

The Menu Bar

Lecture 3 posted; Lab 1a (aka "component II") due yesterday; Lab 1b, due next Monday

- Postmortem: Complexity of Kimmo/fst's - too weak?

Too strong? What makes a good computational linguistics representation? A good linguistic representation? A good algorithm?

- Alternatives: morphology w/o a dictionary
- What's my line: take a chance

- Does it explain why many non-human systems never occur (ruling them out)
- Or does it overshoot?
- Ans: it seems to overshoot, in at least 2 ways
- Overshoots detected by computational analysis

Overshoot \#1: too powerful with dependencies

- More powerful than well-known grammars in linguistics (and computational linguistics)
- We can use kimmo to 'count' - but natural languages don't (or cannot) do this...
- (Recall: we can use Kimmo to output a language with one counting relation: $a^{n} b^{n}$ - not a finite-state language)
- But we can do more... nothing stops us from producing a language with m counting relations, e.g, for any $n,\left\{\left(x,(c x)^{n}\right) \mid x \in\left\{a^{*} b^{*}\right\}\right\}$, e.g., for $n=3$, cababcababcabab, cbbbcbbbcbbb...

Not captured by context-free language

- (Familiar): $a^{n} b^{n} c^{n}$
- Intuition: use of pushdown stack - can catch one such pairing, but not more

So: Kimmo admits more than

 context-free languages!- So Kimmo is more powerful than this! But how powerful is it? We can still parse context-free languages in cubic time (in the length of sentences)
- We shall see that Kimmo is more complex than this!
- Conjecture: all the context-sensitive languages

Complexity of Kimmo word recognition

- All these finite-state devices, working in parallel
- There is backup
- Is it intrinsic to the system? Or eradicable? Or, doesn't matter in practice?

Litmus test \#2 - computational complexity of Kimmo - word parsing is intractable!

- Kimmo Recognition Problem (KRP):

Given a language defined by an arbitrary (finite) Kimmo dictionary (lexical automata) and a finite set of Kimmo rules, how long in the worst case will it take to recognize whether a form is or is not in the language?

- Kimmo recognition problem is NP-hard
- As hard as any other problem solvable by a nondeterminstic Turing machine in polynomial time
- No known det polytime (eg, cubic) algorithm for NPhard problems...

Parsing words with Kimmo is computationally intractable

- Intuition: what if the characters on the surface don't give any clues as to what 'features' they ought to have underlyingly? (e.g., whether a Noun or a Verb, as in police police police)
- This seems awfully close to the famous 3-SAT problem: is there an assignment of $T($ rue $), F$ (alse) to the literals of an arbitrary Boolean formula in 3-conjunctive normal form s.t. the formula evaluates to true?
- In fact, we can simulate this problem using Kimmo

3-Sat (3-satisfiability) is NP-complete

- Given (arb) 3-Sat formula, e.g.,
- There is no known deterministic Turing machine that can figure out quickly (in polynomial time) whether there is an assignment of true or false to literals x, y, z in order to make the formula evaluates to true just by inspecting the local surface string
- We could guess this in polynomial time - i.e., Nondeterministic Polynomial, or NP time (time measured in length of the formula)

Reduction of 3-Sat to Kimmo recognition problem

- For every 3-Sat problem, we can find, in polynomial time, a corresponding Kimmo word recognition problem where there's a valid word if the 3-Sat problem was satisfiable
- If Kimmo recognition could be done in deterministic polynomial time (P) then so could 3-SAT

wo components to 3-Sat

- The fact that an x that has a truth assignment in one place, must have the same truth assignment everywhere - what morphological process is that like?
- The fact that every triple must have at least 1 ' T ' underlyingly (so that the triple is true) what morphological process is that like?

