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The Menu Bar
• Administrivia:

• Schedule alert: Lab2 due Weds; Lab 3 out –
Monday (chunk parsing to ‘real’ parsing)

• Lab time today, tomorrow
• Please read notes3.pdf, englishgrammar.pdf (on 

web)
• Agenda: 
• Marxist analysis – simple & post-modern
• What: hierarchical representations; 

constituents, representation
• How: constituent or ‘context-free’ parsing 

(next time – how to do it fast)
• Why: to extract ‘meaning’
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Motivation

• What, How, and Why
• What: word chunks behave as units, like 

words or endings (morphemes), like ing
• How: we have to recover these from input
• Why: chunks used to discover meaning
• Parsing: mapping from strings to 

structured representation
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Programming languages

printf ("/charset [%s", 
(re_opcode_t) *(p - 1) == charset_not ? "^" : "");

assert (p + *p < pend);

for (c = 0; c < 256; c++)
if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) {

/* Are we starting a range?  */
if (last + 1 == c && ! inrange) {

putchar ('-');
inrange = 1;

}
/* Have we broken a range?  */
else if (last + 1 != c && inrange) {

putchar (last);
inrange = 0;

}

if (! inrange)
putchar (c);

last = c;
}

§ Easy to parse.

§ Designed that way!
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Natural languages

§ No {} () [] to indicate scope & precedence

§ Lots of overloading (arity varies)

§ Grammar isn’t known in advance!

§ Context-free grammar not best formalism

printf "/charset %s", re_opcode_t *p - 1 == charset_not ? "^" 
: ""; assert p + *p < pend; for c = 0; c < 256; c++ if c / 8 < 
*p && p1 + c/8 & 1 << c % 8 Are we starting a range? if last + 
1 == c && ! inrange putchar '-'; inrange = 1; Have we broken 
a range? else if last + 1 != c && inrange putchar last;
inrange = 0; if ! inrange putchar c; last = c;
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How: The parsing problem

P
A
R
S
E
R

Grammar

s
c
o
r
e
r

correct test trees

test
sentences

accuracy

Recent parsers quite 
accurate
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Syntactic Parsing

• Declarative formalisms like CFGs define the legal 
strings of a language but don’t specify how to 
recognize or assign structure to them

• Parsing algorithms specify how to recognize the 
strings of a language and assign each string one 
or more syntactic structures

• Parse trees useful for grammar checking, 
semantic analysis, MT, QA, information 
extraction, speech recognition…and almost 
every task in NLP
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Applications of parsing (1/2)

§ Machine translation  (Alshawi 1996, Wu 1997, ...)

English Chinese
tree

operations

§ Speech synthesis from parses  (Prevost 1996)
The government plans to raise income tax.
The government plans to raise income tax the imagination.

§ Speech recognition using parsing (Chelba et al 1998)

Put the file in the folder.            
Put the file and the folder.
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Applications of parsing

§ Grammar checking  (Microsoft)

§ Indexing for information retrieval (Woods 72-
1997)

... washing a car with a hose ...                vehicle maintenance
§ Information extraction  (Keyser, Chomsky ’62 to 

Hobbs 1996)

§NY Times
§archive

§Database

§query
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Why: Q&A systems (lab 4)

(top-level)
Shall I clear the database? (y or n) y
>John saw Mary in the park
OK.
>Where did John see Mary
IN THE PARK.
>John gave Fido to Mary
OK.
>Who gave John Fido
I DON'T KNOW
>Who gave Mary Fido
JOHN
>John saw Fido
OK.
>Who did John see
FIDO AND MARY
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Why: express ‘long distance’ 
relationships via adjacency

• The guy that we know in Somerville likes ice-cream
• Who did the guy who lives in Somerville see __?

S

NP+sg VP+sg

SThe guy

that we know in Som.

V NP
likes

ice-cream
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Why: recover meaning from 
structure

John ate ice-cream → ate(John, ice-cream)

-This must be done from structure 
-Actually want something like λxλy ate(x,y)
How?
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Why: recover meaning from 
structure

S

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP )= ate (john , icecream)

ice-cream

john

λxλy.ate(y, x)



6.863J/9.611J Lecture 7 Sp03

Why: Parsing for the Turing Test

§ Most linguistic properties are defined over 
hierarchical structure
§ One needs to parse to see subtle distinctions

Sara likes her.                      (her ≠ Sara)

Sara thinks that someone likes her.    (her = or ≠ Sara)

Sara dislikes anyone’s criticism of her.      (her = Sara or her ≠ Sara)

Who did John see? → For which x, x a person, likes(Bill, x)

Distinction here is based on hierarchical structure = scope
in natural language
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Structure must be recovered 

who

did  

S

V

VP

x

S

NP

‘gap’ or
empty element

see
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What is the structure that matters?

