6.863J Natural Language Processing
Lecture 6: part-of-speech tagging to
parsing

Instructor: Robert C. Berwick
berwick@ai.mit.edu

The Menu Bar

Administrivia:

e Schedule alert: Labl due next today Lab 2,
posted Feb 24; due the Weds after this —
March 5 (web only — can post pdf)

Agenda:
Finish up POS tagging — Brill method

From tagging to parsing: from linear
representations to hierarchical
representations

6.863J/9.611J Lecture 6 Sp03

Two approaches

1. Noisy Channel Model (statistical) —

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, ...)

6.863J/9.611J Lecture 6 Sp03

Summary

e We are modeling p(word seq, tag seq)

e The tags are hidden, but we see the words

 Is tag sequence X likely with these words?

e Noisy channel model is a “Hidden Markov Model”:

D g { NN N N

bigram g5 tPr Verb Det Noun Prep Noun Pr
N I
0.001
probsfrom
unigram Bill directed a cortege of autos thr
replacement

e Find X that maximizes.probability product

Finding the best path from start to
stop

>

Use dynamic programming
What is best path from Start to each node?

e Work from left to right

e Each node stores its best path from Start (as
probability plus one backpointer)

Special acyclic case of Dijkstra’s shortest-path
algorithm

Faster if some-ancséstates are absent

Method: Viterbi algorithm

e For each path reaching state s at step (word)
t, we compute a path probability. We call the
max of these viterbi(s,t)

» [Base step] Compute viterbi(0,0)=1

e [Induction step] Compute viterbi(s',t+1),
assuming we know viterbi(s,t) for all s

6.863J/9.611J Lecture 6 Sp03

Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t) * als,s’]
probability of path to max path score * transition probability
s’ through s for state s at time t S®s’

viterbi(s',t+1) = max. ; sra7es Path-prob(s' | s,t)

6.863J/9.611J Lecture 6 Sp03

Viterbi Method...

e This is almost correct...but again, we need
to factor in the unigram prob of a state s’
emitting a particular word w given an
observation of that surface word w

e So the correct formula for the path prob
to s’ from s is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * by (0,)
Y

Bigram Unigram
Path prob so farto s transition prob output prob at
6.863J/9.611J Lecture 6 m?y State S’ State S’

Finally...
e As before, we want to find the max path
probability, over all states s:

Max ¢ | states Path-prob(s' | s,t)

6.863J/9.611J Lecture 6 Sp03

Or as in your text...p. 179

function VITERBI(observations of len T,state-graph) returns best-path

num-states < NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] <+ 1.0
for each time step ¢ from O to 7 do
for each state s from 0 to num-states do
for each transition s’ from s specified by state-graph
mewsToTe=TriterbitstHutssFto; Find the path probability

if ((vitexhilsl tdell = Q) L (newascare > viterbils sall))
then

viterbi[s', t+1] < new-score
back-pointers', t+1]<s
Backtrace from highest probability state in the final column of viterbi[] and
return path

Find the max so far

6.863J/9.611J Lecture 6 Sp03

Two approaches

1. Noisy Channel Model (statistical) —
what's that?? (we will have to learn
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, ...)

6.863J/9.611J Lecture 6 Sp03

Fixup approach: Brill tagging (a
kind of transformation-based
learning)

6.863J/9.611J Lecture 6 Sp03

Another FST Paradigm:
Successive Fixups

e Like successive markups but alter
Morphology

Phonology

Part-of-speech tagging

utput

6.863J/9.611J Lecture 6 Sp03

figure from Brill’sthesis

Transformation-Based Tagging
(Brill 1995)

Urannorared Anmoraned Annotatod Apmataned
Campus ; o i Corpis
o {
A | Errors = 3 [0 Tl L Emars = 3,310 Exrors = | 410
l Tl Tl
il & Annorated ’ . Armakated Annodmied
nitial Baste . T2

Corpas Coepas . : Corpus
o 1al
TR F Errors = 5,145 Erora = 2.0110 - Exroes = 1351
‘ T2
Anmiated Annatited Anniated J o Angtanad
Coapus Corpus Comus ; = - Cioapus
Errors = £, 1) | Errors = 3811 | : Esruors = 1,231 Erroes = 1,231

