
6.863J Natural Language Processing
Lecture 6: The Red Pill or the Blue Pill, 

Episode 1: part-of-speech tagging

Instructor: Robert C. Berwick
berwick@ai.mit.edu
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The Menu Bar
• Administrivia:

• Schedule alert: Lab1b due today
• Lab 2a, released today; Lab 2b, this Weds 

Agenda:
Red vs. Blue:
• Ngrams as models of language
• Part of speech ‘tagging’ via statistical models
• Ch. 6 & 8 in Jurafsky
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The Great Divide in NLP: the red pill 
or the blue pill?

“Knowledge
Engineering” approach
Rules built by hand w/
K of Language
“Text understanding”

“Trainable Statistical”
Approach
Rules inferred from lots
of data (“corpora”)
“Information retrieval”
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Two ways

• Probabilistic model - some constraints on 
morpheme sequences using prob of one 
character appearing before/after another 

prob(ing | stop) vs. prob(ly| stop)
• Generative model – concatenate then fix up 

joints
• stop + -ing = stopping,     fly + s = flies
• Use a cascade of transducers to handle all the 

fixups
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The big picture II

• In general: 2 approaches to NLP
• Knowledge Engineering Approach

• Grammars constructed by hand
• Domain patterns discovered by human expert via 

introspection & inspection of ‘corpus’
• Laborious tuning

• Automatically Trainable Systems
• Use statistical methods when possible
• Learn rules from annotated (or o.w. processed) 

corpora
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Preview of tagging

• What is tagging?
• Input: word sequence:

Police police police
• Output: classification (binning) of words -

Noun Verb Noun  or
[Help!]
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Preview of tagging & pills: red pill 
and blue pill methods

• Method 1: statistical (n-gram)

• Method 2: more symbolic (but still includes 
some probabilistic training + fixup) –
‘example based’ learning
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What is part of speech tagging & 
why?

Input:   the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

Or: BOS the lyric beauties of Schubert ‘s Trout 
Quintet : its elemental rhythms and infectious 
melodies : make it a source of pure pleasure for 
almost all music listeners ./ 
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Tagging for this..

The/DT lyric/JJ beauties/NNS of/IN 

Schubert/NNP 's/POS Trout/NNP Quintet/NNP 

--/: 

its/PRP$ elemental/JJ rhythms/NNS 

and/CC   infectious/JJ melodies/NNS 

--/: make/VBP   it/PRP 

a/DT source/NN  of/IN  pure/JJ pleasure/NN 

for/IN almost/RB  all/DT music/NN listeners/NNS  ./. 
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Tagging words

• Well defined
• Easy, but not too easy (not AI-complete)
• Data available for machine learning methods
• Evaluation methods straightforward
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Why should we care?

• The first statistical NLP task
• Been done to death by different methods
• Easy to evaluate (how many tags are correct?)
• Canonical finite-state task 

• Can be done well with methods that look at local context
• Though should “really” do it by parsing!
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Why should we care?

• “Simplest” case of recovering surface, 
underlying form via statistical means

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence T likely given these words?
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Tagging as n-grams

• Most likely word? Most likely tag t given a 
word w?  = P(tag|word) – not quite

• Task of predicting the next word
• Woody Allen:

“I have a gub”
But in general:  predict the Nth tag from the 

preceding n-1 word (tags) aka N-gram
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Summary of n-grams

• n-grams define a probability model over 
sequences

• we have seen examples of sequences of 
words, but one can also look at characters

• n-grams deal with sparse data by using the 
Markov assumption
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Markov models: the ‘pure’ statistical 
model…

• 0th order Markov model: P(wi)
• 1st order Markov model: P(wi|wi-1 )
• 2nd order Markov model: P(wi|wi-1 wi-2 )
…
• Where do these probability estimates come from?
• Counts: P(wi | wi-1) = count(wi , wi-1)/count(wi-1)
(so-called maximum likelihood estimate - MLE) 
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N-grams

• But…How many possible distinct probabilities 
will be needed?, i.e. parameter values

• Total number of word tokens in our training 
data

• Total number of unique words: word types is 
our vocabulary size



6.863J/9.611J SP04 Lecture 6

n-gram Parameter Sizes – large!

