6.863J Natural Language Processing Lecture 6: part-of-speech tagging to parsing

Instructor: Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

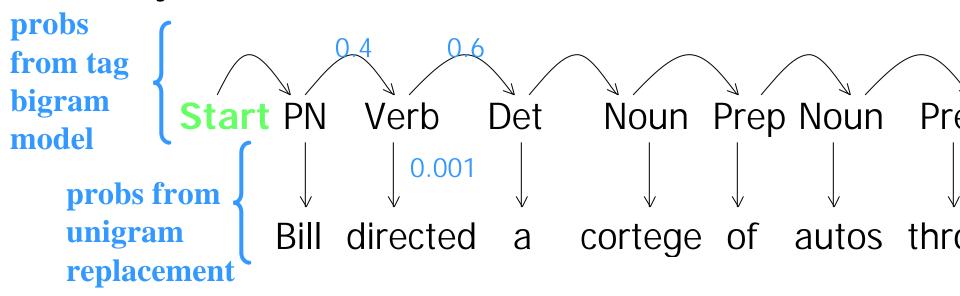
- Administrivia:
 - Schedule alert: Lab1 due next today Lab 2, posted Feb 24; due the Weds after this – March 5 (web only – can post pdf)
- Agenda:
- Finish up POS tagging Brill method
- From tagging to parsing: from linear representations to hierarchical representations

Two approaches

- Noisy Channel Model (statistical) –
- Deterministic baseline tagger composed with a cascade of fixup transducers
 These two approaches will the guts of Lab 2 (lots of others: decision trees, ...)

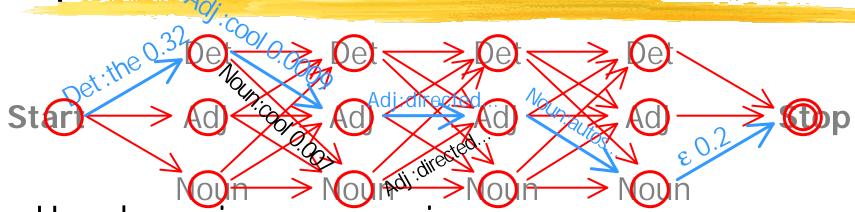
Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
- Noisy channel model is a "Hidden Markov Model":



Find X that maximizes probability product

Finding the best path from start to stop



- Use dynamic programming
- What is best path from Start to <u>each</u> node?
 - Work from left to right
 - Each node stores its best path from Start (as probability plus one backpointer)
- Special acyclic case of Dijkstra's shortest-path algorithm
- Faster if some arcs/states are absent

Method: Viterbi algorithm

- For <u>each</u> path reaching state s at step (word)
 t, we compute a path probability. We call the <u>max</u> of these <u>viterbi(s,t)</u>
- [Base step] Compute viterbi(0,0)=1
- [Induction step] Compute viterbi(s',t+1), assuming we know viterbi(s,t) for all s

Viterbi recursion

viterbi(s,t)

a[s,s']

probability of path to s' through s

max path score * for state s at time t

transition probability $s \rightarrow s'$

viterbi(s',t+1) = $\max_{s \in STATES} path-prob(s' | s,t)$

Viterbi Method...

- This is almost correct...but again, we need to factor in the unigram prob of a state s' emitting a particular word w given an observation of that surface word w
- So the correct formula for the path prob to s' from s is:

path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * $b_{s'}$ (o_t)

Bigram

Path prob so far to s

transition prob output prob at state s'

6.863J/9.611J Lecture 6 * State s'

state s'

Finally...

 As before, we want to find the max path probability, over all states s:

 $\max_{s \in STATES} path-prob(s' | s,t)$

Or as in your text...p. 179

function VITERBI(*observations* of len *T,state-graph*) **returns** *best-path*

```
num-states \leftarrow NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]

viterbi[0,0] \leftarrow 1.0

for each time step t from 0 to T do

for each state s from 0 to num-states do

for each transition s' from s specified by state-graph

new-score \leftarrow viterbi[s, t] * a[s,s'] * b_{s'}(o_t)Find the path probability

if ((viterbi[s',t+1] = 0) \mid | (new-score > viterbi[s',t+1]))

then

viterbi[s',t+1] \leftarrow new-score

back-pointer[s',t+1] \leftarrow s
```

Backtrace from highest probability state in the final column of *viterbi[]* and return path

Two approaches

 Noisy Channel Model (statistical) – what's that?? (we will have to learn some statistics)

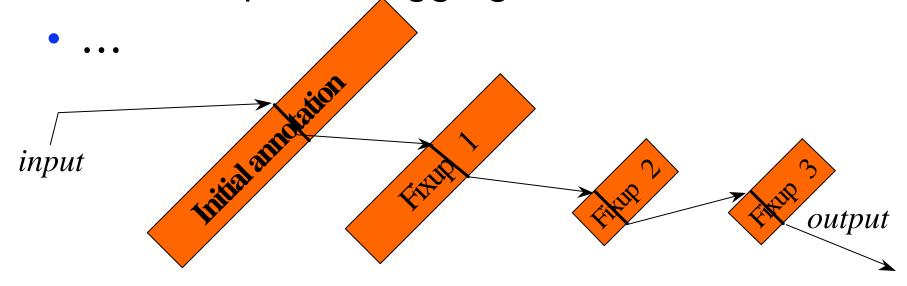
2. Deterministic baseline tagger composed with a cascade of fixup transducers

These two approaches will the guts of Lab 2 (lots of others: decision trees, ...)

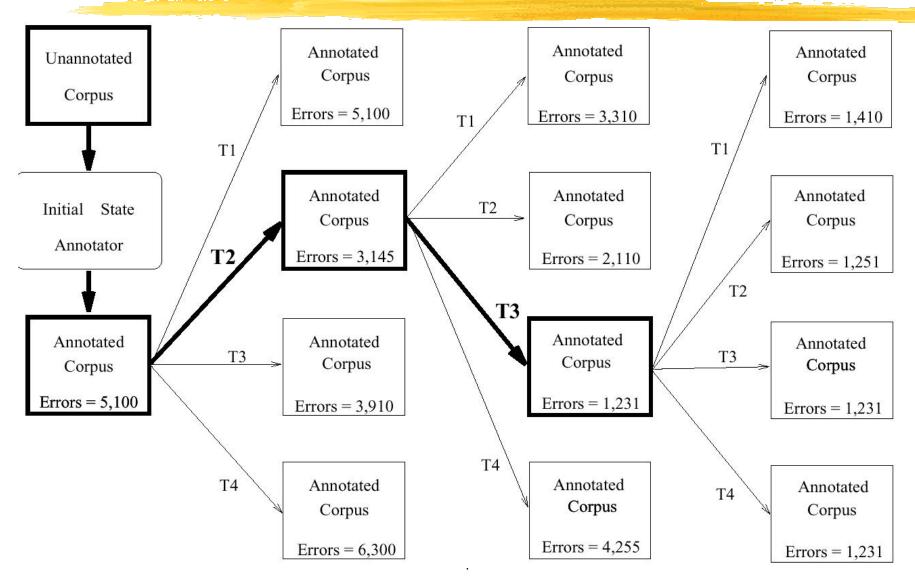
Fixup approach: Brill tagging (a kind of transformation-based learning)