T+ Annartared \ Armnaiated T A e
Corpas 1 Corpas] Carpas
Errurs = 6,300 Esrors = 4,258 Errors = 1,231

Brill Tagger
Powared by - TEL Teclmology
© Swedih # [Englah|™ Fussion

Text:

Iaaw_:mm iz cxperted OO TORCIICW

P T]

% Tabfifam Lagew 1979, Arssias bagger b Danalia 2insaje

SECTATALIAT 18 SWpaolad TO THSE TOBITTON

Laxieal Inckug

Saccatacial/MF 1x/YEI axpactad/¥EM Lo/TH cace/M) lozoccow'BR

Contextual-rale application
Istrrmediate amalysis
Epaeatar] A8/ MAP 1/YEE srpacdsd!VER S0 T pacs/ B & oEoeeow B
Applied rule:

TAQIEREVE <- rage TE[-1] .

Analysis

Faccataciat/HHP 1x/VEI axpacésd/THI tof TO caca/VB ¢ owoccow B

Transformation based tagging

e Combines symbolic and stochastic approaches:
uses machine learning to refine its tags, via
several passes

e Analogy: painting a picture, use finer and finer
brushes - start with broad brusch that covers a
lot of the canvas, but colors areas that will have
to be repainted. Next layer colors less, but also
makes fewer mistakes, and so on.

e Similarly: tag using broadest (most general)
rule; then an narrower rule, that changes a
smaller number of tags, and so on. (We haven't
said how the rules are learned)

= First we will seg haw the TBL rules are applied

Applying the rules

1. First label every word with its most-likely tag (as
we saw, this gets 90% right...!) for example, in
Brown corpus, race is most likely to be a Noun:

P(NN|race)= 0.98

P(VB|race)= 0.02 q
2. ...expected/VBZ to/T TO race/VB fmorrow/NN

...the/DT race/NN for/IN outer/JJ space/NN

3. Use transformational (learned) rules to change
tags:
Change NN to VB when the previous tag is TO

6.863J/9.611J Lecture 6 Sp03

figurefrom Brill’sthesis

Initial Tagging of OOV Words

{ II.I-\.I LIRS 1‘:12

| Frowm To | Londition
| T | BN |BES | s sullix -s
2 NN L Has charscter |
| 3 | KN 1) Has character -
i | NN | VBN | L suiffix wreel
B NN (UiE Wies sullin -lng
BN R HiF | i sulfix -1y
T J Acdding suthx -ly pesults e a word
| 8 | BN CIV | The word § con appeear to thee left
1] NN J) Has sulfix =al
1| N Vil Lhe weord would cas appear to tee el
11 NN CL Was churacter O
12 NA J lse word bee can appear to the Left.
[18 | BNS | T s sulfix cus
| KRS | VBE | The word it can apprar to the left
1| NN J Lias sulliy ke
L NN Ji Has suflix -ic
| I7 | RN | CD Was charavcter 1
1& | MN& NN Has sullix -3s
19 CJ1 | Dedeting the prefix un- results i s word |
ElEL] Has subfix -ive]

\PUNMTIT VIoTUj Teartnily puuuity

How?

e 3 stages
. Start by labeling every word with most-likely
> tag
2. Then examine every possible transformation,
and selects one that results in most improved
tagging
3. Finally, re-tags data according to this rule

4. Repeat 1-3 until some stopping criterion (no
new improvement, or small improvement)

e Output is ordered list of transformations that
constitute a tagging procedure

6.863J/9.611J Lecture 6 Sp03

How this works

e Set of possible ‘transforms’ is infinite, e.g.,
“transform NN to VB if the previous word
was MicrosoftWindoze & word braindead
occurs between 17 and 158 words before
that”

e To limit: start with small set of abstracted
transforms, or templates

6.863J/9.611J Lecture 6 Sp03

Templates used: Change ato b
when...

The preceding (following) word is tagged z.
The word two before (after) is tagged z.
One of the two preceding (following) words is tagged z.
One of the three preceding (following) words is tagged z.
The preceding word is tagged z and the following word is tagged w.
The preceding (following) word is tagged z and the word
two before (after) is tagged w.