Turns out to be SCOPE for natural languages!

S
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The elements

1. What: hierarchical representations 
(anything with recursion) using phrases
AKA “constituents”

2. How: context-free parsing (plus…)
3. Why: (meaning)
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Networks to context-free grammars 
(CFGs) and back: 1-1 
correspondence

Sentence:
NP VP

NP:

VP:

S→NP VP

Name

Det Noun

Verb NP
VP→Verb NP

NP→Name
NP→Det Noun

+ terminal expansion
rules
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Added information

• FSA represents pure linear relation: what 
can precede or (follow) what

• CFG/RTN adds a new predicate: dominate
• Claim: The dominance and precedence 

relations amongst the words exhaustively 
describe its syntactic structure

• When we parse, we are recovering these 
predicates
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How do we move from linear to 
hierarchical?

saw

the guy

Bush

Sentence:

Noun 
phrase:

“splice out” common
subnets

We already have the machinery for this… 
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Use of epsilon transitions (‘jump’ 
arcs) – they consume no input

Sentence:

S-0 S-1 S-2

verb

NP-0 NP-1 NP-3
determiner noun

ε
ε VP-0 VP-1 VP-2

ε

NP VP

ε ε

Verb phrase
subnet

ε

Noun
phrase
subnet

…note that no input is
consumed during jump
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This will work… with one catch

• Consider tracing through “the guy ate the 
ice-cream”

• What happens when we get to the second 
noun phrase????

• Where do we return to?
• Epsilon transition takes us back to 

different points
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What: Context-free grammars 
(CFG)

S(entence)→NP VP
VP→V NP
NP→Det N

N → pizza, N → guy, Det → the } pre-terminals, 
lexical entries

V → ate

A context-free grammar (CFG):
Sets of terminals (either lexical items or parts of speech)
Sets of nonterminals (the constituents of the language)
Sets of rules of the form A → α where α is a string of zero 

or more terminals and nonterminals
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Derivation by a context-free 
grammar:rewrite line by line

1. S
2. NP VP (via S→NP VP)
3. NP V NP (via VP→V NP)
4. NP V Det N (via NP→Det N)
5. NP V Det pizza (via N → pizza)
6. NP V the pizza (via Det → the)
7. NP ate the pizza (via V → ate)
8. Det N ate the pizza (via NP→Det N)
9. Det guy ate the pizza (via N → guy)
10. the guy ate the pizza (via Det → the)

generation
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Context-free representation

• Is this representation adequate – Not 
really…why?

• We’ll start here, though & illustrate parsing 
methods – how to make parsing efficient (in 
length of sentence, size of grammar)

• Obvious methods are exponential; we want 
polynomial time (or, even linear time, or, even, 
real time…)

• Challenges: recursion, ambiguity, 
nondeterminism
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How: context-free parsing

• Parsing: assigning a correct hierarchical 
structure (or its derivation) to a string, given 
some grammar
• The leaves of the hierarchical structure cover all and 

only the input;
• The hierarchical structure (‘tree’) corresponds to a 

valid derivation wrt the grammar

• Note: ‘correct’ here means consistent w/ the 
input & grammar – NOT the “right” tree or 
“proper” way to represent (English) in any more 
global sense
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Parsing

• What kinds of constraints can be used to 
connect the grammar and the example 
sentence when searching for the parse 
tree?

• Top-down (goal-directed) strategy
• Tree should have one rot (grammar 

constraint)
• Bottom-up (data-driven) strategy

• Tree should have, e.g., 3 leaves (input 
sentence constraint)
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The input

• For now, assume:
• Input is not tagged (we can do this…)
• The input consists of unanalyzed word tokens
• All the words are known
• All the words in the input are available 

simultaneously (ie, buffered)
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How do we do this?

• Searching FSAs
• Finding the right path through the automaton
• Search space defined by structure of FSA

• Searching CFGs
• Finding the right parse tree among all 

possible parse trees
• Search space defined by the grammar

• Constraints provided by the input 
sentence and the automaton or grammar
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Marxist analysis: simple version

• Suppose just linear relations to recover
• Still can be ambiguity – multiple paths
• Consider:

Fruit flies  like   a     banana
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FSA, or linear Example

fruit flies like a banana

fruit

fruit flies
flies

1 2 3 4

5

like
like
ε

a
banana

0
fruit

fruit

0 1

fruit

flies
flies

fruit

fruit

flies

0 2
ε

3

like

like
like

flies
flies

1
a

4

a

like
like ε

2 3

banana

banana
4

5

a
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State-set parsing for fsa

Accept/reject
1. If qf  ∈ Sn then accept else reject

Final:

