

The Menu Bar

Administrivia:

- Schedule alert: Lab1b due today
- Lab 2a, released today; Lab 2b, this Weds Agenda:
Red vs. Blue:
- Ngrams as models of language
- Part of speech 'tagging' via statistical models
- Ch. 6 \& 8 in Jurafsky

- Probabilistic model - some constraints on morpheme sequences using prob of one character appearing before/after another prob(ing | stop) vs. prob(ly| stop)
- Generative model - concatenate then fix up joints
- stop + -ing $=$ stopping, fly $+s=$ flies
. Use a cascade of transducers to handle all the fixups

Preview of tagging \& pills: red pill and blue pill methods

- Method 1: statistical (n-gram)
- Method 2: more symbolic (but still includes some probabilistic training + fixup) 'example based' learning

Tagging words

- Well defined
- Easy, but not too easy (not AI-complete)
- Data available for machine learning methods
- Evaluation methods straightforward

Why should we care?

- The first statistical NLP task
- Been done to death by different methods
- Easy to evaluate (how many tags are correct?)
- Canonical finite-state task
- Can be done well with methods that look at local context
- Though should "really" do it by parsing!

Tagging as n-grams

- Most likely word? Most likely tag t given a word $w ?=\mathrm{P}$ (tag|word) - not quite
- Task of predicting the next word
- Woody Allen:
"I have a gub"
But in general: predict the $\mathrm{N}^{\text {th }}$ tag from the preceding $\mathrm{n}-1$ word (tags) aka N -gram

Summary of n-grams

- n-grams define a probability model over sequences
- we have seen examples of sequences of words, but one can also look at characters
- n-grams deal with sparse data by using the Markov assumption

Markov models: the 'pure' statistical model...

- Oth order Markov model: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)$
- 1st order Markov model: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1}\right)$
- 2nd order Markov model: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1} \mathrm{w}_{\mathrm{i}-2}\right)$
- Where do these probability estimates come from?
- Counts: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1}\right)=\operatorname{count}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}-1}\right) / \operatorname{count}\left(\mathrm{w}_{\mathrm{i}-1}\right)$
(so-called maximum likelihood estimate - MLE)

N-grams

- But...How many possible distinct probabilities will be needed?, i.e. parameter values
- Total number of word tokens in our training data
- Total number of unique words: word types is our vocabulary size

n-gram Parameter Sizes - large!

- Let V be the vocabulary, size of V is $|\mathrm{V}|, 3000$ distinct types say
- $\mathrm{P}\left(\mathrm{W}_{\mathrm{i}}=\mathrm{x}\right)$ how many different values for W_{i} ?
- $P\left(W_{i}=x \mid W_{j}=y\right)$, \# distinct doubles = $3 \times 10^{3} \times 3 \times 10^{3}=9 \times 10^{6}$
$P\left(W_{i}=x \mid W_{k}=z, W_{j}=y\right)$, how many distinct triples?
27×10^{9}

| Choosing n
 n
 Suppose we have a vocabulary (V) $=20,000$ words
 Number of bins
 2 (bigrams)
 3 (trigrams)
 $400,000,000$
 4 (4-grams) |
| :--- | :--- |

How far into the past should we go?

- "long distance "
- Next word? Call?
- $\mathrm{p}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w} . ..\right)$
- Consider special case above
- Approximation says that
| long distance call|/|distance call| \approx |distance call|/|distanc
- If context 1 word back = bigram

But even better approx if 2 words back: long distance
Not always right: long distance runner/long distance call Further you go: collect long distance

- Corpus: said the joker to the thief $|\mathrm{V}|=5$
- What's the max \# of parameters?
- What's observed? (All pairs)
- We observe only |V| many bigrams!
- V had better be large wrt \# parameters

Statistical estimators

Example:
Corpus: five Jane Austen novels
$\mathrm{N}=617,091$ words
$\mathrm{V}=14,585$ unique words
Task: predict the next word of the trigram "inferior to \qquad from test data, Persuasion:
"[In person, she was] inferior to both [sisters.]"

Shakespeare in lub...

The unkindest cut of all

- Shakespeare: 884,647 words or tokens (Kucera, 1992)
- 29,066 types (incl. proper nouns)
- So, \# bigrams is $29,066^{2}>844$ million. 1 million word training set doesn't cut it - only 300,000 difft bigrams appear
- Most entries are zero
- So we can't go very far...

