
6.863J Natural Language Processing
Lecture 6: The Red Pill or the Blue Pill,

Episode 1: part-of-speech tagging

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 6

The Menu Bar
• Administrivia:

• Schedule alert: Lab1b due today
• Lab 2a, released today; Lab 2b, this Weds

Agenda:
Red vs. Blue:
• Ngrams as models of language
• Part of speech ‘tagging’ via statistical models
• Ch. 6 & 8 in Jurafsky

6.863J/9.611J SP04 Lecture 6

The Great Divide in NLP: the red pill
or the blue pill?

“Knowledge
Engineering” approach
Rules built by hand w/
K of Language
“Text understanding”

“Trainable Statistical”
Approach
Rules inferred from lots
of data (“corpora”)
“Information retrieval”

6.863J/9.611J SP04 Lecture 6

Two ways

• Probabilistic model - some constraints on
morpheme sequences using prob of one
character appearing before/after another

prob(ing | stop) vs. prob(ly| stop)
• Generative model – concatenate then fix up

joints
• stop + -ing = stopping, fly + s = flies
• Use a cascade of transducers to handle all the

fixups

6.863J/9.611J SP04 Lecture 6

The big picture II

• In general: 2 approaches to NLP
• Knowledge Engineering Approach

• Grammars constructed by hand
• Domain patterns discovered by human expert via

introspection & inspection of ‘corpus’
• Laborious tuning

• Automatically Trainable Systems
• Use statistical methods when possible
• Learn rules from annotated (or o.w. processed)

corpora

6.863J/9.611J SP04 Lecture 6

Preview of tagging

• What is tagging?
• Input: word sequence:

Police police police
• Output: classification (binning) of words -

Noun Verb Noun or
[Help!]

6.863J/9.611J SP04 Lecture 6

Preview of tagging & pills: red pill
and blue pill methods

• Method 1: statistical (n-gram)

• Method 2: more symbolic (but still includes
some probabilistic training + fixup) –
‘example based’ learning

6.863J/9.611J SP04 Lecture 6

What is part of speech tagging &
why?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

Or: BOS the lyric beauties of Schubert ‘s Trout
Quintet : its elemental rhythms and infectious
melodies : make it a source of pure pleasure for
almost all music listeners ./

6.863J/9.611J SP04 Lecture 6

Tagging for this..

The/DT lyric/JJ beauties/NNS of/IN

Schubert/NNP 's/POS Trout/NNP Quintet/NNP

--/:

its/PRP$ elemental/JJ rhythms/NNS

and/CC infectious/JJ melodies/NNS

--/: make/VBP it/PRP

a/DT source/NN of/IN pure/JJ pleasure/NN

for/IN almost/RB all/DT music/NN listeners/NNS ./.

6.863J/9.611J SP04 Lecture 6

Tagging words

• Well defined
• Easy, but not too easy (not AI-complete)
• Data available for machine learning methods
• Evaluation methods straightforward

6.863J/9.611J SP04 Lecture 6

Why should we care?

• The first statistical NLP task
• Been done to death by different methods
• Easy to evaluate (how many tags are correct?)
• Canonical finite-state task

• Can be done well with methods that look at local context
• Though should “really” do it by parsing!

6.863J/9.611J SP04 Lecture 6

Why should we care?

• “Simplest” case of recovering surface,
underlying form via statistical means

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence T likely given these words?

6.863J/9.611J SP04 Lecture 6

Tagging as n-grams

• Most likely word? Most likely tag t given a
word w? = P(tag|word) – not quite

• Task of predicting the next word
• Woody Allen:

“I have a gub”
But in general: predict the Nth tag from the

preceding n-1 word (tags) aka N-gram

6.863J/9.611J SP04 Lecture 6

Summary of n-grams

• n-grams define a probability model over
sequences

• we have seen examples of sequences of
words, but one can also look at characters

• n-grams deal with sparse data by using the
Markov assumption

6.863J/9.611J SP04 Lecture 6

Markov models: the ‘pure’ statistical
model…

• 0th order Markov model: P(wi)
• 1st order Markov model: P(wi|wi-1)
• 2nd order Markov model: P(wi|wi-1 wi-2)
…
• Where do these probability estimates come from?
• Counts: P(wi | wi-1) = count(wi , wi-1)/count(wi-1)
(so-called maximum likelihood estimate - MLE)

6.863J/9.611J SP04 Lecture 6

N-grams

• But…How many possible distinct probabilities
will be needed?, i.e. parameter values

• Total number of word tokens in our training
data

• Total number of unique words: word types is
our vocabulary size

6.863J/9.611J SP04 Lecture 6

n-gram Parameter Sizes – large!