Compute Si  from Si-1

1. For each word wi , i=1,2,…,n
2.
3. Si← ε−closure(Si )
4. if Si  = ∅ then halt & reject else 

continue

Loop:

Compute initial state set, S0

1. S0←q0

2. S0← ε−closure(S0 )

Initialize:

1
( , )

ii q S iS q wδ
−∈← ∪
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States in sequence dictate parse 
path: 

S0:[0]      S1:[0,1]      S2:[1, 2, 3]      S3:[2, 3]   S4:[4]  S5:[5]    

State set 0 State set f

States: {0} →{0,1} →{1,2,3} →{2,3} →{4} →{5} (final)
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State to state jumps…

• Progress (& ultimately parse) recorded by what 
state machine is in

• Consider each transition as rule:
q0 → fruit q1 , also loop: q0 → fruit q0

q1 → flies q2

q2 → like q3 also epsilon transition: q2 → q3

q3 → a q4    

q4 → banana q5

• We can record progress path via ‘bouncing ball’ 
telling us how to sing the song…
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q0 → fruit • q0

Singing the song…

Fruit flies  like   a     banana
q0 → •fruit q1

q0 q1

q0 → fruit • q1

Fruit flies  like   a     banana

S0 S1

q0 → fruit • S1
q1 → flies • q2
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But now we have a more 
complex Marxist analysis

• I shot an elephant in my pajamas

• This is hierarchically ambiguous – not 
just linear!  (each possible hierarchical 
structure corresponds to a distinct
meaning)
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Marxist analysis
S

I

VP

V NP

NP

shot Det N

an elephant

PP

P
Det

in
pj’s

NP
N

my
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How can we extend this bouncing 
ball?

• Can’t just be linear…
• How do we pack these possibilities 

together?
• We will augment… let’s see how
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From this…

fruit     flies    like    a       banana
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To this… what is called a Chart

I         shot    an   elephant  in    my       pajamas

n       v       d          n         p       d         n
NP

PP

NP

NP

S
VP

NP

VP
S
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Three senses of rules

• generation (production): S → NP VP
• parsing (comprehension): S ← NP VP
• verification (checking): S = NP VP
• CFGs are declarative – tell us what the 

well-formed structures & strings are
• Parsers are procedural – tell us how to 

compute the structure(s) for a given 
string 
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CFG minigrammar

VP à V NP
Nom à Nom PP

PropN à Boston | UnitedNom à N
Prep àfrom | to | onNom à N Nom
Aux à doesNP  àPropN
V à book | include | preferNP à Det Nom

N à book | flight | meal | 
money

S à VP
Det à that |  this | aS à Aux NP VP
VP à VS à NP VP
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S

VP

NP

Nom

V Det N

Book that flight

Parse Tree for ‘Book that flight’
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Strategy 1: Top-down parsing

• Goal or expectation driven – find tree rooted at 
S that derives input

• Trees built from root to leaves
• Assuming we build all trees in parallel: 

• Find all trees with root S (or all rules w/lhs S)
• Next expand all constituents in these trees/rules
• Continue until leaves are parts of speech (pos)
• Candidate trees failing to match pos of input string 

are rejected (e.g. Book that flight can only match
subtree 5)
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Example: book the flight
S

S S S

NP VP NPNPAux VP VP

S S S

NP VP NPNPAux VP VP

S S S

NP VP NPNPAux VP VP

S S S

NP VP NPAux VP VP

Det N V NPDet N
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Top-down strategy

• Depth-first search: 
• Agenda of search states: expand search space 

incrementally, exploring most recently generated 
state (tree) each time

• When you reach a state (tree) inconsistent with 
input, backtrack to most recent unexplored state 
(tree)

• Which node to expand?
• Leftmost or rightmost

• Which grammar rule to use?
• Order in the grammar
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Top-down, left-to-right, depth-first

• Initialize agenda with ‘S’ tree and ptr to first 
word and make this current search state (cur)

• Loop until successful parse or empty agenda
• Apply all applicable grammar rules to leftmost 

unexpanded node of cur 
• If this node is a POS category and matches that of the 

current input, push this onto agenda
• O.w. push new trees onto agenda

• Pop new cur from agenda

• Does this flight include a meal?
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Strategy 2: Bottom-up

• Parser begins with words of input and 
builds up trees, applying grammar rules
w/rhs that match
• Book that flight

N Det N V Det N
Book that flight Book  that flight

• ‘Book’ ambiguous
• Parse continues until an S root node reached 

or no further node expansion possible
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Bottom-up search space

