible
with output “C”

best path

The statistical view, in short:

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the

words
• What is the most likely tag sequence?
• Use a finite-state automaton, that can

emit the observed words
• FSA has limited memory
• AKA this Noisy channel model is a “Hidden

Markov Model” -

Put the punchline before the joke

Bill directed a cortege of autos through the dunes

Recover tags

Punchline – recovering (words,
tags)

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

Find tag sequence X that maximizes probability product

tags X→

words Y→

Punchline – ok, where do the pr
numbers come from?

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

tags X→

words Y→

0.4 0.6

0.001

the tags are not observable & they are states of some fsa
We estimate transition probabilities between states
We also have ‘emission’ pr’s from states
En tout: a Hidden Markov Model (HMM)

Our model uses both bigrams &
unigrams:

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

tags X→

words Y→

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement

This only shows the
best path… how do
we find it?

What are unigrams and bigrams?

• Letter or word frequencies: 1-grams
• useful in solving cryptograms: ETAOINSHRDLU…

• If you know the previous letter: 2-grams
• “h” is rare in English (4%; 4 points in Scrabble)
• but “h” is common after “t” (20%)

• If you know the previous 2 letters: 3-grams
• “h” is really common after “ ” “t”

etc. …

In our case

• Most likely word? Most likely tag t given a word
w? = P(tag|word)

• Task of predicting the next word
• Woody Allen:

“I have a gub”

In general: predict the Nth word (tag) from the
preceding N-1 word (tags) aka N-gram

Homer Simpson: just use the current word (don’t
look at context) = unigram (1-gram)

How far should we go?

• “long distance___”
• Next word? Call?
• p(wn|w
• Consider special case above
• Approximation says that

| long distance call|/|distance call| ≈ |distance call|/|distance|

• If context 1 word back = bigram
But even better approx if 2 words back: long distance___

Not always right: long distance runner/long distance call
Further you go: collect long distance_____

3-gram

[Genmetheyesse orils of Ted you doorder [6], the Grily
Capiduatent pildred and For thy werarme: nomiterst halt i,
what production the Covers, in calt cations on wile ars,
was name conch rom the exce of the man, Winetwentagaint up,
and and Al1. And of Ther so i hundal panite days th the
res of th rand ung into the forD six es, wheralf the hie
soulsee, frelatche rigat. And the LOperact camen
unismelight fammedied: and nople,

4-gram

[1] By the returall benefit han every familitant of all thou
go? And At the eld to parises of the nursed by thy way of
all histantly be the ~aciedfag . to the narre gread abrasa
of thing, and vas these conwuning clann com to one language;
all Lah, which for the greath othey die. -

5-gram

[Gen 3:1] In the called up history of its opposition of
bourgeOIS AND Adam to rest, that the existing of heaven; and
land the bourgeoiS ANger anything but concealed, the land
whethere had doth know ther: bury thy didst of Terature their
faces which went masses the old society [2] is the breaks out
of oppressor of all which, the prolETARiat goest, unto German
pleast twelves applied in manner with these, first of this
polities have all

3-word-gram

[Gen 4:25] And Adam gave naines to ail feudal,

patriarchal, idyllic relations. It bas but –established

new classes, new conditions of oppression, new forme of

struggle in place of the West? The bourgeoisie keeps

more and more splitting up into two great lights;

the greater light to rule the day of my house is this

Eliezer of Damascus.

How far can we go??

Shakespeare in lub…
The unkindest cut of all

• Shakespeare: 884,647 words or tokens
(Kucera, 1992)

• 29,066 types (incl. proper nouns)
• So, # bigrams is 29,0662 > 844 million. 1

million word training set doesn’t cut it –
only 300,000 difft bigrams appear

• Use backoff and smoothing
• So we can’t go very far…

Where do these probability info
estimates come from?

• Use tagged corpus e.g. “Brown corpus” 1M
words (fewer token instances); many others –
Celex 16M words

• Use counts (relative frequencies) as estimates
for probabilities (various issues w/ this, these
so-called Maximum-Likelihood estimates – don’t
work well for low numbers)

• Train on texts to get estimates – use on new
texts

Bigrams, fsa’s, and Markov
models – take two

• We approximate p(tag| all previous tags)
Instead of

p(rabbit|Just then the white…) we use:
P(rabbit|white)

• This is a Markov assumption where past
memory is limited to immediately previous
state – just 1 state corresponding to the
previous word or tag

Smoothing

• We don’t see many of the words in English
(uniqram)

• We don’t see the huge majority of bigrams in
English

• We see only a tiny sliver of the possible trigrams
• So: most of the time, bigram model assigns p(0) to

bigram:
p(food|want) = |want food| /|want| = 0/whatever

But means event can’t happen – we aren’t warranted
to conclude this… therefore, we must adjust…how?