How the reduction works

- Given arbitrary 3-sat formula ϕ, e.g., ($x \vee \neg y \vee z$) ($\neg x \vee \neg z$) ($x \vee y$)
- Represent in the form, a 'word':
$x-y z,-x z, x y$
- For each variable x, we have an 'assignment machine' that ensures that x is mapped to T or F throughout the whole formula
- We have one machine (and a fixed dictionary) to checks each disjunction to make sure that at least one disjunct is true in every conjunct

Two components

- Agreement: vowel harmony (if round at some point, round everywhere)
- Ambiguity: we can't tell what the underlying value of x is from the surface, but if there's at least one " t " per 'part of word', then we can spell out this constraint in dictionary
- Note that words (like Sat formulas) must be arbitrarily long... (pas de probleme)
- Dictionary is fixed...
- \# of Vowel harmony processes corresponds to \# of distinct literals

Implications

- Do we need a machine powerful enough to represent intractable problems?
- No evidence for unbounded \# of counting dependencies or harmony processes...
- Performance? Or do we need something this powerful??

Why should we care?

- This is typical of a combination of 'agreement and ambiguity' that trickles through all of natural language
- The agreement part - like Turkish vowel harmony
- The ambiguity part - like the police police police example
- Suggests that speed won't come from the formalism all by itself

Algorithmic stemmers can be fast (and lean):
E.g.: 1 Million words in 6 seconds on 500 MHz PC

- It is more efficient not to use a dictionary
(don't have to maintain it if things change).
- It is better to ignore irregular forms (exceptions) than to complicate the algorithm (not much lost in practice).

| Output - German |
| :--- | :--- | :--- | :--- |
| aufeinander
 auferlegen aufeinand auferleg kategorien
 auferlegt auferlegt kater kat
 auferlegten auferlegt katers kat
 auferstanden auferstand katze katz
 auferstehen auferstand katzen katz
 aufersteht aufersteht |

Paradigmatic example for NLP

- Morphophonemic parsing
- Given surface form, recover underlying form:

Another example: generating language

- Variations in style, syntactic form...
-Where do these come from?
- Jane Austin writes differently from Charlotte Brontë

Language ID

- "Rabbit and Lukasiewicz are on the menu"
- Is this English or Polish or what?
- Is it "good" (= likely) English?
- Is it "good" (= likely) Polish?

Text Categorization

- Automatic Yahoo classification, etc.
- Similar to language ID ...
- Topic 1 sample: In the beginning God created ...
- Topic 2 sample: The history of all hitherto existing society is the history of class struggles. ...
- Input text: Matt's Communist Homepage. Capitalism is unfair and has been ruining the lives of millions of people around the world. The profits from the workers' labor
- Input text: And they have beat their swords to ploughshares, And their spears to pruning-hooks. Nation doth not lift up sword unto nation, neither do they learn war any more.

Topic Segmentation

- Break big document or media stream into indexable chunks
- From NPR's Al/ Things Considered:

The U. N. says its observers will stay in Liberia only as long as West African peacekeepers do, but West African states are threatening to pull out of the force unless Liberia's militia leaders stop violating last year's peace accord after 7 weeks of chaos in the capital, Monrovia ... Human rights groups cite peace troops as among those smuggling the arms. I'm Jennifer Ludden, reporting. Whitewater prosecution witness David Hale began serving a 28 -month prison sentence today. The Arkansas judge and banker pleaded guilty two years ago to defrauding the Small Business Administration. Hale was the main witness

Speech Recognition

- How do you wreck a nice beach?
- How do you recognize speech?
- Put the file in the folder
- Put the file and the folder

Basic Morphology

Basic Affix Typology (don't seem to need more):

- i-suffix: inflectional suffix

English: cheer+ed $=$ cheered, fit+ed $=$ fitted, love+ed $=$ loved

- d-suffix: derivational suffix, changes word type

English: walk(V)+er = walker(N),
happy (A)+ness=happiness(N)

- a-suffix: attached suffix (enclitics).

Algorithmic Method

General Strategy:

- Normal order of suffixes seems to be d, i, a.
- Remove from right in order a, i, d.
- Generally remove all the a and i suffixes, sometimes leave the d one.

Algorithmic Method

Strategy for German:

- Leave prefixes alone because they can change meaning.
- Put everything in small caps.
- Get rid of $g e$-.
- Get rid of itype: e, em, en, ern, er, es, s, est, (e.g, armes > arm)
 keit

Information Retrieval

Does stemming indeed improve IR?