Variables a, b, z, w, range over parts of speech

6.863J/9.611J Lecture 6 Sp03

Method

1. Call Get - best -t ransf or mwith list of
potential templates; this calls

2. Cet-best -i nstance which instantiates
each template over all its variables (given
specific values for where we are)

3. Try it out, see what score is (improvement
over known tagged system -- supervised
learning); pick best one locally

6.863J/9.611J Lecture 6 Sp03

function TBL(corpus) returns transforms-queue

INTIALIZE-WITH-MOST-LIKELY-TAGS(corpus)

until end condition is met do
templates < GENERATE-POTENTIAL-RELEVANT-TEMPLATES
best-transform <— GET-BEST-TRANSFORM(corpus, templates)
APPLY-TRANSFORM(best-transform, corpus)
ENQUEUE(best-transform-rule, transforms-queue)

end

return(transforms-queue)

function GET-BEST-TRANSFORM(corpus, templates) returns transform
for each template in templates
(instance, score) < GET-BEST-INSTANCE(corpus, template)
if (score > best-transform.score) then best-transform < (instance, score)
return(best-transform)

6.863J/9.611J Lecture 6 Sp03

for to-tag + from tag—1 to tag—n do
for pos < from 1 to corpus-size do
if (correct-tag(pos) == to-tag && current-tag(pos) == from-tag)
num-good-transforms(current-tag(pos—1))++
elseif (correct-tag(pos)==from-tag && current-tag(pos)==from-tag)
num-bad-transforms(current-tag(pos—1))++

end

function GET-BEST-INSTANCE(corpus, template) returns transform
for from-tag < from rag—1 to tag—n do

best-Z < ARGMAX; (num-good-transforms(t) - num-bad-transforms(t),
if(num-good-transforms(best-Z) - num-bad-transforms(best-7)

hestinstance 7) then

best-instance < “Change tag from from-tag to to-tag
if previous tag is best-Z”’

return(best-instance)

procedure APPLY-TRANSFORM(transform, corpus)
for pos<+ from 1 to corpus-size do
if (current-tag(pos)==best-rule-from)

&& (current-tag(pos—1)==best-rule-prev))
current-tag(pos) = best-rule-to

nonlexicalized rules learned by
TBL tagger

Change tags
#| From | To
I1{NN |VB
2| VBP | VB
3INN |VB
4|VB |NN
5| VBD | VBN

Condition
Previous tag is TO
One of the previous 3 tags is MD
One of the previous 2 tags is MD
One of the previous 2 tags is DT
One of the previous 3 tags is VBZ

6.863J/9.611J Lecture 6 Sp03

Example

to/TO race/NN — VB
might/MD vanish/VBP — VB
might/MD not reply/NN — VB

figurefrom Brill’sthesis

Transformations Learned

Change Tas .

¥ I'.;=Jl-|llj'|” L I.l'll:'-L Codition BasellneTag*

1 NN Vi Prrevicuss tag s 10 NN @9 VB // TO
VB | VB | Ooe of the previous thees Dags = M5 VBP @9 VB // ... -
a4 NN Vi Chpe of the previows two tags 15 WL -
t ke NN O of the previous two tags = DT etc.

] TN Y ik Cipe of thie Previons thres taes s VEE

fi VAN WL I'revious oy 1s 1"'.':'1."

7 | VBN | VBD Previous tag is N1

3 | vBD | VN P'revious tag is VED H

Y VI Wl v I:i', [T Compose thIS

10 | 05 | VBE Previous tag i P cascade of FSTs.
11| VB | vor Previous tag is Wve

12 | viD | YN O of previous theee tags s VI

[1IN W Chives ol eal T Lags as | Get a big FST that

14 [VLY | VI Upe of previous Two lags s VY . el

15| VO | VBI Treviow tag ia PEP does the initial

45| IN wor Next tag s VIR 1

L7 1 ¥l Nexl Loy s MO tagglng and the
& JJ | AN Wexl tag is N4 | sequence of fIXUpS
19] IN wor Next tag iz V0D [T)

2| JIR | RBR Next tug s JJ all at once.