Simplest idea: add-1 smoothing

• Add 1 to every cell of
• P(food | want) = |want to| ÷ |want| = 1 ÷

2931 = .0003

Initial counts – Berkeley
restaurant project

Old vs.New table

Changes

• All non-zero probs went down
• Sometimes probs don’t change much
• Some predictable events become less

predictable (P(to|want) [0.65 to 0.22])
• Other probs change by large factors (

P(lunch|Chinese) [0.0047 to 0.001]
• Conclusion: generally good idea, but effect on

nonzeroes not always good – blur original model
– too much prob to the zeros, we want less
‘weight’ assigned to them (zero-sum game,
‘cause probs always sum to 0)

Submenu for probability theory –
redo n-grams a bit more formally

• Define all this p(X), p(Y|X), P(X,Y)
notation

• p, event space, conditional probability &
chain rule;

• Bayes’ Law
• (Eventually) how do we estimate all these

probabilities from (limited) text? (Backoff
& Smoothing)

Rush intro to probability

p(Paul Revere wins | weather’s clear) = 0.9

What’s this mean?

p(Paul Revere wins | weather’s clear) = 0.9

• Past performance?
• Revere’s won 90% of races with clear weather

• Hypothetical performance?
• If he ran the race in many parallel universes …

• Subjective strength of belief?
• Would pay up to 90 cents for chance to win $1

• Output of some computable formula?
• But then which formulas should we trust?

p(X | Y) versus q(X | Y)

p is a function on event sets

weather’s
clear

Paul Revere
wins

All Events (races)

p(win | clear) ≡ p(win, clear) / p(clear)

p is a function on event sets

weather’s
clear

Paul Revere
wins

All Events (races)

p(win | clear) ≡ p(win, clear) / p(clear)
syntactic sugar predicate selecting

races where
weather’s clear

logical conjunction
of predicates

p measures total
probability of a
set of events.

Commas in p(x,y) mean conjunction –
on the left…

p(Paul Revere wins, Valentine places, Epitaph
shows | weather’s clear)
what happens as we add conjuncts to left of bar ?

• probability can only decrease
• numerator of historical estimate likely to go to zero:

times Revere wins AND Val places… AND weather’s clear
times weather’s clear

Commas in p(x,y)…on the right

p(Paul Revere wins | weather’s clear,
ground is dry, jockey getting over sprain, Epitaph
also in race, Epitaph was recently bought by Gonzalez,
race is on May 17, …)
what happens as we add conjuncts to right of bar ?

• probability could increase or decrease
• probability gets more relevant to our case (less bias)
• probability estimate gets less reliable (more variance)

times Revere wins AND weather clear AND … it’s May 17
times weather clear AND … it’s May 17

Backing off: simplifying the right-
hand side…

p(Paul Revere wins | weather’s clear,
ground is dry, jockey getting over sprain, Epitaph
also in race, Epitaph was recently bought by Gonzalez,

race is on May 17, …)
not exactly what we want but at least we can get a

reasonable estimate of it!
try to keep the conditions that we suspect will have

the most influence on whether Paul Revere wins
Recall ‘backing off’ in using just p(rabbit|white)

instead of p(rabbit|Just then a white) – so this is a
general method

What about simplifying the left-
hand side?

p(Paul Revere wins, Valentine places,
Epitaph shows | weather’s clear)

NOT ALLOWED!
but we can do something similar to help …
We can FACTOR this information – the so-called
“Chain Rule”

Chain rule: factoring lhs

p(Revere, Valentine, Epitaph | weather’s clear)
= p(Revere | Valentine, Epitaph, weather’s clear)

* p(Valentine | Epitaph, weather’s clear)
* p(Epitaph | weather’s clear)

True because numerators cancel against denominators
Makes perfect sense when read from bottom to top
Moves material to right of bar so it can be ignored

RVEW/W
= RVEW/VEW

* VEW/EW
* EW/W

If this prob is unchanged by backoff, we say Revere was
CONDITIONALLY INDEPENDENT of Valentine and Epitaph
(conditioned on the weather’s being clear). Often we just
ASSUME conditional independence to get the nice product above.