- No: Harman (1991), Krovetz (1993)
- Possibly: Krovetz (1995)

Depends on type of text, and the assumption is that once one moves beyond English, the difference will prove significant.

Crosslinguistic Applicability

- Can this type of stemming be applied to all languages?
- Not to Chinese, for example (doesn't need it).
- Do all languages have the same kind of morphology?
- No. Stemming assumes basically agglutinative morphology. This is not true crosslinguistically (but the algorithms seem to work pretty well within Indo-

Stemming: Errors

- Understemming: failure to merge
- Adhere/adhesion
- Overstemming: incorrect merge
- Probe/probable
. Claim: -able irregular suffix, root: probare (Lat.)
- Mis-stemming: removing a non-suffix (Porter, 1991)
- reply -> rep

Stemming: Interaction

- Interacts with noun compounding:
- Example:
- operating systems
- negative polarity items
. For IR, compounds need to be identified first...

Stemming: Porter Algorithm

- Rule format:
- (condition on stem) suffix ${ }_{1}->$ suffix ${ }_{2}$
. In case of conflict, prefer longest suffix match
. "Measure" of a word is m in:
- (C) (VC) ${ }^{m}(V)$
- $\mathrm{C}=$ sequence of one or more consonants
- $V=$ sequence of one or more vowels
- Examples:
- tree $\mathrm{C}(\mathrm{VC})^{\circ} \mathrm{V}$
- troubles $\mathrm{C}(\mathrm{VC})^{2}$

Stemming: Porter Algorithm

- Step 1a: remove plural suffixation
- SSES -> SS (caresses)
- IES -> I (ponies)
- SS -> SS (caress)
- S -> (cats)
- Step 1b: remove verbal inflection
- ($\mathrm{m}>0$) EED -> EE (agreed, feed)
- (*v*) ED -> (plastered, bled)
- (* v^{*}) ING -> (motoring, sing)

Stemming: Porter Algorithm

- Step 1b: (contd. for -ed and -ing rules)
- AT -> ATE (conflated)
- BL -> BLE (troubled)
- IZ -> IZE (sized)
- (*doubled c \& $\neg(* \mathrm{~L} v * S \mathrm{v} * \mathrm{Z}))$) -> single c (hopping, hissing, falling, fizzing)
- ($\mathrm{m}=1 \& * \mathrm{cvc}$) -> E (filing, failing, slowing)
- Step 1c: Y and I
- (*v*) Y -> I (happy, sky)

Stemming: Porter Algorithm

- Step 2: Peel one suffix off for multiple suffixes
- $(m>0)$ ATIONAL $->$ ATE (relational)
- $(m>0)$ TIONAL -> TION (conditional, rational)
- $(m>0)$ ENCI $->$ ENCE (valenci)
- $(m>0)$ ANCI $->$ ANCE (hesitanci)
- $(m>0)$ IZER -> IZE (digitizer)
- $(\mathrm{m}>0)$ ABLI -> ABLE (conformabli) - able (step 4)
- $(m>0)$ IZATION -> IZE (vietnamization)
- $(m>0)$ ATION $->$ ATE (predication)
- $(m>0)$ IVITI -> IVE (sensitiviti)

Stemming: Porter Algorithm

- Step 3
- (m>0) ICATE -> IC (triplicate)
- ($\mathrm{m}>0$) ATIVE -> (formative)
- ($\mathrm{m}>0$) ALIZE -> AL (formalize)
. $(\mathrm{m}>0)$ ICITI -> IC (electriciti)
- (m>0) ICAL -> IC (electrical, chemical)
- $(m>0)$ FUL -> (hopeful)
- ($\mathrm{m}>0$) NESS -> (goodness)

Stemming: Porter Algorithm

- Step 4: Delete last suffix
- (m>1) AL -> (revival) - revive, see step 5
- $(m>1)$ ANCE $->$ (allowance, dance)
- ($m>1$) ENCE $->$ (inference, fence)
- (m>1) ER -> (airliner, employer)
- (m>1) IC $->$ (gyroscopic, electric)
- ($m>1$) ABLE -> (adjustable, mov(e)able)
- ($m>1$) IBLE -> (defensible,bible)
- ($m>1$) ANT -> (irritant,ant)
- $(m>1)$ EMENT -> (replacement)
- (m>1) MENT -> (adjustment)
- ...