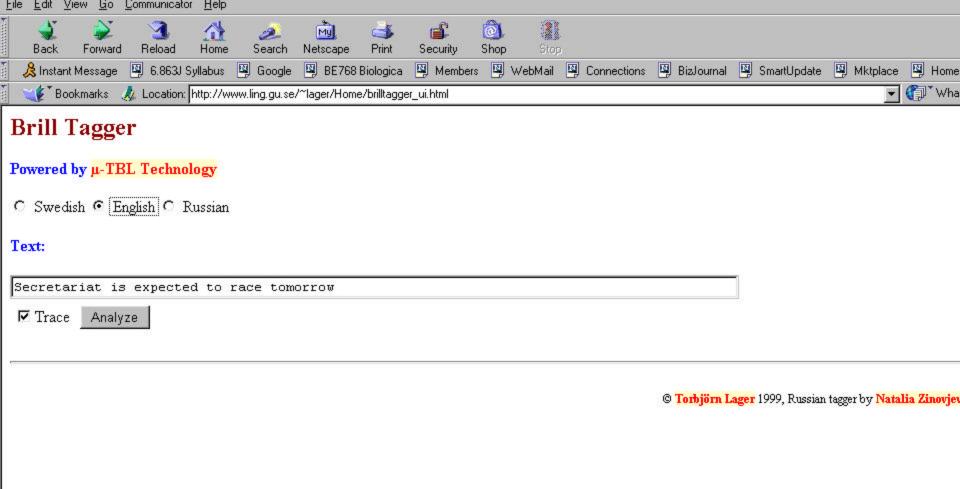
Another FST Paradigm: Successive Fixups

- Like successive markups but alter
- Morphology
- Phonology
- Part-of-speech tagging



Transformation-Based Tagging (Brill 1995)





Bookmarks 🙏 Location: http://www.ling.gu.se/~lager/tagger.cgi?language=English&input=Secretariat+is+expected+to+race+tomorrow&trace=on	<u>▼</u> 👣 Wh
Tokenization	
Secretariat is expected to race tomorrow	
Lexical lookup	
Secretariat/NNP is/VBZ expected/VBN to/TO race/NN tomorrow/NN	

Shop

Members WebMail Connections BizJournal SmartUpdate Minktplace Mink

Security

Contextual-rule application

tag:NN>VB <- tag:T0@[-1].

Guessing

<u>File Edit View Go Communicator Help</u>

Back

🙎 Instant Message

Reload

Intermediate analysis:

Secretariat/NNP is/VBZ expected/VBN to/TO race/NN tomorrow/NN

My

Netscape

BE768 Biologica

Print

Search

Home

🚇 6.863J Syllabus 🚇 Google

Applied rule:

Analysis

Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN

Transformation based tagging

- Combines symbolic and stochastic approaches: uses machine learning to refine its tags, via several passes
- Analogy: painting a picture, use finer and finer brushes - start with broad brusch that covers a lot of the canvas, but colors areas that will have to be repainted. Next layer colors less, but also makes fewer mistakes, and so on.
- Similarly: tag using broadest (most general)
 rule; then an narrower rule, that changes a
 smaller number of tags, and so on. (We haven't
 said how the rules are learned)
- First we will see how the TBL rules are applied

Applying the rules

1. First label every word with its most-likely tag (as we saw, this gets 90% right...!) for example, in Brown corpus, *race* is most likely to be a Noun:

P(NNIrace) = 0.98

```
P(NN|race) = 0.98
P(VB|race) = 0.02
```

- 2. ...expected/VBZ to/T TO race/VB morrow/NN ...the/DT race/NN for/IN outer/JJ space/NN
- 3. Use transformational (learned) rules to change tags:
 - Change NN to VB when the previous tag is TO

Initial Tagging of OOV Words

	Change Tag		
#	From	То	Condition
1	NN	NNS	Has suffix -s
2	NN	CD	Has character .
3	NN	JJ	Has character -
4	NN	VBN	Has suffix -ed
5	NN	VBG	Has suffix -ing
6	??	RB	Has suffix -ly
7	??	JJ	Adding suffix -ly results in a word.
8	NN	CD	The word \$ can appear to the left.
9	NN	JJ	Has suffix -al
10	NN	VB	The word would can appear to the left.
11	NN	CD	Has character 0
12	NN	JJ	The word be can appear to the left.
13	NNS	JJ	Has suffix -us
14	NNS	VBZ	The word it can appear to the left.
15	NN	JJ	Has suffix -ble
16	NN	JJ	Has suffix -ic
17	NN	CD	Has character 1
18	NNS	NN	Has suffix -ss
19	??	JJ	Deleting the prefix un- results in a word
20	NN	JJ	Has suffix -ive

How?

- 3 stages
- Start by labeling every word with most-likely tag
- Then examine every possible transformation, and selects one that results in most improved tagging
- 3. Finally, re-tags data according to this rule
- Repeat 1-3 until some stopping criterion (no new improvement, or small improvement)
- Output is ordered list of transformations that constitute a tagging procedure

How this works

- Set of possible 'transforms' is infinite, e.g., "transform NN to VB if the previous word was MicrosoftWindoze & word braindead occurs between 17 and 158 words before that"
- To limit: start with small set of abstracted transforms, or templates

Templates used: Change a to b when...

The preceding (following) word is tagged **z**.

The word two before (after) is tagged z.

One of the two preceding (following) words is tagged **z**.

One of the three preceding (following) words is tagged z.

The preceding word is tagged z and the following word is tagged w.

The preceding (following) word is tagged **z** and the word two before (after) is tagged **w**.