The plan: summary so far

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.9

a:C/0.1
b:C/0.8b:D/0.2

a:a/0.7
b:b/0.3

*

=

a:C/0.07 b:C/0.24

* *
C:C/1 p(y | Y)

best path

automaton: p(tag sequence)

transducer: tags à words

automaton: the observed words

transducer: scores candidate tag seqs
on their joint probability with obs words;

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”

First-order Markov (bigram)
model as fsa

Det

Start

Adj
Noun

Verb

Prep

Stop

Add in transition probs - sum to 1

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3
0.7

0.4 0.5

0.1

Same as bigram

P(Noun|Det)=0.7 ≡

Det Noun

Add in start & etc.

Det

Start

Adj
Noun

Verb

Prep

Stop

0.7
0.3

0.8

0.2

0.4 0.5

0.1

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

0.7

p(tag seq)

0.1

Markov model as fsa

Det

Start

Adj
Noun

Verb

Prep

Stop

0.7
0.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

p(tag seq)

0.1

Add ‘output tags’ (transducer)

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7

Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Det 0.8

ε 0.2

p(tag seq)

Tag bigram picture

Det

Start

Adj
Noun Stop

Adj 0.3

Adj 0.4
Noun
0.5

ε 0.2

Det 0.8

p(tag seq)

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Our plan

p(X)

p(Y | X)

p(X, y)

*

=

*

=

* *
p(y | Y)

automaton: p(tag sequence)

transducer: tags à words

automaton: the observed words

transducer: scores candidate tag seqs
on their joint probability with obs words;

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”

Cartoon form again

p(X)

p(Y | X)

p(X, y)

*

==

* *
p(y | Y)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

Next up: unigram replacement
model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

p(word seq | tag seq)

Compose

Det

Start

Adj
Noun

Verb

Prep

Stop

Adj 0.3

Adj 0.4
Noun
0.5

Det 0.8

ε 0.2

p(tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

Compose

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Verb

Prep

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos

ε

Observed words as straight-line fsa

word seq

the cool directed autos

Compose with

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autos

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos

ε

Compose with

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autos

Adj

why did this
loop go away?

Adj:directed 0.00020
N:autos

ε

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

Adj
Adj:directed 0.00020

N:autos

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009*0.00020…

the cool directed autos

ε

But…how do we find this ‘best’
path???

All paths together form ‘trellis’

Det:t
he

0.32Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos…
ε 0.2

Adj
:dire

cted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj :cool 0.0009Noun:cool 0.007

WHY?

Cross-product construction forms
trellis

So all paths here must have 5 words on output side

All paths here are 5 words

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*

0 1

2

3
4

ε
ε
ε

ε
ε
ε

Trellis isn’t complete

Det:t
he

0.32Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos…
ε 0.2

Adj
:dire

cted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj :cool 0.0009Noun:cool 0.007

Lattice has no Det à Det or Det àStop arcs; why?

Trellis incomplete

Noun:autos…

Det:t
he

0.32Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed…

ε 0.2

Adj
:dire

cted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj :cool 0.0009

Lattice is missing some other arcs; why?

Noun:cool 0.007

And missing some states…

Noun:autos…

Det:t
he

0.32Det

Start Stop

p(word seq, tag seq)

Adj

Noun

Adj

Noun Noun

Adj:directed…

Adj
:dire

cted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj :cool 0.0009

Lattice is missing some states; why?

Noun:cool 0.007 ε 0.2

Finding the best path from start to
stop

• Use dynamic programming
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start (as

probability plus one backpointer)

• Special acyclic case of Dijkstra’s shortest-path
algorithm

• Faster if some arcs/states are absent

Det:t
he

0.32Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos…
ε 0.2

Adj
:dire

cted
…

Adj :cool 0.0009Noun:cool 0.007

Method: Viterbi algorithm
• For each path reaching state s at step (word)

t, we compute a path probability. We call the
max of these viterbi(s,t)

• [Base step] Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',t+1),

assuming we know viterbi(s,t) for all s:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s']

probability of path to max path score * transition p
s’ through s for state s at time t s →s’

viterbi(s',t+1) = max s in STATES path-prob(s' | s,t)

Method…

• This is almost correct…but again, we need
to factor in the unigram prob of a state s’
given an observed surface word w

• So the correct formula for the path prob
is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * bs’ (ot)

bigram unigram

Or as in your text…p. 179

Summary

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement

Two finite-state approaches

1. Noisy Channel Model (statistical)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

• PS: how do we evaluate taggers? (and
such statistical models generally?)