Stemming: Porter Algorithm

- Step 5a: remove e
- ($\mathrm{m}>1$) E-> (probate, rate)
- (m>1 \& $\left.\neg^{*} \mathrm{cvc}\right) \mathrm{E}->$ (cease)
- Step 5b: //reduction
- (m>1 \& *LL) -> L (controller, roll)

A simple example

- We consider a sentence as a sequence of n words; we want to find $\mathrm{P}\left(w_{1}, \ldots, w_{n}\right)$
- We can use this to model all the 'noise' that gets into language (the leaks)
- So one idea is to combine the symbolic models (like kimmo) with the 'noise' components, to do better (eg, like econometrics...)

Language models, probability \& info

- Given a string w, a language model gives us the probability of the string $\mathrm{P}(w)$, e.g.,
- $P($ the big dog $)>($ dog big the $)>($ dgo gib eth $)$
- Easy for humans; difficult for machines
- Let $\mathrm{P}(w)$ be called a language model $\mathrm{L}(\mathrm{M})$
- "I have a gub" (Woody Allen)

A simple example - which is 'right?'

physical Brainpower not plant is chief, now a 's asset , . firm
a Brainpower not now chief asset firm 's is . plant physical ,
chief a physical , . firm not , Brainpower plant is asset 's now
now not plant Brainpower now physical 's . a chief, asset firm, is

Brainpower, not physical plant , is now a firm 's chief asset .

Each sentence is a sequence w_{1}, \ldots, w_{n}.
Task is to find $\mathrm{P}\left(w_{1}, \ldots, w_{n}\right)$.

N-grams

A simple model of language

- Computes a probability for observed input
- Probability is likelihood of observation
being generated by the same source as training data
- Such a model is often called a language model (LM)

How can we compute this?

- Each of this pr's can be estimated (using frequency counts) from training data
- Can this work directly?
- No - not in practice...why?

Language ID

- "Rabbit and Lukasiewicz are on the menu"
- Is this English or Polish or what?
- We had some notion of using n-gram models ...
- Is it "good" (= likely) English?
- Is it "good" (= likely) Polish?
- Space of events will be not races but character sequences ($x_{1}, x_{2}, x_{3}, \ldots$) where $x_{n}=$ EOS ($n b$, "BOS")

Language ID?

- Let $p(X)=$ probability of text X in English
- Let $q(X)=$ probability of text X in Polish
- Which probability is higher?
"Rabbit and Lukasiewicz are on the menu"
$p\left(x_{1}=r, x_{2}=a, x_{3}=b, x_{4}=b, x_{5}=i, x_{6}=t, \ldots\right)$

Data needs

- How many possible distinct probabilities will be needed?, i.e. parameter values
- Total number of word tokens in our training data
- Total number of unique words: word types is our vocabulary size

How can we compute this?

- Each of this pr's can be estimated (using frequency counts) from training data
- Can this work?
- No - not in practice...why?

is a function on event sets

p (win \mid clear) $\equiv p$ (win, clear) / p (clear)

The Chain rule - factoring joint events

- P(GC in Hawaii,GC alone,GC low in polls|GC drives drunk)=
P(GC in Hawaii|GC alone, GC low in polls,GC drives drunk)×
P(GC alone|GC low in polls,GC drives drunk) \times P(GC low in polls|GC drives drunk)

Why does this work?

- Simply cancel out the matching terms

Commas denote conjunction

p(Paul Revere wins, Valentine places, Epitaph shows | weather's clear) what happens as we add conjuncts to left of bar?