Variables a, b, z, w, range over parts of speech

Method

- 1. Call Get-best-transform with list of potential templates; this calls
- 2. Get-best-instance which instantiates each template over all its variables (given specific values for where we are)
- 3. Try it out, see what score is (improvement over known tagged system -- supervised learning); pick best one locally

```
function TBL(corpus) returns transforms-queue
INTIALIZE-WITH-MOST-LIKELY-TAGS(corpus)
until end condition is met do
  templates ← GENERATE-POTENTIAL-RELEVANT-TEMPLATES
  best-transform ← GET-BEST-TRANSFORM(corpus, templates)
  APPLY-TRANSFORM(best-transform, corpus)
  ENQUEUE(best-transform-rule, transforms-queue)
end
return(transforms-queue)
```

```
function GET-BEST-TRANSFORM(corpus, templates) returns transform for each template in templates (instance, score) \leftarrow GET-BEST-INSTANCE(corpus, template) if (score > best-transform.score) then best-transform \leftarrow (instance, score) return(best-transform)
```

```
function GET-BEST-INSTANCE(corpus, template) returns transform
 for from-tag \leftarrow from tag-1 to tag-n do
  for to-tag \leftarrow from tag-1 to tag-n do
    for pos \leftarrow from 1 to corpus-size do
      if (correct-tag(pos) == to-tag && current-tag(pos) == from-tag)
          num-good-transforms(current-tag(pos-1))++
      elseif (correct-tag(pos)==from-tag && current-tag(pos)==from-tag)
          num-bad-transforms(current-tag(pos-1))++
    end
    best-Z \leftarrow ARGMAX_t(num-good-transforms(t) - num-bad-transforms(t))
     if(num-good-transforms(best-Z) - num-bad-transforms(best-Z)
                > best-instance.Z) then
       best-instance ← "Change tag from from-tag to to-tag
                              if previous tag is best-Z'
return(best-instance)
procedure APPLY-TRANSFORM(transform, corpus)
for pos \leftarrow from 1 to corpus-size do
 if (current-tag(pos)==best-rule-from)
       && (current-tag(pos-1)==best-rule-prev))
   current-tag(pos) = best-rule-to
```

nonlexicalized rules learned by TBL tagger

	Change tags			
#	From	То	Condition	Example
1	NN	VB	Previous tag is TO	to/TO race/NN \rightarrow VB
2	VBP	VB	One of the previous 3 tags is MD	might/MD vanish/VBP \rightarrow VB
3	NN	VB	One of the previous 2 tags is MD	might/MD not reply/NN \rightarrow VB
4	VB	NN	One of the previous 2 tags is DT	
5	VBD	VBN	One of the previous 3 tags is VBZ	

Transformations Learned

	Change Tag			
#	From	To	Condition	
1	NN	VB	Previous tag is TO	
2	VBP	VB	One of the previous three tags is MD	
3	NN	VB	One of the previous two tags is MD	
4	VB	NN	One of the previous two tags is DT	
5	VBD	VBN	One of the previous three tags is VBZ	
6	VBN	VBD	Previous tag is PRP	
7	VBN	VBD	Previous tag is NNP	
8	VBD	VBN	Previous tag is VBD	
9	VBP	VB	Previous tag is TO	
10	POS	VBZ	Previous tag is PRP	
11	VB	VBP	Previous tag is NNS	
12	VBD	VBN	One of previous three tags is VBP	
13	IN	WDT	One of next two tags is VB	
14	VBD	VBN	One of previous two tags is VB	
15	VB	VBP	Previous tag is PRP	
16	IN	WDT	Next tag is VBZ	
17	IN	DT	Next tag is NN	
18	JJ	NNP	Next tag is NNP	
19	IN	WDT	Next tag is VBD	
20	$_{ m JJR}$	RBR	Next tag is JJ	

BaselineTag*
NN @→ VB // TO _
VBP @→ VB // ... _
etc.

Compose this cascade of FSTs.

Get a big FST that does the initial tagging and the sequence of fixups "all at once."

Error analysis: what's hard for taggers

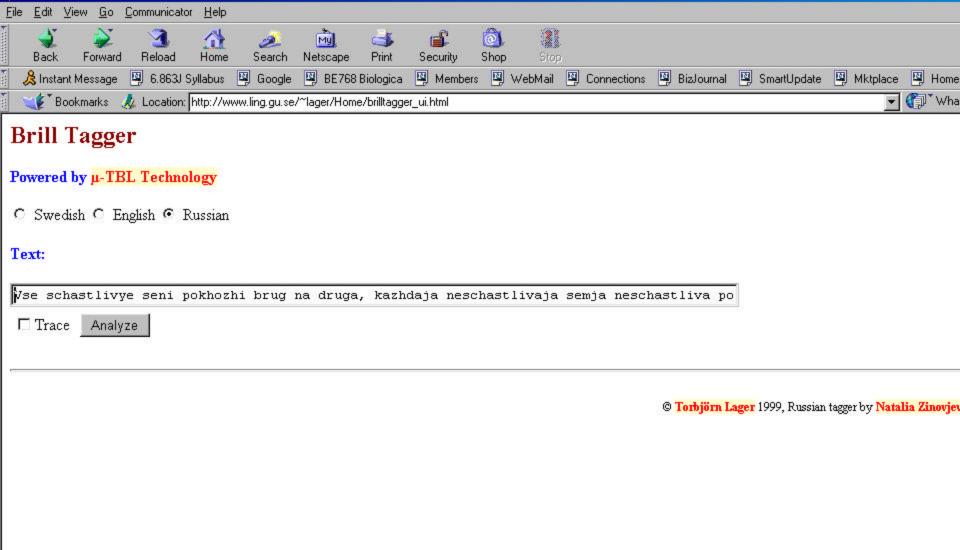
- Common errors (> 4%)
 - NN vs .NNP (proper vs. other nouns) vs. JJ (adjective): hard to distinguish prenominally; important to distinguish esp. for information extraction
 - RP vs. RB vs IN: all can appear in sequences immed. after verb
 - VBD vs. VBN vs. JJ: distinguish past tense, past participles (raced vs. was raced vs. the out raced horse)

What's hard

- Unknown words
 - Order 0 idea: equally likely over all parts of speech
 - Better idea: same distribution as 'Things seen once' estimator of 'things never seen' - theory for this done by Turing (again!)
 - Hapax legomenon
 - Assume distribution of unknown words is like this
 - But most powerful methods make use of how word is spelled
- See file in the course tagging dir on this

Or unknown language

 Vse schastlivye sen'i pokhozhi brug na druga, kazhdaja neschastlivaja sem'ja neschastliva po-svoemu