• Let V be the vocabulary, size of V is |V|, 3000
distinct types say

• P(Wi=x) how many different values for Wi ?

• P(Wi = x | Wj = y), # distinct doubles =

3x103 x 3x103 = 9 x 106

P(Wi = x | Wk = z, Wj = y), how many distinct triples?
27 x 109

6.863J/9.611J SP04 Lecture 6

Choosing n

1.6 x 10174 (4-grams)

8,000,000,000,0003 (trigrams)

400,000,0002 (bigrams)

Number of binsn

Suppose we have a vocabulary (V) = 20,000 words

6.863J/9.611J SP04 Lecture 6

How far into the past
should we go?

• “long distance___”
• Next word? Call?
• p(wn|w…)
• Consider special case above
• Approximation says that

| long distance call|/|distance call| ≈ |distance call|/|distanc
• If context 1 word back = bigram
But even better approx if 2 words back: long distance___

Not always right: long distance runner/long distance call
Further you go: collect long distance_____

6.863J/9.611J SP04 Lecture 6

Parameter size vs. corpus size

• Corpus: said the joker to the thief
|V| = 5

• What’s the max # of parameters?
• What’s observed? (All pairs)

• We observe only |V| many bigrams!
• V had better be large wrt # parameters

6.863J/9.611J SP04 Lecture 6

Reliability vs. discrimination

“large green ___________”

tree? mountain? frog? car?

“swallowed the large green ________”
pill? broccoli?

6.863J/9.611J SP04 Lecture 6

Reliability vs. discrimination

• larger n: more information about the context
of the specific instance (greater
discrimination)

• smaller n: more instances in training data,
better statistical estimates (more reliability)

6.863J/9.611J SP04 Lecture 6

Statistical estimators

Example:

Corpus: five Jane Austen novels

N = 617,091 words

V = 14,585 unique words

Task: predict the next word of the trigram “inferior to ____”

from test data, Persuasion:

“[In person, she was] inferior to both [sisters.]”

6.863J/9.611J SP04 Lecture 6

Shakespeare in lub…
The unkindest cut of all

• Shakespeare: 884,647 words or tokens
(Kucera, 1992)

• 29,066 types (incl. proper nouns)
• So, # bigrams is 29,0662 > 844 million. 1

million word training set doesn’t cut it – only
300,000 difft bigrams appear

• Most entries are zero
• So we can’t go very far…

6.863J/9.611J SP04 Lecture 6

Bigram models in practice

• P(Bush read a book) =
P(Bush | BOS) x

P(read | Bush) x
P(a | read) x

P(book | a) x
P(EOS | book)

Estimate via counts P(wi | wi-1) = count(wi , wi-1)/count(wi-1)
On unseen data, count(wi , wi-1) or worse, count (wi-1)

could be zero! What to do?

6.863J/9.611J SP04 Lecture 6

How to Estimate?

• p(z | xy) = ?
• Suppose our training data includes

… xya ..
… xyd …
… xyd …

but never xyz
• Should we conclude

p(a | xy) = 1/3?
p(d | xy) = 2/3?
p(z | xy) = 0/3?

• NO! Absence of xyz might just be bad luck.

6.863J/9.611J SP04 Lecture 6

Smoothing

Smoothing deals with events that have been
observed zero times

• Smoothing algorithms also tend to improve
the accuracy of the model

• Not just unobserved events: what about
events observed once?