Error analysis: what's hard for
taggers

e Common errors (> 4%)

e NN vs .NNP (proper vs. other nouns) vs. JJ
(adjective): hard to distinguish prenominally;
important to distinguish esp. for information
extraction

e RP vs. RB vs IN: all can appear in sequences
immed. after verb

e VBD vs. VBN vs. JJ: distinguish past tense,
past participles (raced vs. was raced vs. the
out raced horse)

6.863J/9.611J Lecture 6 Sp03

What's hard

e Unknown words

Order 0 idea: equally likely over all parts of speech
Better idea: same distribution as ‘Things seen once’
estimator of ‘things never seen’ - theory for this
done by Turing (again!)

Hapax legomenon

Assume distribution of unknown words is like this

But most powerful methods make use of how word is
spelled

» See file in the course tagging dir on this

6.863J/9.611J Lecture 6 Sp03

Or unknown language

e Vse schastlivye sen’i pokhozhi brug na
druga, kazhdaja neschastlivaja sem’ja
neschastliva po-svoemu

6.863J/9.611J Lecture 6 Sp03

Els Edi Ymw o [owwriceo Hed
4 & A N 2 m o & D W€

| Bak Foasd Feked How Gsach Hewowe P Seasl Shin

i Bbuwtbeee 5 G st [Googe) BEPR Bgos [w1 wietiad) Covecin S Botound B Eoatiodae. 5 Wkioles [Hoed
(1 5l Bodbramks | Lacabiore g v b g o L lareatall ggms_1a hird =]

Brill Tagger
Powered by - TEL Technology
€ Swedih © Engleh & o

Temt:

P:{‘ sohmesr livee seni pokborhi breg e dregs, Eachdais reschmstlivais sepis neschastlivs po

[Trece | Anslyze

& Tarkiiw Lages 19559, Rrsaian gz by Mudalia Zlwevie)

Most powerful unknown word
detectors

« 3 inflectional endings (-ed, -s, -ing); 32
derivational endings (-ion, etc.);
capitalization; hyphenation

e More generally: should use morphological
analysis! (and some kind of machine
learning approach)

e How hard is this? We don’t know - we
actually don’'t know how children do this,
either (they make mistakes)

6.863J/9.611J Lecture 6 Sp03

Laboratory 2

e Goals:
1. Use both HMM and Brill taggers

2. Find errors that both make, relative to
genre

3. Compare performance — use of kappa &
‘confusion matrix’

4. All the slings & arrows of corpora — use
Wall Street Journal excerpts, as well as
‘switchboard’ corpus

6.863J/9.611J Lecture 6 Sp03

Brown/Upenn corpus tags

| Tag Description Example | Tag Description Example |
CC Coordin. Conjunction and, but, or SYM Symbol +,%, &
CD Cardinal number one, two, three || TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conj of, in, by VBG Verb, gerund eating
1 Adjective yellow VBN Verb, past participle eaten
JJR Adj., comparative bigger VBP Verb, non-3sg pres eat
JIS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
J. teth MD Modal can, should WP Wh-pronoun what, who
p . 297 NN Noun, sing. or mass Illama WP$ Possessive wh- whose
. NNS Noun, plural llamas WRB Wh-adverb how, where
Flg 8.6 NNP Proper noun, singular /BM $ Dollar sign $
1M wo rd S| NNPS Proper noun, plural Carolinas # Pound sign #

DT Predeterminer all, both “ Left quote (“or*)
60K tag POS Possessive ending s ” Right quote (Cor”)
counts PP Personal pronoun I, you, he (Left parenthesis (LG

PP$ Possessive pronoun your, one’s) Right parenthesis (],), }, >)
RB Adverb quickly, never ||, Comma)

RBR Adverb, comparative faster . Sentence-final punc (. ! ?)
RBS Adverb, superlative fastest : Mid-sentence punc (: ;... —-)
RP Particle up, off

b.obsJ/Y.0LLY LeC‘IUTE 0 Spus

Coda on kids

C: “Mommy, nobody don’t like me”
A: No, say, “nobody likes me”
C: Nobody don’t likes me

A: Say, “nobody likes me”

C: Nobody don’t likes me
[7 repetitions]

C: Oh! Nobody don’t like me!