Most powerful unknown word detectors

- 3 inflectional endings (-ed, -s, -ing); 32 derivational endings (-ion, etc.); capitalization; hyphenation
- More generally: should use morphological analysis! (and some kind of machine learning approach)
- How hard is this? We don't know we actually don't know how children do this, either (they make mistakes)

Laboratory 2

- Goals:
- 1. Use both HMM and Brill taggers
- Find errors that both make, relative to genre
- 3. Compare performance use of kappa & 'confusion matrix'
- 4. All the slings & arrows of corpora use Wall Street Journal excerpts, as well as 'switchboard' corpus

Brown/Upenn corpus tags

	Tag	Description	Example	Tag	Description	Example
	CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%,&
	CD	Cardinal number	one, two, three	TO	"to"	to
	DT	Determiner	a, the	UH	Interjection	ah, oops
	EX	Existential 'there'	there	VB	Verb, base form	eat
	FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
	IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
	JJ	Adjective	yellow	VBN	Verb, past participle	eaten
	JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
	JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
	LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
3	MD	Modal	can, should	WP	Wh-pronoun	what, who
	NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
	NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
	NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
	NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
	PDT	Predeterminer	all, both	44	Left quote	(' or ")
	POS	Possessive ending	'S	"	Right quote	(' or ")
	PP	Personal pronoun	I, you, he	(Left parenthesis	$([,(,\{,<)$
	PP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
	RB	Adverb	quickly, never	,	Comma	,
	RBR	Adverb, comparative	faster	•	Sentence-final punc	(.!?)
	RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
	RP	Particle	up, off			
		0.803J/9.6	ι τη rectate ο 2bog			

J. text, p. 297 Fig 8.6 1M words 60K tag counts

Coda on kids

C: "Mommy, nobody don't like me"

A: No, say, "nobody likes me"

C: Nobody don't likes me

A: Say, "nobody likes me"

C: Nobody don't likes me[7 repetitions]

C: Oh! Nobody don't like me!

Parsing words - review

- We are mapping between surface, underlying forms
- Sometimes, information is 'invisible' (I.e., erased e, or an underlying/surface 0)
- There is ambiguity (more than one parse)

From lines to hierarchical respresentions...

• From this: morph-ology **VP** [head=vouloir,...] • To this: **V**[head=vouloir, tense=Present, num=SG, person=P3] the problem of morphology ("word shape") veut an area of linguistics

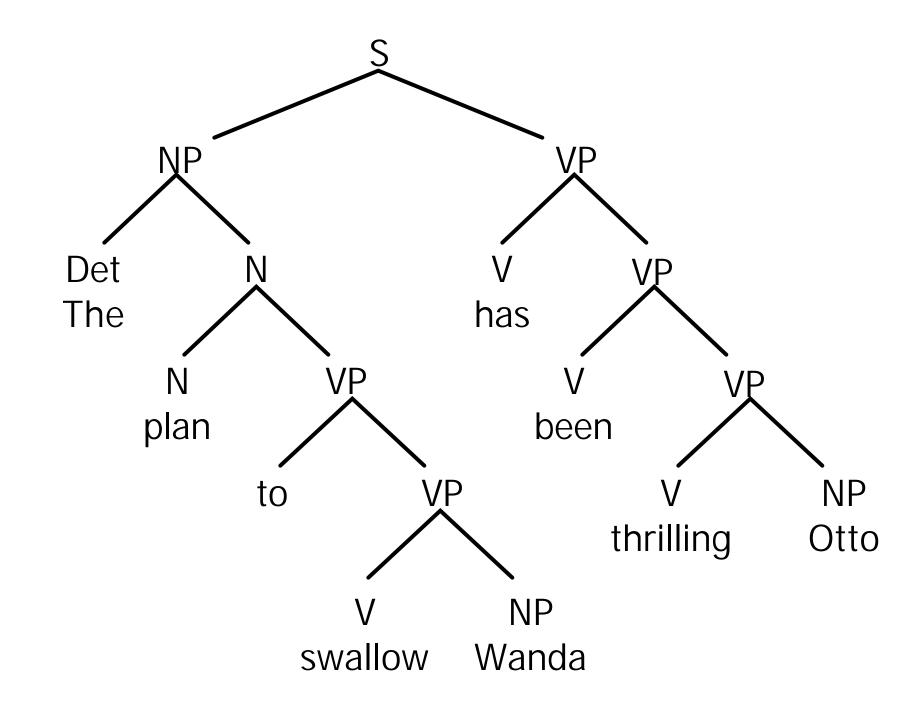
6.863J/9.611J Lecture 6 Sp03

What can't linear relations represent?

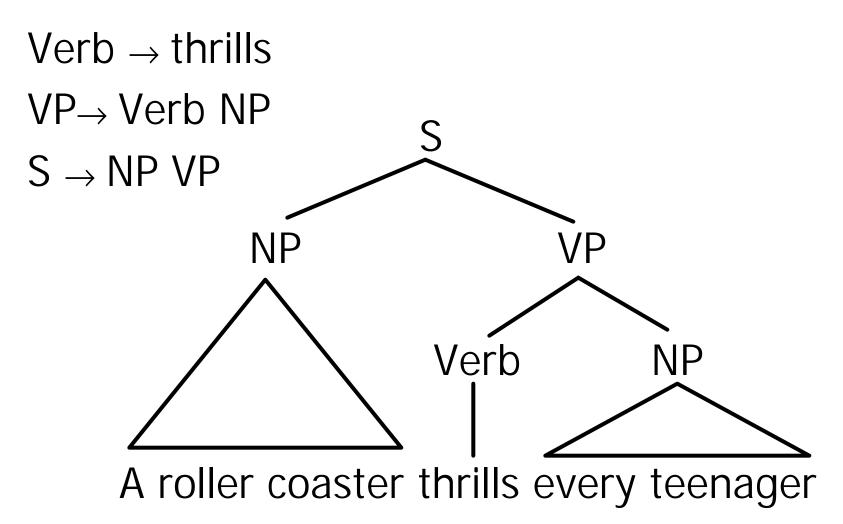
• wine dark sea \rightarrow (wine (dark sea)) or ((wine dark) sea)?