6.863J/9.611J SP04 Lecture 6

Smoothing the Estimates

• Should we conclude
p(a | xy) = 1/3? reduce this
p(d | xy) = 2/3? reduce this
p(z | xy) = 0/3? increase this

• Discount the positive counts somewhat
• Reallocate that probability to the zeroes
• Especially if the denominator is small …

• 1/3 probably too high, 100/300 probably about right
• Especially if numerator is small …

• 1/300 probably too high, 100/300 probably about right

6.863J/9.611J SP04 Lecture 6

Add-one smoothing

• Let V be the number of words in our
vocabulary

• Remember that we observe only V many
bigrams

• Assigns count of 1 to unseen bigrams

6.863J/9.611J SP04 Lecture 6

Maximum likelihood estimate

6.863J/9.611J SP04 Lecture 6

Actual probability distribution

6.863J/9.611J SP04 Lecture 6

Comparison

6.863J/9.611J SP04 Lecture 6

Add-One Smoothing

3/3

0/3

0/3

2/3

0/3

0/3

1/3

29/29293Total xy

1/2910xyz

…

1/2910xye

3/2932xyd

1/2910xyc

1/2910xyb

2/2921xya

6.863J/9.611J SP04 Lecture 6

Add-one smoothing

, 1
1

1

()
(|)

()
i i

i i
i

c w w
P w w

c w
−

−
−

=

, 1
1

1

1 ()
(|)

()
i i

i i
i

c w w
P w w

V c w
−

−
−

+
=

+

6.863J/9.611J SP04 Lecture 6

Example: Bush reads a book
• P(Bush reads a book)
• Without smoothing:

• With add-one smoothing (assuming
c(Bush)=1 but c(Bush, read) =0

(,)(|) 0
()

c Bush readP read Bush
c Bush

= =

1(|)
1

P read Bush
V

=
+

6.863J/9.611J SP04 Lecture 6

Add-One Smoothing

300/300

0/300

0/300

200/300

0/300

0/300

100/300

326/326326300Total xy

1/32610xyz

…

1/32610xye

201/326201200xyd

1/32610xyc

1/32610xyb

101/326101100xya

300 observations instead of 3 – better data, less smoothing

6.863J/9.611J SP04 Lecture 6

Add-One Smoothing

3/3

0/3

0/3

2/3

0/3

0/3

1/3

29/29293Total xy

1/2910xyz

…

1/2910xye

3/2932xyd

1/2910xyc

1/2910xyb

2/2921xya

Suppose we’re considering 20000 word types, not 26 letters

6.863J/9.611J SP04 Lecture 6

Add-One Smoothing
As we see more word types, smoothed estimates keep falling

3/3

0/3

0/3

2/3

0/3

0/3

1/3

3

0

0

2

0

0

1

20003/2000320003Total

1/200031see the zygote

…

1/200031see the Abram

3/200033see the above

1/200031see the abduct

1/200031see the abbot

2/200032see the abacus

6.863J/9.611J SP04 Lecture 6

Problems…too many mouths to feed

• Suppose we’re dealing with a vocab of 20000
words

• As we get more and more training data, we
see more and more words that need
probability – the probabilities of existing
words keep dropping, instead of converging

• This can’t be right – eventually they drop too
low

6.863J/9.611J SP04 Lecture 6

Good-Turing smoothing

• Add-1 works horribly in practice – adding 1
seems too large

• So…imagine you’re sitting at a sushi bar with
a conveyor belt

• How likely are you to see a new kind of
seafood appear?

6.863J/9.611J SP04 Lecture 6

The sushi bar

10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

How likely are you to see another salmon? < 2/18

6.863J/9.611J SP04 Lecture 6

Good-Turing smoothing

• How likely are you to see a new type of
seafood?

• How many types of seafood (submarines,
words) were seen only once? Use this to
predict probabilities for unseen events

• Let n1 be the # of events that occurred once,
then the initial est. of this is, p0 = n1/N

• Let n2 be the # of events that occurred twice

6.863J/9.611J SP04 Lecture 6

Good-Turing smoothing

• 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1
octopus, 1 yellowtail

• p0 = n1/N = 3/18

• Now how likely is octopus?
• Good-Turing estimate: for any n-gram that

occurs r times, we pretend it occurs r* times,

1* (1) r

r

nr r
n

+= +

6.863J/9.611J SP04 Lecture 6

At the sushi bar

• 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus,
1 yellowtail

• Octopus occurs 1 time, r=1 so we adjust to 1*
• We need n1 # of things that occur once = 3
• We need n2 # of things that occur twice = 1
• Then

1 1 2* (1) 1* 2
3 3

r

r

nr r
n

+= + = = × =

6.863J/9.611J SP04 Lecture 6

Is that the final word?

• No – what happens if something is not seen
at all?