6.863J/9.611J Lecture 6 Sp03

Parsing words - review

e We are mapping between surface,
underlying forms

e Sometimes, information is ‘invisible’ (l.e.,
erased e, or an underlying/surface 0)

e There is ambiguity (more than one parse)

6.863J/9.611J Lecture 6 Sp03

From lines to hierarchical
respresentions...

e From this:
morph-ology
e To this:

VP [head=vouloir,...]

V[head:VOUIOir’
tense=Present,

num=SG, person=P3]

the prob\em
of morpho\og)y
e‘H _
«wyord shape J -
(area of linguistics

6.863J/9.611J Lecture 6 Sp03

veut

an

What can’t linear relations
represent?

e wine dark sea ® (wine (dark sea)) or
((wine dark) sea) ?

e deep blue sky

e Can fsa’s represent this?

e Not really: algebraically, defined as being
associative (doesn’'t matter about
concatenation order)

6.863J/9.611J Lecture 6 Sp03

So, from linear relations... to
hierarchies

6.863J/9.611J Lecture 6 Sp03

to Vv NP
thrilling Otto

V NP
swallow Wanda

Examples

Verb ® thrills
VP® Verb NP S
S ® NP VP /\
Verb NP

|

A roller coaster thrills every teenager

6.863J/9.611J Lecture 6 Sp03

Parsing for fsa's: keep track of
what ‘next state’ we could be In
at each step

e banana

fruit flieslike a banana

NB: ambiguity = > 1 path through network

= > 1sequenceof states(‘parses’)
6§G3J/El>6114-Le‘capStp0a3'CtiC rq)’ = >1 ‘m%nlng1

O ol ymn Oo L

=]
$Ca 8 aldl 82
Backi nm.u Hcrn s-m.n P F-emta m
[B i Hesnge 13 G063 Sk 2 Googe 151 BERGI Bokogos §Herm {wa "ﬁl.'uﬂm-\:- 1 Betomnd [Sosiidae 13 Wiilscs (4 Hoad
I af Bxnais l Locsun[rep.hema inpgs s lge fegge cp angusge & kiacx=cn JT-JW

Brill Tagger

Powered by p- TEL Techmology
© Swedsh 7 Engloh © Hmsion
Text:

F Trace | Anslyie

Telemizaries

frait flies 1ike & Eaidrs

Leadeal lunkeg

u1 &R flaian/WBI laka/IH a'TT banana’fF

Cussxing

Contexdual-mlle spphcation

FSA Terminology

e Transition function: next state unique =
deterministic fsa

e Transition relation: > 1 next state =
nondeterministic fsa

flies like banana

fruit flieslike a banana @

6.863J/9.611J Lecture 6 Sp03

Methods for parsing

e How do we handle ambiguity?

e Methods:
1. Backtrack

2. Convert to deterministic machine (ndfsa ® dfsa):
offline compilation

3. Pursue all paths in parallel: online computation
(“state set” method)

4. Use lookahead

— We will use all these methods for more
complex machines/language representations

6.863J/9.611J Lecture 6 Sp03

FSA terminology

e Input alphabet,S; transition mapping, d;
finite set of states, Q; start state q,; set of
final states, g

* d(g, s)® q
e Transition function: next state unique =
deterministic fsa

e Transition relation: > 1 next state =
nondeterministic fsa

6.863J/9.611J Lecture 6 Sp03

State-set method: simulate a
nondeterministic fsa

e Compute all the possible next states the
machine can be in at a step = state-set

» Denote this by S, = set of states machine can
be in after analyzing i tokens

e Algorithm has 3 parts: (1) Initialize; (2) Loop;
(3) Final state?