- deep blue sky
- Can fsa's represent this?
- Not really: algebraically, defined as being associative (doesn't matter about concatenation order)

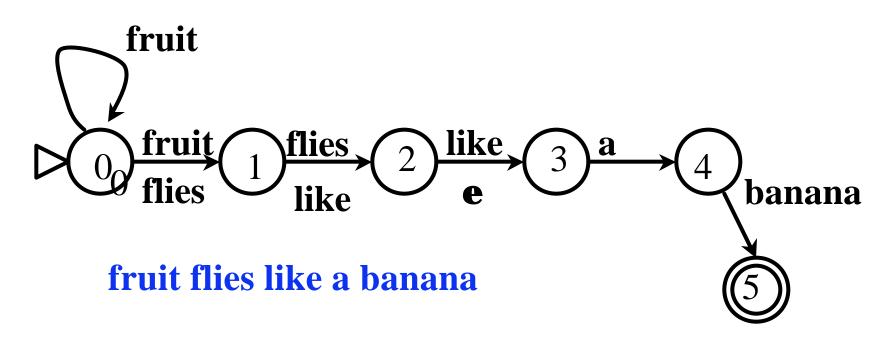
So, from linear relations... to hierarchies



Examples



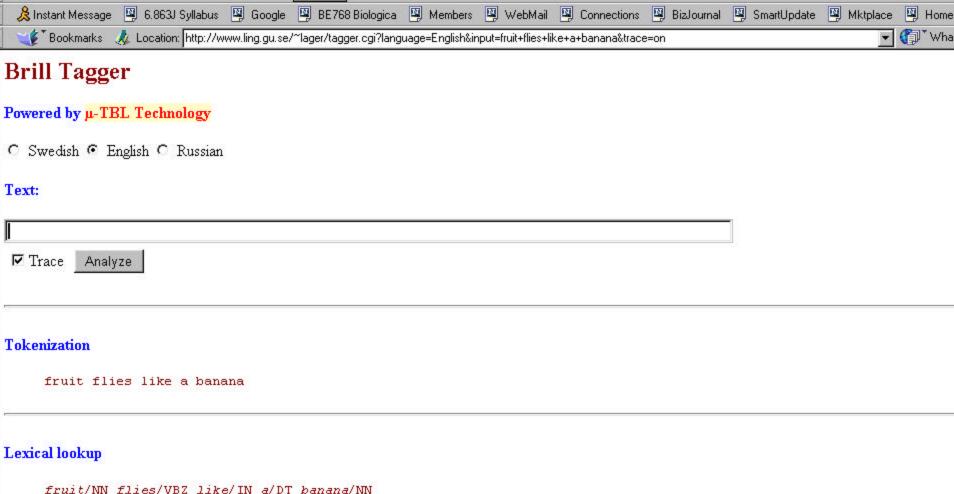
Parsing for fsa's: keep track of what 'next state' we could be in at each step



```
NB: ambiguity = > 1 path through network

= > 1 sequence of states ('parses')

= > 1 'syntactic rep' = > 1 'meaning'
```



Mg.

Netscape

Print

Security

Shop

Search

Home

Guessing

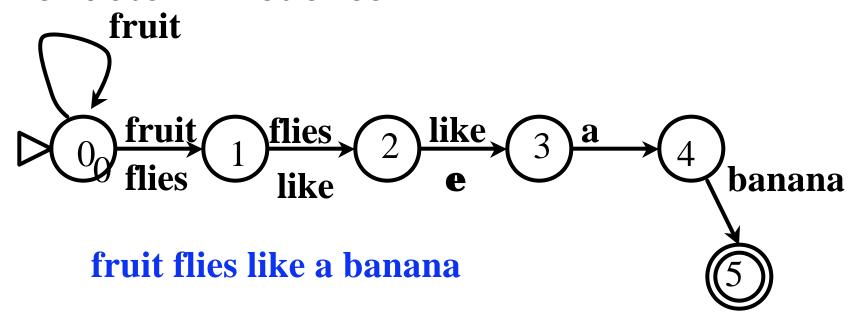
<u>File Edit View Go Communicator Help</u>

Reload

Contextual-rule application

FSA Terminology

- Transition function: next state unique = deterministic fsa
- Transition relation: > 1 next state = nondeterministic fsa



Methods for parsing

- How do we handle ambiguity?
- Methods:
 - Backtrack
 - Convert to deterministic machine (ndfsa → dfsa): offline compilation
 - 3. Pursue all paths in parallel: *online* computation ("state set" method)
 - 4. Use lookahead
- We will use all these methods for more complex machines/language representations

FSA terminology

- Input alphabet, Σ ; transition mapping, δ ; finite set of states, Q; start state q_0 ; set of final states, q_f
- $\delta(q, s) \rightarrow q'$
- Transition function: next state unique = deterministic fsa
- Transition relation: > 1 next state = nondeterministic fsa

State-set method: simulate a nondeterministic fsa

- Compute all the possible next states the machine can be in at a step = <u>state-set</u>
- Denote this by S_i = set of states machine can be in after analyzing i tokens
- Algorithm has 3 parts: (1) Initialize; (2) Loop;
 (3) Final state?
- <u>Initialize</u>: S_0 denotes initial set of states we're in, before we start parsing, that is, q_0
- <u>Loop:</u> We must compute S_i , given S_{i-1}
- <u>Final?</u>: S_f = set of states machine is in after reading all tokens; we want to test if there is a final state in state in state of Sp03

State-set parsing

Initialize: Compute initial state set, S₀

- 1. $S_0 \leftarrow q_0$
- 2. $S_0 \leftarrow \varepsilon$ -closure(S_0)

Loop: Compute S_i from S_{i-1}

- 1. For each word w_i , i=1,2,...,n
- 2. $S_i \leftarrow \bigcup_{q \in S_{i-1}} \boldsymbol{d}(q, w_i)$
- 3. $S_i \leftarrow \varepsilon$ -closure(S_i)
- 4. if $S_i = \emptyset$ then halt & reject else continue

Final: Accept/reject

1. I.f₆₃Q_{r61}€ L∞S_{rp} then accept else reject

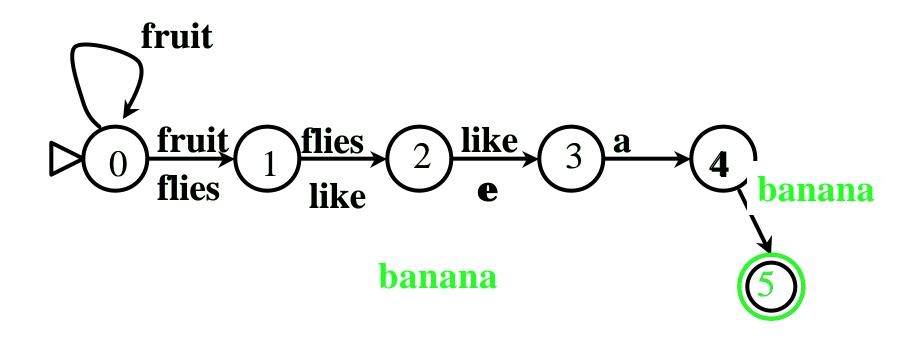
What's the minimal data structure we need for this?