Bigram models in practice

- $\mathrm{P}($ Bush read a book) $=$ P(Bush | BOS) x $P($ read | Bush $) x$
$P(a \mid r e a d) x$
P(book \| a) x
P(EOS | book)
Estimate via counts $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1}\right)=\operatorname{count}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}-1}\right) / \operatorname{count}\left(\mathrm{w}_{\mathrm{i}-1}\right)$ On unseen data, count $\left(w_{i}, w_{i-1}\right)$ or worse, $\operatorname{count}\left(w_{i-1}\right)$ could be zero! What to do?

How to Estimate?

- $p(z \mid x y)=$?
- Suppose our training data includes
... xya ..
... xyd ...
... xyd ...
but never xyz
- Should we conclude

$$
\begin{aligned}
& p(a \mid x y)=1 / 3 ? \\
& p(d \mid x y)=2 / 3 ? \\
& p(z \mid x y)=0 / 3 ?
\end{aligned}
$$

- NO! Absence of xyz might just be bad luck.

Smoothing deals with events that have been observed zero times

- Smoothing algorithms also tend to improve the accuracy of the model
- Not just unobserved events: what about events observed once?

Smoothing the Estimates

- Should we conclude

$$
\begin{array}{ll}
\mathrm{p}(\mathrm{a} \mid \mathrm{xy})=1 / 3 ? & \text { reduce this } \\
\mathrm{p}(\mathrm{~d} \mid \mathrm{xy})=2 / 3 ? & \text { reduce this } \\
\mathrm{p}(\mathrm{z} \mid \mathrm{xy})=0 / 3 ? & \text { increase this }
\end{array}
$$

- Discount the positive counts somewhat
- Reallocate that probability to the zeroes
- Especially if the denominator is small ...
- $1 / 3$ probably too high, $100 / 300$ probably about right
- Especially if numerator is small ...
- $1 / 300$ probably too high, $100 / 300$ probably about right

Add-one smoothing

- Let V be the number of words in our vocabulary
- Remember that we observe only V many bigrams
- Assigns count of 1 to unseen bigrams

Add-one smoothing

Example: Bush reads a book

 P(Bush reads a book)- Without smoothing:
- With add-one smoothing (assuming $c($ Bush $)=1$ but $c($ Bush, read $)=0$

Add-One Smoothing

300 observations instead of 3 - better data, less smoothing

xya	100	$100 / 300$	101	$101 / 326$
xyb	0	$0 / 300$	1	$1 / 326$
xyc	0	$0 / 300$	1	$1 / 326$
xyd	200	$200 / 300$	201	$201 / 326$
xye	0	$0 / 300$	1	$1 / 326$
\ldots				
xyz	0	$0 / 300$	1	$1 / 326$
Total xy	300	$300 / 300$		326

Add-One Smoothing

Suppose we're considering 20000 word types, not 26 letters

xya	1	$1 / 3$	2	$2 / 29$
xyb	0	$0 / 3$	1	$1 / 29$
xyc	0	$0 / 3$	1	$1 / 29$
xyd	2	$2 / 3$	3	$3 / 29$
xye	0	$0 / 3$	1	$1 / 29$
\ldots				
xyz	0	$0 / 3$	1	$1 / 29$
Total xy	3	$3 / 3$	29	$29 / 29$

Add-One Smoothing

A\$ we see more word types, smoothed estimates keep falling

see the abacus	1	$1 / 3$	2	$2 / 20003$
see the abbot	0	$0 / 3$	1	$1 / 20003$
see the abduct	0	$0 / 3$	1	$1 / 20003$
see the above	2	$2 / 3$	3	$3 / 20003$
see the Abram	0	$0 / 3$	1	$1 / 20003$
mee the zygote				
Total	0	$0 / 3$	1	$1 / 20003$

Problems...too many mouths to feed

- Suppose we're dealing with a vocab of 20000 words
- As we get more and more training data, we see more and more words that need probability - the probabilities of existing words keep dropping, instead of converging
- This can't be right - eventually they drop too Iow

Good-Turing smoothing

- Add-1 works horribly in practice - adding 1 seems too large
- So...imagine you're sitting at a sushi bar with a conveyor belt
- How likely are you to see a new kind of seafood appear?