« Initialize: S, denotes initial set of states we're
in, before we start parsing, that is, q,

» Loop: We must compute S;, given S,_;
» Final?: S; = set of states machine is in after

reading all tokens; we want to test if there is a

final state instheneectre s spos

State-set parsing

Initialize:

Loop:

Final:

Compute initial state set, S,
1. Sp= do

2. Sy— e-closure(S,)
Compute S; from S, ;

1. For each word w;, i=1,2,...,n
2' SI - UqT S_ld (q,VVI)

3. S~ e-closure(S;)

4. if S; = AEthen halt & reject else
continue

Accept/reject
1. M0l .S, dhen accept else reject

What's the minimal data

structure we need for this?

e [S,i] where S= denotes set of states we
could be in; i denotes current point we're at in
sentence

e As we'll see, we can use this same
representation for parsing w/ more complex
networks (grammars) - we just need to add one
new piece of information for state names

« In network form @L,
* In rule form:
g® t-bg; where t=some token of the input,

and b = remainder (so ‘dot’ represents how far
we have traveled

6.863J/9.611.) Lecture 6 Sp03

Example

ruit

6.863J/9.611J Lecture 6 Sp03

Use backpointers to keep track of
the different paths (parses):

r\[\f-’%/\
S0 [0] SL[O @] ss:[i,j SA:[41<S5:[5]

State set 0 State set f

6.863J/9.611J Lecture 6 Sp03

When is it better to convert at
compile time vs. run time? (for fsa)

e Run time: compute next state set on the

fly
e Compile time: do it once and for all

e When would this difference show up in
natural languages (if at all)?

6.863J/9.611J Lecture 6 Sp03

Where do the fsa states come from?

e States are equivalence classes of words
(tokens) under the operation of substitution

e Linguistic formulation (Wells, 1947, pp. 81-
82): “A word A belongs to the class
determined by the environment X if AX is
either an utterance or occurs as a part of
some utterance” (distributional analysis)

e This turns out to be algebraically correct

e Can be formalized - the notion of syntactic
equ IvalenC&esyos11 Lecture 6 Sp03

X-files: fragments from an alien
language

lost the election
Gore will lose the election
Gore could lose the election
Gore should lose the election
Gore did lose the election
Gore could have lost the election
Gore should have lost the election
Gore will have lost the election
Gore could have been losing the election
10 Gore should have been losing the election
11. Gore will have been losing the election
12. Gore has |68t'tHeefection

=

© 0N UAWN

More X-files
14.Bush lost the election

15. Bush will lose the election

16. Bush could lose the election

17.Bush should lose the election

18.Bush did lose the election

19.Bush could have lost the election

20. Bush should have lost the election
21.Bush will have lost the election

22.Bush could have been losing the election
23.Bush should have been losing the election
24.Bush will have been losing the election
25. Bush has:lagt.the.elgection

Formally...

e Definition. A binary relation between sets A, B,
Is a subset (possibly empty) of A x B

e Definition. Strings k,r are left-substitutable in a
language L, if, for aII strings w defined over S',
kwl LiffrwT L

e Fact. Left-substitutability is an equivalence
relation (reflexive, transitive, symmetric)

e Definition. An equivalence relation over Sis
finite rank if it divides S into finitely many

equivalence classes

= Definition. A binary relation R is called right-
invariant if, for all p,r T S*, pRrb pwRrw

6.863J/9.611J Lecture 6 Sp03

And formally...

e Fact. A right-invariant relation R is an
equivalence relation

e Theorem (Myhill-Nerode, 1956)

6.863J/9.611J Lecture 6 Sp03

Theorem (Myhill-Nerode, 1956).

e Let LI S*. Then the following 3 propositions
are equivalent:

1. L is generated (accepted) by some finite-
state automaton (finite transition network);

2. L is the union of certain equivalence classes
of a right-invariant equivalence relation of
finite rank

3. Let the equivalence relation R be defined as
follows: xRy iff x and y are left-substitutable

in L. Then this relation R is of finite-rank and
Is right-invariant [this is Wells’ definition]

6.863J/9.611J Lecture 6 Sp03

Finite # of bins = finite state

e Gives easy way to show what is not finite-state
e Eg, a"cb", for all n> 0

e Proof by contradiction.
Suppose there was such an FSA. By the theorem,

this FSA is of finite rank, and classifies all strings in
S" into one of a finite number of classes.

By the pigeonhole principle, there must exist some
string a's.t. al with j 1 iis in the same equivalence
class as a' . But then the fsa must recognize both
aic al and aic a', a contradiction

6.863J/9.611J Lecture 6 Sp03

Why not fsa’'s forever?

e Can't yield the right set of strings= weak
generative capacity (antiantimissle...)

e Can't yield the right set of structures =
strong generative capacity (dark blue

sky)
e How do these failures show up?