- probability can only decrease
- numerator of historical estimate likely to go to zero:
\# times Revere wins AND Val places... AND weather's clear \# times weather's clear

Commas denote conjunction

p(PaulRevere wins, Valentine places, Epitaph shows | weather's clear)
p (Paul Revere wins | weather's clear, ground is dry, jockey getting over sprain, Epitaph also in race, Epitaph was recently bought by Gonzalez, race is on May $17, \ldots$)
what happens as we add conjuncts to right of bar ?

- probability could increase or decrease
- probability gets more relevant to our case (less bias)
- probability estimate gets less reliable (more variance)
\# times Revere wins AND weather clear AND ... it's May 17
\# times weather clear AND ... it's May 17

Factoring Left Side: The Chain Rule

p(Revere, Valentine, Epitaph | weather's clear) RVEW/W
$=p($ Revere \perp Valentine.Epitaph, weather's clear) $=$ RVEW/VEW

True because numerators cancel against denominators
Makes perfect sense when read from bottom to top
Moves material to right of bar so it can be ignored If this prob is unchanged by backoff, we say Revere was CONDITIONALLY INDEPENDENT of Valentine and Epitaph (conditioned on the weather's being clear). Often we just ASSUME conditional independence to get the nice product above.

How do we calculate this?

- Use the chain rule in probability...
- But there's a hitch...

Apply the Chain Rule

$\mathrm{p}\left(\mathrm{x}_{1}=\mathrm{r}, \mathrm{x}_{\mathbf{2}}=\mathrm{a}, \mathrm{x}_{3}=\mathrm{b}, \mathrm{x}_{4}=\mathrm{b}, \mathrm{x}_{5}=\mathrm{i}, \mathrm{x}_{6}=\mathrm{t}, \ldots\right)$
$=p\left(x_{1}=r\right)$
4470/52108

* $\mathrm{p}\left(\mathrm{x}_{2}=\mathrm{a} \mid \mathrm{x}_{1}=\mathrm{r}\right)$ 395/ 4470
* $p\left(x_{3}=b \mid x_{1}=r, x_{2}=a\right)$

5/ 395

* $\mathrm{p}\left(\mathrm{X}_{4}=\mathrm{b} \mid \mathrm{X}_{1}=\mathrm{r}, \mathrm{x}_{2}=\mathrm{a}, \mathrm{X}_{3}=\mathrm{b}\right)$

3/ 5

* $p\left(x_{5}=i \mid x_{1}=r, x_{2}=a, x_{3}=b, x_{4}=b\right) \quad 3 / \quad 3$
* $p\left(x_{6}=t \mid x_{1}=r, x_{2}=a, x_{3}=b, x_{4}=b, x_{5}=i\right)^{0 /} \quad 3$
* $\ldots=0$
counts from

How can we compute this?

- Each of this pr's can be estimated (using frequency counts) from training data
- Can this work?
- No - not in practice...why?
- In language modeling, the conditioning variables are sometimes called the "history" or the "context."
- The Markov assumption says that the prediction is conditionally independent of ancient history, given recent history.
- I.e., we divide all possible histories into equivalence classes based on the recent history

The Markov assumption

- We approximate p(word | all previous words) Instead of p (rabbit|Follow the white...) we use: P(rabbit|white)
- This is a Markov assumption where past memory is limited to immediately previous state - just 1 state corresponding to the previous word or tag

N-grams: limiting history - the
 Markov assumption

- $0^{\text {th }}$ order Markov model: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)$ called a unigram model
- $1^{\text {st }}$ order Markov model: $P\left(w_{i} \mid w_{i-1}\right)$ called a bigram model
- $2^{\text {nd }}$ order Markov model: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-2}, \mathrm{w}_{\mathrm{i}-1}\right)$ called a trigram model