Good-Turing smoothing

- How likely are you to see a new type of seafood?
- How many types of seafood (submarines, words) were seen only once? Use this to predict probabilities for unseen events
- Let n_{1} be the \# of events that occurred once, then the initial est. of this is, $p_{0}=n_{1} / N$
- Let n_{2} be the \# of events that occurred twice

Good-Turing smoothing

- 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- $\mathrm{p}_{0}=\mathrm{n}_{1} / \mathrm{N}=3 / 18$
- Now how likely is octopus?
- Good-Turing estimate: for any n-gram that occurs r times, we pretend it occurs r^{*} times,

At the sushi bar

10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

- Octopus occurs 1 time, $r=1$ so we adjust to 1^{*}
- We need $n_{1} \#$ of things that occur once $=3$
- We need $n_{2} \#$ of things that occur twice $=1$
- Then

Is that the final word?

- No - what happens if something is not seen at all?
- Then you must backoff to bigrams, unigrams...
- Many other new smoothing methods available (see book) - various weighting/discounting schemes (we shall revisit: EM algorithm)
- Are we done? Can we use trigrams now?
- Not quite...

Must have a stop

- No probability for $\mathrm{P}(\varepsilon)$
- Add special stop symbol:
- $P(a)=P(b)=0.25 ; P($ stop $)=0.5$
- Now it works out: $\mathrm{P}(\mathrm{a}$ stop $)=\mathrm{P}(\mathrm{b}$ stop $)=$ $0.25 \times 0.5=0.125 ; ~ P($ aa stop $)=0.25^{2}=$.03125, etc.
- Exercise: show the P sum is now 1 .

- Tagging for the Trout:

Tagging methods

- Statistical Tagger T3
- Error-driven Transformation-based Tagger TBT
- Maximum Entropy Tagger MET
- Example-based tagger ET

Two approaches

Statistical model
2. Deterministic baseline tagger composed with a cascade of fixup transducers These two approaches are the guts of Lab 2 (lots of others methods: decision trees, ...)

Statistical Model

- Prob(Tag sequence, word sequence) - based on n-grams: train on marked up text
- We shall see how to do this in detail in a moment

Another FST Paradigm: Successive

 Fixups- Like successive markups but alter
- Morphology
- Phonology
- Part-of-speech tagging

- Precision/recall
- Accuracy/ambiguity

An exemplar for the divide: "tagging" text

- Input: the lead paint is unsafe

Output: the/Det lead/N paint/N is/V unsafe/Adj

- Can be challenging:

I know that
I know that block
I know that blocks the sun

- new words (OOV= out of vocabulary); words can be whole phrases ("I can't believe it's not butter")

What are tags?

- Bridge from words to parsing - but not quite the morphemic details that Kimmo provides (but see next slide)
- Idea is more divide-and-conquer - and depends on task
- "Shallow" analysis for "shallow parsing"

More sophisticated - use features

- Word form: $\mathrm{A}^{+} \rightarrow 2^{(\mathrm{L}, \mathrm{Cl}, \mathrm{C} 2, \ldots, \mathrm{Cn})} \rightarrow \mathrm{T}$
- He always books the violin concert tickets early.
- books \rightarrow \{(book-1,Noun,Pl,-,--),(book-2,Verb,Sg,Pres,3)\}
. tagging (disambiguation): ... \rightarrow (Verb,Sg,Pres,3)
- ...was pretty good. However, she did not realize...
. However $\rightarrow\{($ however-1,Conj/coord,-,-,-),
(however- 2,Adv,-,-,--)\}
. tagging: ... \rightarrow (Conj/coord,-,-,-)

Two approaches

1. Noisy Channel Model (statistical)what's that?? (we will have to learn some statistics)
2. Deterministic baseline tagger composed with a cascade of fixup transducers
These two approaches will the guts of Lab 2 (lots of others: decision trees, ...)

| Example tagsets

- 87 tags - Brown corpus
- Three most commonly used:

1. Small: 45 Tags - Penn treebank (Medium size: 61 tags, British national corpus
2. Large: 146 tags

Big question: have we thrown out the right info? Impoverished? How?

Current (computer/human)

performance

Input: the lead paint is unsafe
Output: the/Det lead/n paint/v is/v unsafe/Adj

- How many tags are correct?
- About 97\% currently
- But baseline is already 90\%:
- Baseline is Homer Simpson algorithm:
. Tag every word with its most frequent tag (Unigram frequency)
- Tag unknown words as nouns
- How well do people do?

So far, then...

- n-gram models are a.k.a. Markov models/chains/processes.
- They are a model of how a sequence of observations comes into existence.
- The model is a probabilistic walk on a FSA.
- $\operatorname{Pr}(a / b)=$ probability of entering state a, given that we're currently in state b.

How well does this work for tagging?