• Then you must backoff to bigrams,
unigrams…

• Many other new smoothing methods available
(see book) – various weighting/discounting
schemes (we shall revisit: EM algorithm)

• Are we done? Can we use trigrams now?
• Not quite…

6.863J/9.611J SP04 Lecture 6

Time must have a stop

• Note that in the trigram model the length of the
sentence n is variable

• But then, what is the event space for calculating
probabilities?

• Suppose our alphabet is just a, b, and the language
is all strings over this, eg, ε, a, b, aa, bb, ab, …

• Assume unigram model, P(a)=P(b) = 0.5
• Then P(aa)= 0.52 = 0.25 = P(bb), etc…
• But then, adding, P(a)+P(b)+P(aa)+P(bb) =

1.5 ????
What went wrong???

6.863J/9.611J SP04 Lecture 6

Must have a stop

• No probability for P(ε)
• Add special stop symbol:

• P(a)=P(b)= 0.25; P(stop)= 0.5
• Now it works out: P(a stop) = P(b stop) =

0.25 x 0.5 = 0.125; P(aa stop) = 0.252 =
.03125, etc.

• Exercise: show the P sum is now 1.

6.863J/9.611J SP04 Lecture 6

OK, back to sushi

• Tagging for the Trout:

6.863J/9.611J SP04 Lecture 6

Tagging for this..

The/DT lyric/JJ beauties/NNS of/IN

Schubert/NNP 's/POS Trout/NNP Quintet/NNP

--/:

its/PRP$ elemental/JJ rhythms/NNS

and/CC infectious/JJ melodies/NNS

--/: make/VBP it/PRP

a/DT source/NN of/IN pure/JJ pleasure/NN

for/IN almost/RB all/DT music/NN listeners/NNS ./.

6.863J/9.611J SP04 Lecture 6

(Next step: bracketing…)

[The/DT lyric/JJ beauties/NNS]

of/IN

[Schubert/NNP 's/POS Trout/NNP Quintet/NNP]

--/:

[its/PRP$ elemental/JJ rhythms/NNS]

and/CC [infectious/JJ melodies/NNS]

--/: make/VBP [it/PRP]

[a/DT source/NN] of/IN [pure/JJ pleasure/NN]

for/IN almost/RB [all/DT music/NN listeners/NNS] ./.

6.863J/9.611J SP04 Lecture 6

Tagging methods

• Statistical Tagger T3
• Error-driven Transformation-based Tagger

TBT
• Maximum Entropy Tagger MET
• Example-based tagger ET

6.863J/9.611J SP04 Lecture 6

Why tagging? Beyond part of speech

• Syntactic word class
• Word sense
• Attachment
• Shallow parsing
• Sentence boundary detection

6.863J/9.611J SP04 Lecture 6

Two approaches

1. Statistical model
2. Deterministic baseline tagger composed

with a cascade of fixup transducers
These two approaches are the guts of Lab 2
(lots of others methods: decision trees, …)

6.863J/9.611J SP04 Lecture 6

Statistical Model

• Prob(Tag sequence, word sequence) – based
on n-grams: train on marked up text

• We shall see how to do this in detail in a
moment

6.863J/9.611J SP04 Lecture 6

Another FST Paradigm: Successive
Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …

In
itia

l a
nnota

tio
n

Fixu
p 1

Fixu
p 2input

outputFixu
p 3

6.863J/9.611J SP04 Lecture 6

Evaluation Criteria

• Precision/recall
• Accuracy/ambiguity

6.863J/9.611J SP04 Lecture 6

An exemplar for the divide: “tagging”
text

• Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

• Can be challenging:
I know that
I know that block
I know that blocks the sun

• new words (OOV= out of vocabulary); words can be whole
phrases (“I can’t believe it’s not butter”)

6.863J/9.611J SP04 Lecture 6

What are tags?

• Bridge from words to parsing – but not quite
the morphemic details that Kimmo provides
(but see next slide)

• Idea is more divide-and-conquer – and
depends on task

• “Shallow” analysis for “shallow parsing”

6.863J/9.611J SP04 Lecture 6

More sophisticated – use features

• Word form: A+ → 2(L,C1,C2,...,Cn) → T
• He always books the violin concert tickets early.