6.863J/9.611J Lecture 6 Sp03

A more complex fsa

6.863J/9.611J Lecture 6 Sp03

Conversion to deterministic
machine

6.863J/9.611J Lecture 6 Sp03

What are we missing here?

6.863J/9.611J Lecture 6 Sp03

We are missing the symmetry

6.863J/9.611J Lecture 6 Sp03

Having a poor representation...

e Shows up in having duplicated states (with no
other connection to each other)

e System would be ‘just as complex’= have the
same size (what is size of automaton?) even if
the network were not symmetric

e S0 we have failed to capture this regularity &
the network could be compressed

e How?

6.863J/9.611J Lecture 6 Sp03

Compressability reveals rendundancy
(pattern)that we hav missed

Active: § \

+
Rule that flips network=

%% /VO
Passive: >

Aka“transformational grammar”

6.863J/9.611J Lecture 6 Sp03

But it's worse than that... more
redundancy even so

the guy SaW the guy
O~0—0—00—0
Bu Bush

So, obvious programming approach:
use a subroutine

6.863J/9.611J Lecture 6 Sp03

Subnetworks as subroutines, to
compress the description

the guy SaW _ the guy
sO—0 >O\>O/>@
4 5
Busn ﬂ Bush
sentence O—O250—0©

Noun the guy
phrase: 00 “gplice out” common
subnets

Bush

6.863J/9.611J Lecture 6 Sp03

Could be worse...

Could be raining...

Noun “specifiers”

6.863J/9.611J Lecture 6 Sp03

It could be even worse...

6.863J/9.611J Lecture 6 Sp03

Examples

Verb ® thrills
VP® Verb NP S
S® NP VP /\
Verb NP

|

A roller coaster thrills every teenager

6.863J/9.611J Lecture 6 Sp03

The notion of a common
subnetwork

e Equivalent to the notion of a phrase

A Noun Phrase (NP)

Defined by substitution class of a sequence of
words (aka “a constituent”) - extension
beyond substitution of single words

A phrase iff we can interchangeably substitute
that sequence of words regardless of context

So also gives us the notion of a context-free
grammar (CFG)

6.863J/9.611J Lecture 6 Sp03

Constituents, aka phrases

e Building blocks that are units of words
concatenated together

e Why?
e Ans:

1. They act together (i.e., behave alike
under operations) - what operations?

2. Succinctness
3. (Apparently) nonadjacent constraints

6.863J/9.611J Lecture 6 Sp03

The deepest lesson

e Claim: all apparently nonadjacent
relationships in languge can be reduced to
adjacent ones via projection to a new
level of representation

e (In one sense, vacuous; in another, deep)

e Example: Subject-Verb agreement
(agreement generally)

e Example: so-called wh-movement

6.863J/9.611J Lecture 6 Sp03

Gaps (“deep” grammar!)

Pretend “kiss” is a pure transitive verb.

Is “the president kissed” grammatical?
« If so, what type of phrase is it?

the sandwich that | e president kissed e

| wonder what Sally said the president kissed e
Sally consumed the pickle with e
What else has Sally consumed e with the pickle

6.863J/9.611J Lecture 6 Sp03

Examples

e The guy that we know in Somerville likes ice-
cream

e Who did the@/ who lives in Somerville see

>

- NP+sing +sing
AN

Vv

The guy likes &
/8\ ice-cream

that we know in Som.

6.863J/9.611J Lecture 6 Sp03

The deep reason why

e Machinery of the mind: based only on
concatenation of adjacent elements - not
on ‘counting’ eqg., “take the 7th element &
move it...”

e Runs through all of linguistic
representations (stress, metrical patterns,
phonology, syntax, ...)

e Strong constraint on what we have to
represent

6.863J/9.611J Lecture 6 Sp03

Constituents

Basic ‘is-a’ relation

Act as ‘whole units’ -

e | want this student to solve the problem

e ?? Student, | want this to solve the problem

e This student, | want to solve the problem

Sometimes, we don’t see whole constituents...book
titles (claimed as objection to constituency):

e Sometimes a Great Notion

e The Fire Next Time

Why might that be?

6.863J/9.611J Lecture 6 Sp03