- 90% accuracy (for unigram) pushed up to 96\%
- So what?
- How good is this? Evaluation!

Evaluation of systems

The principal measures for information extraction tasks are recalt and precision.

- Recall is the number of answers the system got right divided by the number of possible right answers
- It measures how complete or comprehensive the system is in its extraction of relevant information
- Precision is the number of answers the system got right divided by the number of answers the system gave
- It measures the system's correctness or accuracy
- Example: there are 100 possible answers and the system gives 80 answers and gets 60 of them right, its recall is 60% and its precision is 75%.

A better measure - Kappa

Takes baseline \& complexity of task into account - if 99% of tags are Nouns, getting 99% correct no great shakes

- Suppose no "Gold Standard" to compare against?
- $\mathrm{P}(\mathrm{A})=$ proportion of times hypothesis agrees with standard (\% correct)
- $P(E)=$ proportion of times hypothesis and standard would be expected to agree by chance (computed from some other knowledge, or actual data)

Kappa [p. 315 J\&M text]

- Note K ranges between 0 (no agreement, except by chance; to complete agreement, 1)
- Can be used even if no 'Gold standard' that everyone agrees on
- $\mathrm{K}>0.8$ is good

Kappa

- $A=$ actual agreement; $E=$ expected agreement
- consistency is more important than "truth"
- methods for raising consistency
- style guides (often have useful insights into data)
- group by task, not chronologically, etc.
- annotator acclimatization

Statistical Tagging Methods

- Simple bigram - ok, done
- Combine bigram and unigram
- OUR GOAL: maximize $P(T, w)$ where $T=a$ tag sequence (guessed); and $w=$ the observed word sequence - note this is a joint probability
- So, why not use our formula for joint probabilities...

BOS PN Verb Det Noun Prep Noun Prep Det Noun EOS

Bill directed a cortege of autos through the dunes words $Y \rightarrow$
GOAL: Find tag sequence X that maximizes probability product

- If we were just predicting tags, we could just use bigrams
- We can model this as a Markov process, in particular, an fsa with probabilities on the arcs...

Markov chain...pr of letter sequences

First-order Markov (bigram tag) model as fsa

First-order Markov (bigram tag) model as fsa

Same as bigram...estimate the same | way

P(Noun \mid Det $)=0.7 \equiv$

Markov Model - bigram tag sequence p(tag sequence)

BOS Det Adj Adj Noun EOS $=0.8 * 0.3 * 0.4 * 0.5 * 0.2$

Now we compose (multiply) the nets

- Compose P (tag sequence) with $P($ word $\mid t a g)$
- Result: P(tag, word)

- The Pr of a sequence is just found by multiplying through as we go from start to stop
- Given the actual words in the sentence, trace through and find the highest value Pr - this will give the most likely tag sequence, word sequence combination
- (What have we wrought?)

This is an Hidden Markov model for tagging

- Each hidden tag state produces a word in the sentence
- Each word is
- Uncorrelated with all the other words and their tags
- Probabilistic depending on the N previous tags only

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Q: What is the most likely tag sequence?
- Use a finite-state automaton, that can emit the observed words
- FSA has limited memory
- Note that given words, in general, there could be more than 1 underlying state sequence corresponding to the words

But...how do we find this 'best' path???

So all paths here must have 5 words on output side

Finding the best path from start to stop

- Use dynamic programming
- What is best path from Start to each node?
- Work from left to right
- Each node stores its best path from Start (as probability plus one backpointer)
- Special acyclic case of Dijkstra's shortest-path algorithm

Method: Viterbi algorithm

- For each path reaching state s at step (word) t, we compute a path probability. We call the max of these viterbi(s,t)
- [Base step] Compute viterbi(0,0)=1
- [Induction step] Compute viterbi(s',t+1), assuming we know viterbi(s, t) for all s

Method...

- This is almost correct...but again, we need to factor in the unigram prob of a state s' given an observed surface word w
- So the correct formula for the path prob is: path-prob $\left(s^{\prime} \mid s, t\right)=\operatorname{viterbi}(s, t) * a\left[s, s^{\prime}\right] * b_{s^{\prime}}\left(o_{t}\right)$
bigram unigram

Summary

- We are modeling p (word seq, tag seq)
- The tags are hidden, but we-see the words
- Is tag sequence X likely with these words?
- Model is a "Hidden Markov Model":

probs
from tag
bigram
model

Srobs from
Start PN

unigram
replacement

Bill

- Find X that maximizes probability product