• Let V  be the vocabulary, size of V is |V|, 3000 
distinct types say

• P(Wi=x)  how many different values for Wi ?

• P(Wi = x |  Wj = y), # distinct doubles =

3x103  x 3x103  =  9 x 106

P(Wi = x | Wk = z, Wj = y), how many distinct triples?
27 x 109
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Choosing n

1.6 x 10174 (4-grams)

8,000,000,000,0003 (trigrams)

400,000,0002 (bigrams)

Number of binsn

Suppose we have a vocabulary (V) = 20,000 words
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How far into the past
should we go?

• “long distance___”
• Next word?  Call?
• p(wn|w…)
• Consider special case above
• Approximation says that 

| long distance call|/|distance call| ≈ |distance call|/|distanc
• If context 1 word back = bigram
But even better approx if 2 words back: long distance___

Not always right: long distance runner/long distance call
Further you go: collect long distance_____
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Parameter size vs. corpus size

• Corpus: said the joker to the thief
|V| = 5

• What’s the max # of parameters?
• What’s observed? (All pairs)

• We observe only |V| many bigrams!
• V had better be large wrt # parameters
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Reliability vs. discrimination

“large green ___________”

tree? mountain? frog? car?

“swallowed the large green ________”
pill? broccoli? 
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Reliability vs. discrimination

• larger n:  more information about the context 
of the specific instance (greater 
discrimination)

• smaller n:  more instances in training data, 
better statistical estimates (more reliability)
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Statistical estimators

Example:

Corpus:  five Jane Austen novels

N = 617,091 words

V = 14,585 unique words

Task: predict the next word of the trigram “inferior to ____”

from test data, Persuasion: 

“[In person, she was] inferior to both [sisters.]”
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Shakespeare in lub…
The unkindest cut of all

• Shakespeare: 884,647 words or tokens
(Kucera, 1992)

• 29,066 types (incl. proper nouns)
• So, # bigrams is 29,0662 > 844 million. 1 

million word training set doesn’t cut it – only 
300,000 difft bigrams appear

• Most entries are zero
• So we can’t go very far… 
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Bigram models in practice

• P(Bush read a book) = 
P(Bush | BOS) x 

P(read | Bush) x
P(a | read) x 

P(book | a) x
P(EOS | book)

Estimate via counts P(wi | wi-1) = count(wi , wi-1)/count(wi-1)
On unseen data, count(wi , wi-1)  or worse, count (wi-1) 

could be zero! What to do?
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How to Estimate?

• p(z | xy) = ?
• Suppose our training data includes

… xya ..
… xyd …
… xyd …

but never xyz
• Should we conclude 

p(a | xy) = 1/3?
p(d | xy) = 2/3?
p(z | xy) = 0/3?

• NO!  Absence of xyz might just be bad luck.
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Smoothing

Smoothing deals with events that have been 
observed zero times

• Smoothing algorithms also tend to improve 
the accuracy of the model

• Not just unobserved events: what about 
events observed once?
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Smoothing the Estimates

• Should we conclude 
p(a | xy) = 1/3? reduce this
p(d | xy) = 2/3? reduce this
p(z | xy) = 0/3? increase this

• Discount the positive counts somewhat
• Reallocate that probability to the zeroes
• Especially if the denominator is small …

• 1/3 probably too high, 100/300 probably about right
• Especially if numerator is small …

• 1/300 probably too high, 100/300 probably about right
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Add-one smoothing

• Let V be the number of words in our 
vocabulary

• Remember that we observe only V many
bigrams

• Assigns count of 1 to unseen bigrams
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Maximum likelihood estimate
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Actual probability distribution
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Comparison
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Add-One Smoothing
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6.863J/9.611J SP04 Lecture 6