• books → {(book-1,Noun,Pl,-,-),(book-2,Verb,Sg,Pres,3)}
• tagging (disambiguation): ... → (Verb,Sg,Pres,3)

• ...was pretty good. However, she did not realize...
• However → {(however-1,Conj/coord,-,-,-),

(however- 2,Adv,-,-,-)}
• tagging: ... → (Conj/coord,-,-,-)

6.863J/9.611J SP04 Lecture 6

Two approaches

1. Noisy Channel Model (statistical) –
what’s that?? (we will have to learn
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, …)

6.863J/9.611J SP04 Lecture 6

Example tagsets

• 87 tags - Brown corpus
• Three most commonly used:
1. Small: 45 Tags - Penn treebank (Medium

size: 61 tags, British national corpus
2. Large: 146 tags
Big question: have we thrown out the right

info? Impoverished? How?

6.863J/9.611J SP04 Lecture 6

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts

6.863J/9.611J SP04 Lecture 6

Current (computer/human)
performance

• How many tags are correct?
• About 97% currently
• But baseline is already 90%:

• Baseline is Homer Simpson algorithm:
• Tag every word with its most frequent tag

(Unigram frequency)
• Tag unknown words as nouns

• How well do people do?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

6.863J/9.611J SP04 Lecture 6

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

6.863J/9.611J SP04 Lecture 6

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Ok, what should we look at?

6.863J/9.611J SP04 Lecture 6

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

6.863J/9.611J SP04 Lecture 6

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

6.863J/9.611J SP04 Lecture 6

We can use n-grams for tagging

• Replace ‘words’ with ‘tags’
• Find best maximum likelihood estimates
• Estimates calculated this way:

• P(noun|det) = p(det, noun)/p(det) replace:
• ≈ count(det at position i-1 & noun at i)

count(det at position i-1)
• Correction: include frequency of context word
 ≈ count(det at position i-1 & noun at i)

count(det at position i-1)*count (noun at i)
 Find optimal path – highest p, using dynamic

programming algorithm, approx. linear in length of
tag sequence

6.863J/9.611J SP04 Lecture 6

Example

The guy still saw her
Det NN NN NN PPO

VB VB VBD PP$
RB

Table 2 from DeRose (1988)
Det=determiner, NN=noun, VB=verb, RB=adverb,
VBD=past-tense-verb, PPO=object pronoun and
PP$=possessive pronoun

Find the Max likelihood estimate (MLE) path through
this ‘trellis’

6.863J/9.611J SP04 Lecture 6

Transitional probability estimates
from counts

DT NN PPO PP$ RB VB VBD

DT 0 186 0 8 1 8 9

NN 40 1 3 40 9 66 186

PPO 7 3 16 164 109 16 313

PP$ 176 0 0 5 1 1 2

RB 5 3 16 164 109 16 313

VB 22 694 146 98 9 1 59

VBD 11 584 143 160 2 1 91

6.863J/9.611J SP04 Lecture 6

Tagging search tree (trellis)

Det NN NN NN PPO

VB VB VBD PP$

RB

The guy still saw her

Step 1. c(DT-NN)= 186
c(DT-VB) = 1

Keep both paths. (Why?)
Step 2. Pick max to each of the tags NN, VB, RB

need keep only the max. Why?

6.863J/9.611J SP04 Lecture 6

Trellis search

Det NN NN NN PPO

VB VB VBD PP$

RB

The guy still saw her
1
66

186

9

1

Det NN NN NN PPO

VB VB VBD PP$

RB

1
9

6941

6.863J/9.611J SP04 Lecture 6

Finite-state approaches

• Noishy Chunnel Muddle (statistical)

noisy channel X Y

real language X

yucky language Y

want to recover X from Y

part-of-speech tags

insert words

text

6.863J/9.611J SP04 Lecture 6

So far, then…

• n-gram models are a.k.a. Markov
models/chains/processes.

• They are a model of how a sequence of
observations comes into existence.

• The model is a probabilistic walk on a FSA.
• Pr(a|b) = probability of entering state a,

given that we’re currently in state b.

6.863J/9.611J SP04 Lecture 6

How well does this work for tagging?

• 90% accuracy (for unigram) pushed up to
96%

• So what?
• How good is this? Evaluation!

6.863J/9.611J SP04 Lecture 6

Evaluation of systems
• The principal measures for information extraction tasks

are recall and precision.