Calculation

Another Independence Assumption

$$
p\left(x_{1}=h, x_{2}=\circ, x_{3}=r, x_{4}=s, x_{5}=e, x_{6}=s, \ldots\right)
$$

$$
\approx \mathrm{p}\left(\mathrm{x}_{1}=\mathrm{h}\right)
$$

$$
* p\left(x_{2}=0 \mid x_{1}=h\right)
$$

$$
395 / 4470
$$

$$
* p\left(x_{i}=r \mid x_{i-2}=h, x_{i-1}=0\right)
$$

$$
1417 / 14765
$$

$$
* p\left(x_{i}=s \mid \quad x_{i-2}=0, x_{i-1}=r\right)
$$

$$
1573 / 26412
$$

$$
* p\left(x_{i}=e l\right.
$$

$$
\left.x_{i-2}=r, x_{i-1}=s\right)^{1610 / 12253}
$$

* $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}=\mathrm{s}\right.$ | $\left.x_{i-2}=s, x_{i-1}^{2044 / 2}\right)^{1250}$
* ... $=5.4 \mathrm{e}-7$ * ...

$$
\begin{aligned}
& p\left(x_{1}=r, x_{2}=a, x_{3}=b, x_{4}=b, x_{5}=i, x_{6}=t, \ldots\right) \\
& \approx p\left(x_{1}=r\right) \\
& \text { * } p\left(x_{2}=a \mid x_{1}=r\right) \\
& \text { * } p\left(x_{3}=b \mid x_{1}=r, x_{2}=a\right) \\
& \text { * } p\left(x_{4}=b \mid \quad x_{2}=a, x_{3}=b\right) \\
& \text { 12/ } 919 \\
& \text { * } \mathrm{p}\left(\mathrm{x}_{5}=\mathrm{i} \mid \quad \mathrm{x}_{3}=\mathrm{b}, \mathrm{x}_{4}=\mathrm{b}\right) \quad \text { 12/ } 126 \\
& \text { * } p\left(x_{6}=t \mid\right. \\
& \left.x_{4}=b, x_{5}=3_{i}\right)^{485} \\
& \text { * ... }=7.3 \mathrm{e}-10 \text { * ... }
\end{aligned}
$$

Simplify the Notation

$$
\begin{aligned}
& p\left(x_{1}=h, x_{2}=0, x_{3}=r, x_{4}=s, x_{5}=e, x_{6}=s, \ldots\right) \\
& \approx p\left(x_{1}=h\right) \\
& \text { 4470/52108 } \\
& \text { * } \mathrm{p}\left(\mathrm{x}_{2}=0 \mid \mathrm{x}_{1}=\mathrm{h}\right) \\
& \text { 395/ } 4470 \\
& \text { * } \mathrm{p}(\mathrm{r} \mid \mathrm{h}, \mathrm{o}) \\
& \text { * } \mathrm{p}(\mathrm{~s} \mid \circ, r) \\
& \text { * } p(e \mid r, s) \\
& \text { * } \mathrm{p}(\mathrm{~s} \mid \mathrm{s}, \mathrm{e}) \\
& \text { 1417/ } 14765 \\
& p(r \mid h, 0) \\
& \text { 1573/26412 } \\
& \text { * ... }
\end{aligned}
$$

Simplify the Notation

$\approx \mathrm{p}(\mathbf{r} \mid$ BOS, BOS $)$ of a

* $\mathrm{p}(\mathrm{a} \mid \mathrm{BOS}, \mathrm{r})$
trigram generator!
395/ 4470
* $p(b \mid r, a)$
* $p(b \mid a, b)$
* $\mathrm{p}(\mathrm{i} \mid \mathrm{b}, \mathrm{b})$
* $p(t \mid i, b)$
* ...These basic probabilities are used to define p (rabbit)
counts from

Simplify the Notation

- Three novels by Jane Austen: Emma, Sense and Sensibility, Pride and Prejudice
- Remove punctuation, keep paragraphs
- Train trigram model on this text

[1] By the returall benefit han every familitant of all Thou go? And At the eld to parises of the nursed by thy way of all histantly be the ~aciedfag . to the narre gread abrasa of thing, and vas these conwuning clan com to one language; all Lah, which for the greath othey die. -

[Gen 3:1] In the called up history of its opposition of bourgeOIS AND Adam to rest, that the existing of heaven; and land the bourgeois ANger anything but concealed, the land whethere had doth know the: bury thy didst of Terature their faces which went masses the old society [2] is the breaks out of oppressor of all which, the prolETARiat goest, unto German pleast twelves applied in manner with t hese, first of this polities have all