Add-one smoothing
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Example: Bush reads a book
• P(Bush reads a book)
• Without smoothing:

• With add-one smoothing (assuming 
c(Bush)=1 but c(Bush, read) =0

( , )( | ) 0
( )

c Bush readP read Bush
c Bush

= =

1( | )
1

P read Bush
V

=
+
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Add-One Smoothing

300/300

0/300

0/300

200/300

0/300

0/300

100/300

326/326326300Total xy

1/32610xyz

…

1/32610xye

201/326201200xyd

1/32610xyc

1/32610xyb

101/326101100xya

300 observations instead of 3 – better data, less smoothing
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Add-One Smoothing

3/3

0/3

0/3

2/3

0/3

0/3

1/3

29/29293Total xy

1/2910xyz

…

1/2910xye

3/2932xyd

1/2910xyc

1/2910xyb

2/2921xya

Suppose we’re considering 20000 word types, not 26 letters
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Add-One Smoothing
As we see more word types, smoothed estimates keep falling

3/3

0/3

0/3

2/3

0/3

0/3

1/3

3

0

0

2

0

0

1

20003/2000320003Total

1/200031see the zygote

…

1/200031see the Abram

3/200033see the above

1/200031see the abduct

1/200031see the abbot 

2/200032see the abacus  
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Problems…too many mouths to feed

• Suppose we’re dealing with a vocab of 20000 
words

• As we get more and more training data, we 
see more and more words that need 
probability – the probabilities of existing 
words keep dropping, instead of converging

• This can’t be right – eventually they drop too 
low
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Good-Turing smoothing

• Add-1 works horribly in practice – adding 1 
seems too large

• So…imagine you’re sitting at a sushi bar with 
a conveyor belt

• How likely are you to see a new kind of 
seafood appear?
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The sushi bar

10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

How likely are you to see another salmon?  < 2/18
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Good-Turing smoothing

• How likely are you to see a new type of 
seafood?

• How many types of seafood (submarines, 
words) were seen only once? Use this to 
predict probabilities for unseen events

• Let n1 be the # of events that occurred once, 
then the initial est. of this is, p0 = n1/N 

• Let n2 be the # of events that occurred twice



6.863J/9.611J SP04 Lecture 6

Good-Turing smoothing

• 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 
octopus, 1 yellowtail

• p0 = n1/N = 3/18

• Now how likely is octopus? 
• Good-Turing estimate: for any n-gram that 

occurs r times, we pretend it occurs r* times, 

1* ( 1) r

r

nr r
n

+= +
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At the sushi bar

• 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 
1 yellowtail

• Octopus occurs 1 time, r=1 so we adjust to 1*
• We need n1 # of things that occur once = 3
• We need n2 # of things that occur twice = 1
• Then 

1 1 2* ( 1) 1* 2
3 3

r

r

nr r
n

+= + = = × =
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Is that the final word?

• No – what happens if something is not seen 
at all? 

• Then you must backoff to bigrams, 
unigrams…

• Many other new smoothing methods available 
(see book) – various weighting/discounting 
schemes (we shall revisit: EM algorithm)

• Are we done?  Can we use trigrams now?
• Not quite…
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Time must have a stop

• Note that in the trigram model the length of the 
sentence n is variable

• But then, what is the event space for calculating 
probabilities?

• Suppose our alphabet is just a, b, and the language 
is all strings over this, eg, ε, a, b, aa, bb, ab, …

• Assume unigram model, P(a)=P(b) = 0.5
• Then P(aa)= 0.52 = 0.25 = P(bb), etc…
• But then, adding, P(a)+P(b)+P(aa)+P(bb) = 

1.5  ????
What went wrong???
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Must have a stop

• No probability for P(ε)
• Add special stop symbol:

• P(a)=P(b)= 0.25;  P(stop)= 0.5
• Now it works out: P(a stop) = P(b stop) = 

0.25 x 0.5 = 0.125; P(aa stop) = 0.252 = 
.03125, etc. 