• Recall is the number of answers the system got right
divided by the number of possible right answers

• It measures how complete or comprehensive the
system is in its extraction of relevant information

• Precision is the number of answers the system got right
divided by the number of answers the system gave

• It measures the system's correctness or accuracy
• Example: there are 100 possible answers and the

system gives 80 answers and gets 60 of them right,
its recall is 60% and its precision is 75%.

6.863J/9.611J SP04 Lecture 6

A better measure - Kappa

• Takes baseline & complexity of task into
account – if 99% of tags are Nouns, getting
99% correct no great shakes

• Suppose no “Gold Standard” to compare
against?

• P(A) = proportion of times hypothesis agrees
with standard (% correct)

• P(E) = proportion of times hypothesis and
standard would be expected to agree by chance
(computed from some other knowledge, or
actual data)

6.863J/9.611J SP04 Lecture 6

Kappa [p. 315 J&M text]

• Note K ranges between 0 (no agreement,
except by chance; to complete agreement, 1)

• Can be used even if no ‘Gold standard’ that
everyone agrees on

• K> 0.8 is good

() ()
1 ()

P A P E
P E

κ −
=

−

6.863J/9.611J SP04 Lecture 6

Kappa

• A = actual agreement; E = expected agreement
• consistency is more important than “truth”
• methods for raising consistency

• style guides (often have useful insights into
data)

• group by task, not chronologically, etc.
• annotator acclimatization

() ()
1 ()

P A P E
P E

κ −
=

−

6.863J/9.611J SP04 Lecture 6

Statistical Tagging Methods

• Simple bigram – ok, done
• Combine bigram and unigram

• OUR GOAL: maximize P(T,w) where T=a tag
sequence (guessed); and w= the observed
word sequence – note this is a joint
probability

• So, why not use our formula for joint
probabilities…

6.863J/9.611J SP04 Lecture 6

Our first try…

• P(T,w) = P(T) P(w | T)

6.863J/9.611J SP04 Lecture 6

Our plan to find P(T,w)

• Find best P(T) – probability of a tag sequence
• How? A: use bigrams
• Find best P(w|T) --???? How?

6.863J/9.611J SP04 Lecture 6

Punchline – recovering (words, tags)

BOS PN Verb Det Noun Prep Noun Prep Det Noun EOS

Bill directed a cortege of autos through the dunes

GOAL: Find tag sequence X that maximizes probability
product

tags X→

words Y→

6.863J/9.611J SP04 Lecture 6

Break apart in 2 stages

• If we were just predicting tags, we could just
use bigrams

• We can model this as a Markov process, in
particular, an fsa with probabilities on the
arcs…

6.863J/9.611J SP04 Lecture 6

Markov chain…pr of letter sequences

1
.4

1

.3
.3

.4

.6 1

.6

.4

te

h a p

i

Start

Pr(|) 1
x

y x y∀ =∑

note: Pr(h|h) = 0

6.863J/9.611J SP04 Lecture 6

First-order Markov (bigram tag)
model as fsa

Det

BOS

Adj
Noun

Verb

Prep

EOS

6.863J/9.611J SP04 Lecture 6

First-order Markov (bigram tag)
model as fsa

Det

BOS

Adj
Noun

Verb

Prep

EOS

6.863J/9.611J SP04 Lecture 6

Add in transition probs from training
data - sum to 1

Det

BOS

Adj
Noun

Verb

Prep

EOS

0.3 0.7

0.4 0.5

0.1

6.863J/9.611J SP04 Lecture 6

Same as bigram…estimate the same
way

P(Noun|Det)=0.7 ≡

Det Noun

6.863J/9.611J SP04 Lecture 6

Add in start & etc.

Det

BOS

Adj
Noun

Verb

Prep

EOS

0.70.3

0.8

0.2
0.4 0.5

0.1

6.863J/9.611J SP04 Lecture 6

Markov Model – bigram tag sequence

Det

BOS

Adj
Noun

Verb

Prep

EOS

0.3

0.4 0.5

BOS Det Adj Adj Noun EOS = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

0.7

p(tag sequence)

0.1

6.863J/9.611J SP04 Lecture 6

So what?