- [S, i] where S = denotes set of states we could be in; i denotes current point we're at in sentence
- As we'll see, we can use this same representation for parsing w/ more complex networks (grammars) - we just need to add one new piece of information for state names
- In network form (q_i) \xrightarrow{a} (q_k) \xrightarrow{b}
- In rule form:

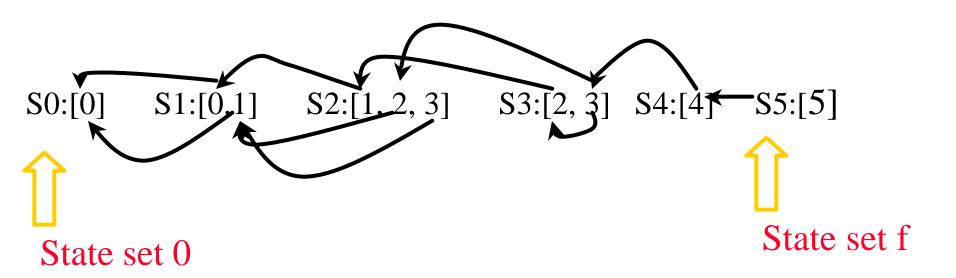
 $q_i \otimes t \bullet \beta \ q_f$ where t = some token of the input, and $\beta =$ remainder (so 'dot' represents how far we have traveled)

6.863J/9.611J Lecture 6 Sp03

Example



Use backpointers to keep track of the different paths (parses):



When is it better to convert at compile time vs. run time? (for fsa)

- Run time: compute next state set on the fly
- Compile time: do it once and for all
- When would this difference show up in natural languages (if at all)?

Where do the fsa states come from?

- States are <u>equivalence classes</u> of words (tokens) under the operation of <u>substitution</u>
- Linguistic formulation (Wells, 1947, pp. 81-82): "A word A belongs to the class determined by the environment _____X if AX is either an utterance or occurs as a part of some utterance" (distributional analysis)
- This turns out to be algebraically correct
- Can be formalized the notion of *syntactic* equivalence 6 Sp03

X-files: fragments from an alien language

- 1. Kelli lost the election
- 2. Gore will lose the election
- 3. Gore could lose the election
- 4. Gore should lose the election
- 5. Gore did lose the election
- 6. Gore could have lost the election
- 7. Gore should have lost the election
- 8. Gore will have lost the election
- 9. Gore could have been losing the election
- 10. Gore should have been losing the election
- 11. Gore will have been losing the election
- 12. Gore has lost the effection

More X-files

- 14. Bush lost the election
- 15. Bush will lose the election
- 16. Bush could lose the election
- 17. Bush should lose the election
- 18. Bush did lose the election
- 19. Bush could have lost the election
- 20. Bush should have lost the election
- 21. Bush will have lost the election
- 22. Bush could have been losing the election
- 23. Bush should have been losing the election
- 24. Bush will have been losing the election
- 25. Bush has lost the election

Formally...

- <u>Definition</u>. A <u>binary relation</u> between sets A, B, is a subset (possibly empty) of A x B
- <u>Definition</u>. Strings k,r are <u>left-substitutable</u> in a language L, if, for all strings w defined over Σ^* , $kw \in L$ iff $rw \in L$
- Fact. Left-substitutability is an equivalence relation (reflexive, transitive, symmetric)
- <u>Definition</u>. An equivalence relation over Σ is <u>finite rank</u> if it divides Σ into finitely many equivalence classes
- <u>Definition</u>. A binary relation R is called <u>right-invariant</u> if, for all $p,r \in \Sigma^*$, $pRr \Rightarrow pwRrw$

And formally...

- Fact. A right-invariant relation R is an equivalence relation
- Theorem (Myhill-Nerode, 1956)

Theorem (Myhill-Nerode, 1956).

- Let $L\subseteq \Sigma^*$. Then the following 3 propositions are equivalent:
- 1. L is generated (accepted) by some finitestate automaton (finite transition network);
- 2. L is the union of certain equivalence classes of a right-invariant equivalence relation of finite rank
- 3. Let the equivalence relation *R* be defined as follows: *xRy* iff *x* and *y* are left-substitutable in *L*. Then this relation *R* is of finite-rank and is right-invariant [this is Wells' definition]

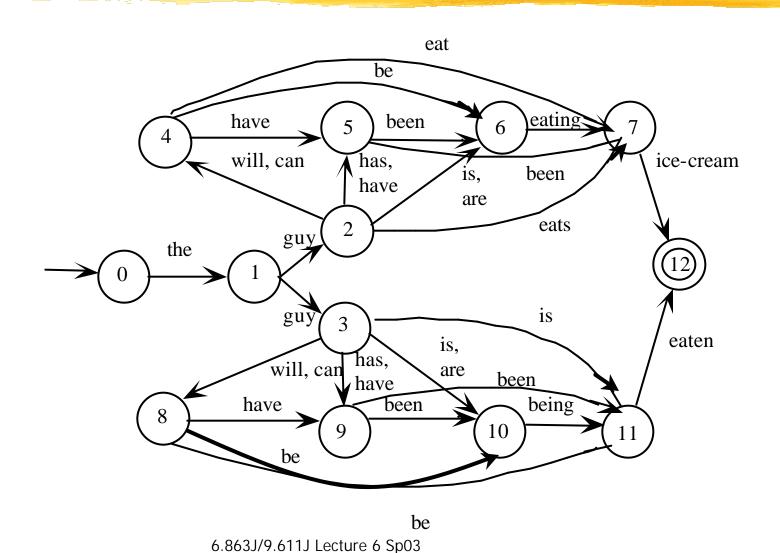
Finite # of bins = finite state

- Gives easy way to show what is not finite-state
- Eg, a^ncb^n , for all n > 0
- Proof by contradiction.
 - Suppose there was such an FSA. By the theorem, this FSA is of finite rank, and classifies all strings in Σ^* into one of a finite number of classes.
 - By the pigeonhole principle, there must exist some string a^i s.t. a^j with $j \neq i$ is in the same equivalence class as a^i . But then the fsa must recognize both a^i c a^j and a^i c a^j , a contradiction