• Exercise: show the P sum is now 1.
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OK, back to sushi

• Tagging for the Trout:
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Tagging for this..

The/DT lyric/JJ beauties/NNS of/IN 

Schubert/NNP 's/POS Trout/NNP Quintet/NNP 

--/: 

its/PRP$ elemental/JJ rhythms/NNS 

and/CC   infectious/JJ melodies/NNS 

--/: make/VBP   it/PRP 

a/DT source/NN  of/IN  pure/JJ pleasure/NN 

for/IN almost/RB  all/DT music/NN listeners/NNS  ./. 
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(Next step: bracketing…)

[The/DT lyric/JJ beauties/NNS ]

of/IN 

[ Schubert/NNP 's/POS Trout/NNP Quintet/NNP ]

--/: 

[ its/PRP$ elemental/JJ rhythms/NNS ]

and/CC  [ infectious/JJ melodies/NNS ]

--/: make/VBP  [ it/PRP ]

[ a/DT source/NN ] of/IN [ pure/JJ pleasure/NN ]

for/IN almost/RB  [ all/DT music/NN listeners/NNS ] ./. 



6.863J/9.611J SP04 Lecture 6

Tagging methods

• Statistical Tagger T3
• Error-driven Transformation-based Tagger

TBT
• Maximum Entropy Tagger MET 
• Example-based tagger ET
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Why tagging? Beyond part of speech

• Syntactic word class
• Word sense
• Attachment
• Shallow parsing
• Sentence boundary detection
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Two approaches

1. Statistical model 
2. Deterministic baseline tagger composed 

with a cascade of fixup transducers
These two approaches are the guts of Lab 2
(lots of others methods: decision trees, …)
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Statistical Model

• Prob(Tag sequence, word sequence) – based 
on n-grams: train on marked up text

• We shall see how to do this in detail in a 
moment
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Another FST Paradigm: Successive 
Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …

In
itia

l a
nnota

tio
n

Fixu
p 1

Fixu
p 2input

outputFixu
p 3
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Evaluation Criteria

• Precision/recall
• Accuracy/ambiguity
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An exemplar for the divide: “tagging” 
text

• Input:   the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

• Can be challenging: 
I know that 
I know that block
I know that blocks the sun

• new words (OOV= out of vocabulary); words can be whole 
phrases (“I can’t believe it’s not butter”)
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What are tags?

• Bridge from words to parsing – but not quite 
the morphemic details that Kimmo provides 
(but see next slide)

• Idea is more divide-and-conquer – and 
depends on task

• “Shallow” analysis for “shallow parsing”
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More sophisticated – use features

• Word form: A+ → 2(L,C1,C2,...,Cn) → T
• He always books the violin concert tickets early.

• books → {(book-1,Noun,Pl,-,-),(book-2,Verb,Sg,Pres,3)}
• tagging (disambiguation): ... → (Verb,Sg,Pres,3)

• ...was pretty good. However, she did not realize...
• However → {(however-1,Conj/coord,-,-,-),

(however- 2,Adv,-,-,-)}
• tagging: ... → (Conj/coord,-,-,-)
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Two approaches

1. Noisy Channel Model (statistical) –
what’s that?? (we will have to learn 
some statistics)

2. Deterministic baseline tagger composed 
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, …)
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Example tagsets 

• 87 tags - Brown corpus
• Three most commonly used:
1. Small: 45 Tags - Penn treebank (Medium 

size: 61 tags, British national corpus
2. Large: 146 tags
Big question: have we thrown out the right 

info? Impoverished? How?
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Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts
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Current (computer/human) 
performance

• How many tags are correct?
• About 97% currently
• But baseline is already 90%:

• Baseline is Homer Simpson algorithm:
• Tag every word with its most frequent tag 

(Unigram frequency)
• Tag unknown words as nouns

• How well do people do?