• We want more!
• We cannot observe the tag sequence –
• But we can estimate P(words | tags)
• Also use an fsa – just unigrams

6.863J/9.611J SP04 Lecture 6

Unigram replacement model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

P(word| tag)

6.863J/9.611J SP04 Lecture 6

Compose

Det

BOS

Adj
Noun

Verb

Prep

EOS

Adj 0.3

Adj 0.4
Noun
0.5

Det 0.8

0.2

p(tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

6.863J/9.611J SP04 Lecture 6

Now we compose (multiply) the nets

• Compose P(tag sequence) with P(word|tag)

• Result: P(tag, word)

6.863J/9.611J SP04 Lecture 6

Compose

Det:a 0.48
Det:the 0.32

Det

BOS

Adj
Noun EOS

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

P(tag seq) * P(word seq | tag seq) e.g.,
P(tag, word) for P(Det, the) = 0.8 x 0.4 = 0.32

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Verb

Prep

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos
0.00002

0.2

6.863J/9.611J SP04 Lecture 6

Compose with
actual word seq

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos
0.00002

the

Det:the 0.32

0.32 x
D:the

0.2

cool

.0009 x
A:cool

Adj:cool 0.0009

directed

.0002 x
A:directed

Adj:directed 0.00020

0.2

x.2 ≈ .3 10-6 total

path prob,
done!

#
autos

.00002 x
N:autos

N:autos

6.863J/9.611J SP04 Lecture 6

Well, we are almost done!

• The Pr of a sequence is just found by
multiplying through as we go from start to
stop

• Given the actual words in the sentence, trace
through and find the highest value Pr – this
will give the most likely tag sequence, word
sequence combination

• (What have we wrought?)

6.863J/9.611J SP04 Lecture 6

This is an Hidden Markov model for
tagging

• Each hidden tag state produces a word in the
sentence

• Each word is
• Uncorrelated with all the other words and

their tags
• Probabilistic depending on the N previous

tags only

6.863J/9.611J SP04 Lecture 6

The statistical view, in short:

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Q: What is the most likely tag sequence?
• Use a finite-state automaton, that can emit

the observed words
• FSA has limited memory
• Note that given words, in general, there could

be more than 1 underlying state sequence
corresponding to the words

6.863J/9.611J SP04 Lecture 6

Punchline – ok, where do the pr
numbers come from?

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

tags X→

words Y→

0.4 0.6

0.001

The tags are not observable & they are states of some fsa
We estimate transition probabilities between states
We also have ‘emission’ pr’s from states
En tout: a Hidden Markov Model (HMM)

6.863J/9.611J SP04 Lecture 6

But…how do we find this ‘best’
path???

6.863J/9.611J SP04 Lecture 6

Unroll the fsa - All paths together
form ‘trellis’

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
BOS Det Adj Adj Noun EOS = 0.32 * 0.0009 …

the cool directed autos

Adj:cool 0.0009
Noun:cool 0.007

WHY?

6.863J/9.611J SP04 Lecture 6

Cross-product construction forms
trellis

So all paths here must have 5 words on output side

All paths here are 5 words

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*

0 1

2

3
4

ε
ε
ε

ε
ε
ε

6.863J/9.611J SP04 Lecture 6

Finding the best path from start to stop

• Use dynamic programming
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start

(as probability plus one backpointer)
• Special acyclic case of Dijkstra’s shortest-path

algorithm
• Faster if some arcs/states are absent

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007

6.863J/9.611J SP04 Lecture 6

Method: Viterbi algorithm

• For each path reaching state s at step (word) t, we
compute a path probability. We call the max of
these viterbi(s,t)

• [Base step] Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',t+1), assuming

we know viterbi(s,t) for all s

6.863J/9.611J SP04 Lecture 6

Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t) * a[s,s']

probability of path to max path score * transition p
s’ through s for state s at time t s →s’

viterbi(s',t+1) = max s in STATES path-prob(s' | s,t)

6.863J/9.611J SP04 Lecture 6

Method…

• This is almost correct…but again, we need to
factor in the unigram prob of a state s’ given
an observed surface word w

• So the correct formula for the path prob is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * bs’ (ot)

bigram unigram

6.863J/9.611J SP04 Lecture 6

Or as in your text…p. 179

6.863J/9.611J SP04 Lecture 6

Summary
• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• Model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Pre

Bill directed a cortege of autos thro

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement