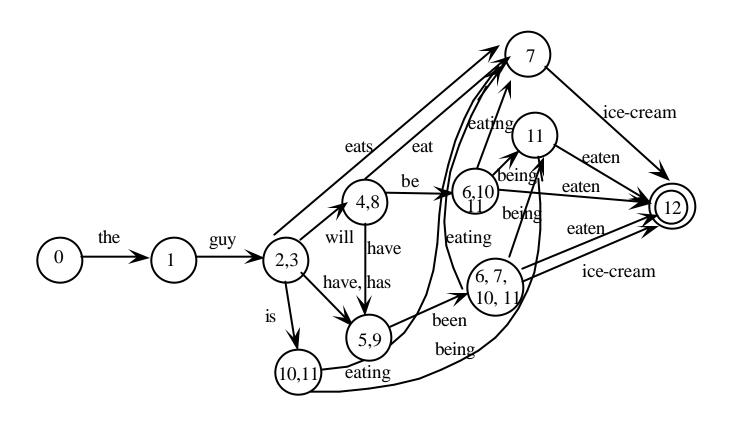
Why not fsa's forever?

- Can't yield the right set of strings = weak generative capacity (antiantimissle...)
- Can't yield the right set of structures = strong generative capacity (dark blue sky)
- How do these failures show up?

A more complex fsa

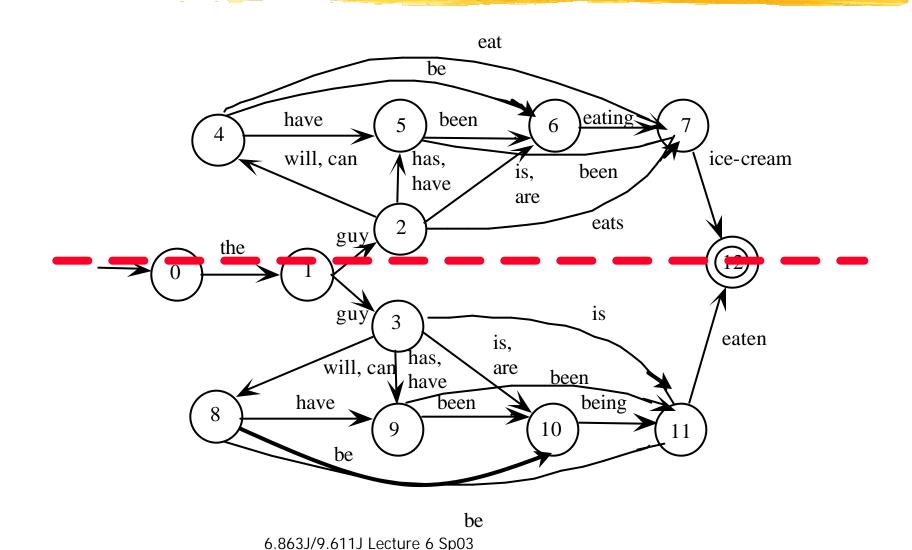


Conversion to deterministic machine



What are we missing here?

We are missing the symmetry

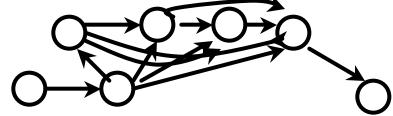


Having a poor representation...

- Shows up in having duplicated states (with no other connection to each other)
- System would be 'just as complex' = have the same size (what is size of automaton?) even if the network were not symmetric
- So we have failed to capture this regularity & the network could be compressed
- How?

Compressability reveals rendundancy (pattern) that we have missed

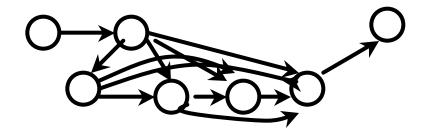
Active:



+

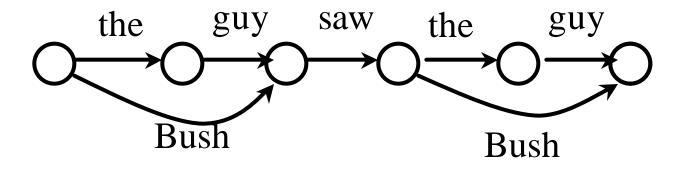
Rule that flips network=

Passive:



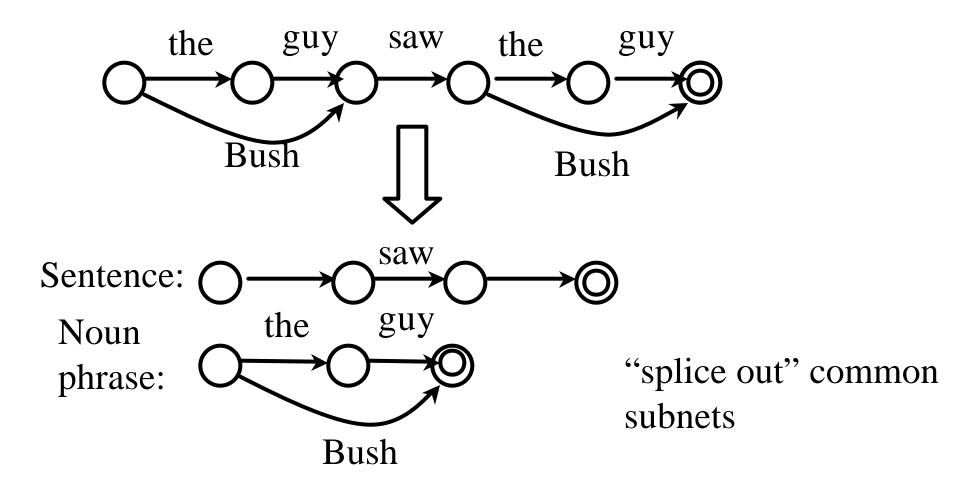
Aka "transformational grammar"

But it's worse than that... more redundancy even so



So, obvious programming approach: use a *subroutine*

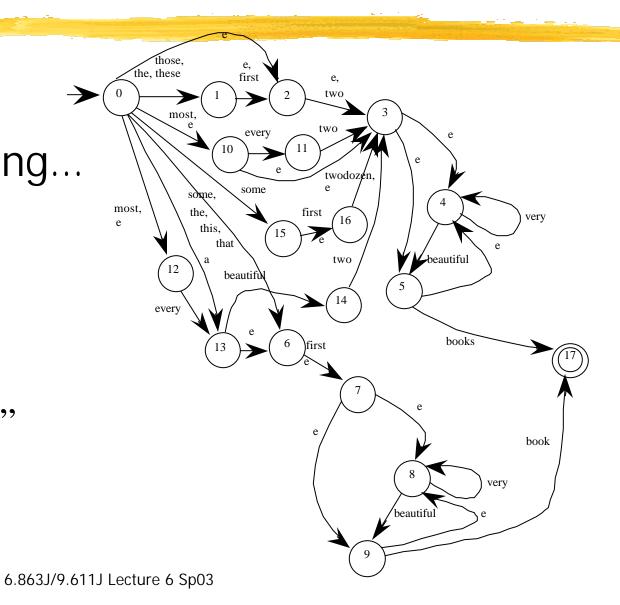
Subnetworks as subroutines, to compress the description