Input:   the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj
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Ok, what should we look at?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb Det   Noun  Prep Noun    Prep Det  Noun

correct tags

PN Adj     Det   Noun  Prep Noun    Prep Det  Noun
Verb   Verb   Noun Verb

Adj          some possible tags for
Prep         each word (maybe more)
…?      

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …
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Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb Det   Noun  Prep Noun    Prep Det  Noun

correct tags

PN Adj     Det   Noun  Prep Noun    Prep Det  Noun
Verb   Verb   Noun Verb

Adj          some possible tags for
Prep         each word (maybe more)
…?      

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Ok, what should we look at?
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Ok, what should we look at?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb Det   Noun  Prep Noun    Prep Det  Noun

correct tags

PN Adj     Det   Noun  Prep Noun    Prep Det  Noun
Verb   Verb   Noun Verb

Adj          some possible tags for
Prep         each word (maybe more)
…?      

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …
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Ok, what should we look at?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb Det   Noun  Prep Noun    Prep Det  Noun

correct tags

PN Adj     Det   Noun  Prep Noun    Prep Det  Noun
Verb   Verb   Noun Verb

Adj          some possible tags for
Prep         each word (maybe more)
…?      

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …
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We can use n-grams for tagging

• Replace ‘words’ with ‘tags’
• Find best maximum likelihood estimates
• Estimates calculated this way:

• P(noun|det) = p(det, noun)/p(det) replace:
•  ≈ count(det at position i-1 & noun at i)

count(det at position i-1)
• Correction: include frequency of context word
 ≈ count(det at position i-1 & noun at i)

count(det at position i-1)*count (noun at i)
 Find optimal path – highest p, using dynamic 

programming algorithm, approx. linear in length of 
tag sequence
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Example

The guy still  saw   her
Det  NN   NN  NN    PPO

VB    VB  VBD  PP$
RB

Table 2 from DeRose (1988) 
Det=determiner, NN=noun, VB=verb, RB=adverb, 
VBD=past-tense-verb, PPO=object pronoun and 
PP$=possessive pronoun 

Find the Max likelihood estimate (MLE) path through 
this ‘trellis’
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Transitional probability estimates 
from counts

DT NN PPO PP$ RB VB VBD

DT 0 186 0 8 1 8 9

NN 40 1 3 40 9 66 186

PPO 7 3 16 164 109 16 313

PP$ 176 0 0 5 1 1 2

RB 5 3 16 164 109 16 313

VB 22 694 146 98 9 1 59

VBD 11 584 143 160 2 1 91
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Tagging search tree (trellis)

Det  NN   NN  NN    PPO

VB    VB  VBD  PP$

RB

The guy still  saw   her

Step 1. c(DT-NN)= 186
c(DT-VB) = 1

Keep both paths.  (Why?)
Step 2.  Pick max to each of the tags NN, VB, RB

need keep only the max.  Why?
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Trellis search

Det  NN   NN  NN    PPO

VB    VB  VBD  PP$

RB

The guy still  saw   her
1
66

186

9

1

Det  NN   NN  NN    PPO

VB    VB  VBD  PP$

RB

1
9

6941
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Finite-state approaches

• Noishy Chunnel Muddle (statistical)

noisy channel   X Y

real language   X

yucky language   Y

want to recover X from Y

part-of-speech tags

insert words

text
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So far, then…

• n-gram models are a.k.a. Markov 
models/chains/processes.

• They are a model of how a sequence of 
observations comes into existence.

• The model is a probabilistic walk on a FSA.
• Pr(a|b) = probability of entering state a, 

given that we’re currently in state b.
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How well does this work for tagging?

• 90% accuracy (for unigram) pushed up to 
96%

• So what?
• How good is this?  Evaluation!
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Evaluation of systems
• The principal measures for information extraction tasks 

are recall and precision.

• Recall is the number of answers the system got right 
divided by the number of possible right answers 

• It measures how complete or comprehensive the 
system is in its extraction of relevant information 

• Precision is the number of answers the system got right 
divided by the number of answers the system gave 

• It measures the system's correctness or accuracy 
• Example: there are 100 possible answers and the 

system gives 80 answers and gets 60 of them right, 
its recall is 60% and its precision is 75%. 
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A better measure - Kappa

• Takes baseline & complexity of task into 
account – if 99% of tags are Nouns, getting 
99% correct no great shakes

• Suppose no “Gold Standard” to compare 
against?

• P(A) = proportion of times hypothesis agrees
with standard (% correct)

• P(E) = proportion of times hypothesis and 
standard would be expected to agree by chance 
(computed from some other knowledge, or 
actual data)
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Kappa [p. 315 J&M text]

• Note K ranges between 0 (no agreement, 
except by chance; to complete agreement, 1)

• Can be used even if no ‘Gold standard’ that 
everyone agrees on

• K> 0.8 is good

( ) ( )
1 ( )

P A P E
P E

κ −
=

−
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Kappa

• A = actual agreement; E = expected agreement
• consistency is more important than “truth”
• methods for raising consistency

• style guides (often have useful insights into 
data)

• group by task, not chronologically, etc.
• annotator acclimatization

( ) ( )
1 ( )

P A P E
P E

κ −
=

−

6.863J/9.611J SP04 Lecture 6

Statistical Tagging Methods

• Simple bigram – ok, done
• Combine bigram and unigram

• OUR GOAL: maximize P(T,w) where T=a tag 
sequence (guessed); and w= the observed
word sequence – note this is a joint
probability

• So, why not use our formula for joint 
probabilities…
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Our first try…

• P(T,w) = P(T) P(w | T)
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Our plan to find P(T,w)

• Find best P(T) – probability of a tag sequence
• How?  A: use bigrams
• Find best P(w|T) --???? How?
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Punchline – recovering (words, tags)

BOS PN  Verb    Det      Noun  Prep Noun   Prep Det  Noun EOS

Bill  directed   a    cortege   of   autos  through  the  dunes

GOAL: Find tag sequence X that maximizes probability 
product

tags X→

words Y→
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Break apart in 2 stages

• If we were just predicting tags, we could just 
use bigrams

• We can model this as a Markov process, in 
particular, an fsa with probabilities on the 
arcs… 
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Markov chain…pr of letter sequences

1
.4

1

.3
.3

.4

.6 1

.6

.4

te

h a p

i

Start

Pr( | ) 1
x

y x y∀ =∑

note: Pr(h|h) = 0
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First-order Markov (bigram tag) 
model as fsa

Det

BOS

Adj
Noun

Verb

Prep

EOS
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First-order Markov (bigram tag) 
model as fsa

Det

BOS

Adj
Noun

Verb

Prep

EOS
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Add in transition probs from training 
data - sum to 1 

Det

BOS

Adj
Noun

Verb

Prep

EOS

0.3 0.7

0.4 0.5

0.1



6.863J/9.611J SP04 Lecture 6

Same as bigram…estimate the same 
way

P(Noun|Det)=0.7 ≡

Det Noun
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Add in start & etc.

Det

BOS

Adj
Noun

Verb

Prep

EOS

0.70.3

0.8

0.2
0.4 0.5

0.1
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Markov Model – bigram tag sequence

Det

BOS

Adj
Noun

Verb

Prep

EOS

0.3

0.4 0.5

BOS Det Adj Adj Noun EOS = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

0.7

p(tag sequence)

0.1
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So what?

• We want more!
• We cannot observe the tag sequence –
• But we can estimate P(words | tags)
• Also use an fsa – just unigrams
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Unigram replacement model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

P(word| tag)
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Compose

Det

BOS

Adj
Noun

Verb

Prep

EOS

Adj 0.3

Adj 0.4
Noun
0.5

Det 0.8

# 0.2

p(tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2
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Now we compose (multiply) the nets

• Compose P(tag sequence) with P(word|tag)

• Result:  P(tag, word)
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Compose

Det:a 0.48
Det:the 0.32

Det

BOS

Adj
Noun EOS

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

P(tag seq) * P(word seq | tag seq) e.g., 
P(tag, word) for P(Det, the) = 0.8 x 0.4 = 0.32

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Verb

Prep

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos
0.00002

# 0.2
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Compose with
actual word seq

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos
0.00002

the

Det:the 0.32

0.32 x
D:the 

# 0.2

cool

.0009 x
A:cool

Adj:cool 0.0009

directed

.0002  x
A:directed

Adj:directed 0.00020

# 0.2

x.2 ≈ .3 10-6 total

path prob,  
done! 

#
autos

.00002 x
N:autos

N:autos
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Well, we are almost done!

• The Pr of a sequence is just found by 
multiplying through as we go from start to 
stop

• Given the actual words in the sentence, trace 
through and find the highest value Pr – this 
will give the most likely tag sequence, word 
sequence combination

• (What have we wrought?)
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This is an Hidden Markov model for 
tagging

• Each hidden tag state produces a word in the 
sentence

• Each word is
• Uncorrelated with all the other words and 

their tags
• Probabilistic depending on the N previous 

tags only
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The statistical view, in short:

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Q: What is the most likely tag sequence?
• Use a finite-state automaton, that can emit 

the observed words
• FSA has limited memory
• Note that given words, in general, there could 

be more than 1 underlying state sequence 
corresponding to the words 
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Punchline – ok, where do the pr 
numbers come from?

Start PN  Verb    Det     Noun  Prep Noun   Prep Det  Noun Stop

Bill  directed   a    cortege  of   autos  through  the  dunes

tags X→

words Y→

0.4 0.6

0.001

The tags are not observable & they are states of some fsa
We estimate transition probabilities between states
We also have ‘emission’ pr’s from states
En tout:  a Hidden Markov Model (HMM)
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But…how do we find this ‘best’ 
path???
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Unroll the fsa - All paths together 
form ‘trellis’

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
BOS Det  Adj   Adj         Noun EOS = 0.32 * 0.0009 …

the  cool  directed  autos

Adj:cool 0.0009
Noun:cool 0.007

WHY?
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Cross-product construction forms 
trellis

So all paths here must have 5 words on output side

All paths here are 5 words

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*

0 1

2

3
4

ε
ε
ε

ε
ε
ε
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Finding the best path from start to stop

• Use dynamic programming 
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start 

(as probability plus one backpointer)
• Special acyclic case of Dijkstra’s shortest-path 

algorithm
• Faster if some arcs/states are absent

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007
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Method: Viterbi algorithm

• For each path reaching state s at step (word) t, we 
compute a path probability. We call the max of 
these viterbi(s,t)

• [Base step]       Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',t+1), assuming 

we know viterbi(s,t) for all s
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Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t)    *           a[s,s']

probability of path to max path score  *      transition p
s’ through s for state s at time t           s →s’

viterbi(s',t+1) = max s in STATES path-prob(s' | s,t)

6.863J/9.611J SP04 Lecture 6

Method…

• This is almost correct…but again, we need to 
factor in the unigram prob of a state s’ given 
an observed surface word w

• So the correct formula for the path prob is:
path-prob(s'|s,t) = viterbi(s,t) *  a[s,s'] * bs’ (ot)

bigram unigram



6.863J/9.611J SP04 Lecture 6

Or as in your text…p. 179
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Summary
• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• Model is a “Hidden Markov Model”:

Start PN Verb Det     Noun  Prep Noun   Pre

Bill  directed   a    cortege  of   autos  thro

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement