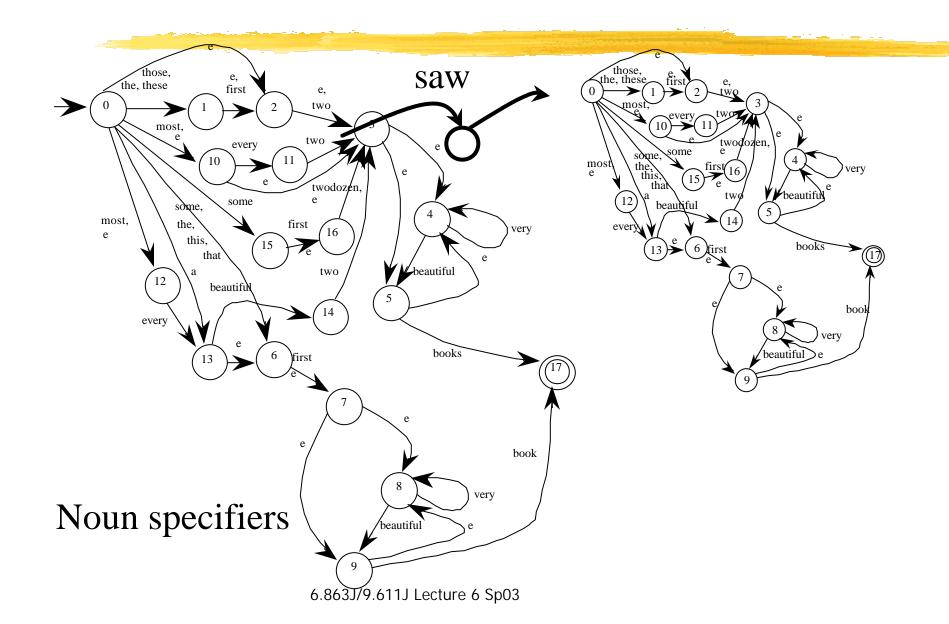
Could be worse...

Could be raining...

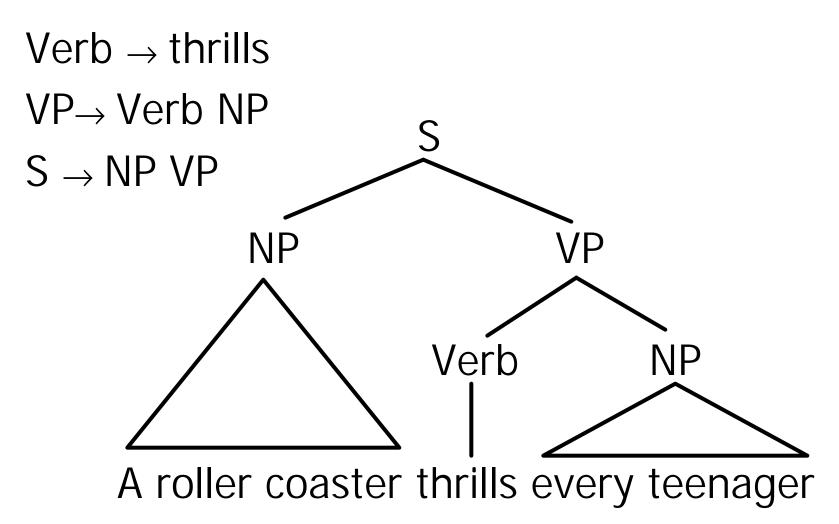
Noun "specifiers"



It could be even worse...



Examples



The notion of a <u>common</u> subnetwork

- Equivalent to the notion of a <u>phrase</u>
- A <u>N</u>oun <u>Phrase</u> (NP)
- Defined by substitution class of a sequence of words (aka "a <u>constituent</u>") - extension beyond substitution of single words
- A phrase iff we can interchangeably substitute that sequence of words regardless of context
- So also gives us the notion of a <u>context-free</u> grammar (CFG)

Constituents, aka phrases

- Building blocks that are units of words concatenated together
- Why?
- Ans:
- 1. They act together (i.e., behave alike under operations) what operations?
- 2. Succinctness
- 3. (Apparently) nonadjacent constraints

The deepest lesson

- Claim: all apparently nonadjacent relationships in language can be reduced to adjacent ones via projection to a new level of representation
- (In one sense, vacuous; in another, deep)
- Example: Subject-Verb agreement (agreement generally)
- Example: so-called wh-movement

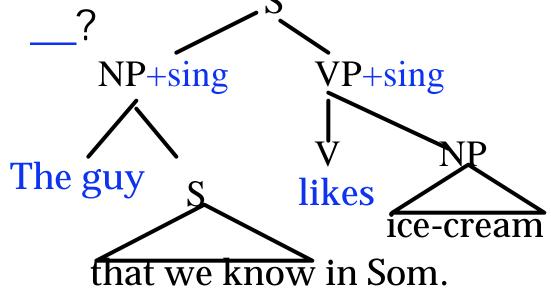
Gaps ("deep" grammar!)

- Pretend "kiss" is a pure transitive verb.
- Is "the president kissed" grammatical?
 - If so, what type of phrase is it?
- the sandwich that
- I wonder what
- What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Examples

- The guy that we know in Somerville likes icecream
- Who did the guy who lives in Somerville see



The deep reason why

- Machinery of the mind: based only on concatenation of adjacent elements - not on 'counting' eg., "take the 7th element & move it..."
- Runs through all of linguistic representations (stress, metrical patterns, phonology, syntax, ...)
- Strong constraint on what we have to represent

Constituents

- Basic 'is-a' relation
- Act as 'whole units' -
 - I want this student to solve the problem
 - ?? Student, I want this to solve the problem
 - This student, I want to solve the problem
- Sometimes, we don't see whole constituents...book titles (claimed as objection to constituency):
 - Sometimes a Great Notion
 - The Fire Next Time
- Why might that be?