Book that flight

N Det N V Det N

Book that flight Book  that    flight

Noun          Nom                          Nom

N Det N V Det N

Book that flight Book  that    flight

Noun          Nom                          Nom       VP  Nom

N Det N V Det N            V      Det N

Book that flight Book  that    flight       Book that flight

NPNP
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Comparing t-d vs. b-u

• Top-Down parsers never explore illegal parses 
(e.g. can’t form an S) -- but waste time on trees 
that can never match the input

• Bottom-Up parsers never explore trees 
inconsistent with input -- but waste time 
exploring illegal parses (no S root)

• For both: how to explore the search space?
• Pursuing all parses in parallel or …?
• Which rule to apply next?
• Which node to expand next?
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Problems…

• Left-recursion
• Ambiguity: multiple parses
• Principle AWP
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Left-recursion

• Rules of form: X→ X α
• Example:  NP → NP ‘s NP |  Name

John’s brother’s book
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Structural ambiguity

• Multiple legal structures
• Attachment (e.g. I saw a man on a hill with a 

telescope)
• Coordination (e.g. younger cats and dogs)
• NP bracketing (e.g. Spanish language 

teachers)
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How to fix?

• Principle AWP!  Dynamic programming…
• Create table of solutions to sub-problems (e.g.

subtrees) as parse proceeds
• Look up subtrees for each constituent rather 

than re-parsing
• Since all parses implicitly stored, all available for 

later disambiguation
• Examples: Cocke-Younger-Kasami (CYK) (1960), 

Graham-Harrison-Ruzzo (GHR) (1980) and
Earley (1970) algorithms
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General method: Chart Parsing

• Note: parses share common constituents
• Build chart = graph data structure for storing 

partial & complete parses (AKA well-formed 
substring table)

• Graph:
• Vertices: used to delimit subsequences of the input
• Edges (active, inactive)

• Active = denote incompletely parsed (or found) phrase
• Inactive = completely found phrase
• Labels = name of phrase

• Note: chart sufficient to attain polynomial time 
parsability =  O (n3 |G|), |G| = ‘size’ of 
grammar, no matter what strategy we use
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How do we build the chart?

• Idea: as parts of the input are successfully 
parsed, they are entered into chart

• Like memoization
• Can use any combo  strategy of t-d, b-u, 

or in between to build the edges
• Annotate edges as they are built w/ the 

corresponding dotted rule
• Parser is a combination of chart + 

strategy
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Chart parsing
• Example of chart

I         shot    an   elephant  in    my       pajamas

n       v       d          n         p       d         n
NP

PP

NP

NP

S
VP

NP

VP
S
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Chart parsing

• Think of chart entries as sitting between 
words in the input string keeping track of 
states of the parse at these positions

• For each word position, chart contains the 
set of states representing all partial parse 
trees generated to date
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Chart parsing

• Chart entries represent three type of 
constituents (phrases):
• predicted constituents
• in-progress constituents
• completed constituents
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Representing complete (inactive) vs. 
incomplete (active) edges

• Complete: full phrase found, e.g., NP, VP
• So: corresponding rule something like

• NP→NP PP  (“an elephant in my pajamas”)
• S → NP VP   (“I saw an elephant”)
• NP → Det N  (“an elephant”)

• Representation: use “dot”  in rule to denote 
progress in discovering LHS of the rule:
NP→• Det NP = I’ve just started to find an NP (“predict”)
NP → Det • NP = Found a Det in input, now find NP
NP → Det NP • = Completed phrase (dot at end)
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Chart we displayed has only 
inactive (completed) edges

I         shot    an   elephant  in    my       pajamas

n       v       d          n         p       d         n
NP

PP

NP

NP

S
VP

NP

VP
S
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Complete (Inactive) vs. In-
progress (active) edges
• Completed edges correspond to “having found a 

phrase” so really should be labeled with info like 
NP → Det NP •

• We should go back & annotate our chart like 
this

• These edges are “inactive” because there is no 
more processing to be done to them

• Incomplete or “active” edges: work in progress, 
i.e., NP→• Det NP or NP → Det • NP 

• We build up the chart by extending active 
edges, gluing them together – let’s see how
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Note correspondence between 
“dotted rules” & states in 
corresponding fsa - isomorphic
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Dotted rule – fsa correspondence

NP            Det N

1 2 3

NP → •Det  N   = being in State 1

NP → Det • N   = being in State 2

NP → Det N • = being in State 3
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Correspondence

Sentence

The guy

NP

Det Noun

Dotted rule form

NP→ •Det Noun

Dot at beginning=
just started building a
phrase of this type
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Correspondence

Sentence

The guy

NP

Det Noun

Dotted rule form

NP→Det • Noun
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Correspondence

Sentence

The guy

NP

Det Noun

Dotted rule form

NP→Det • Noun

Advance in input = scan

NP→Det Noun •

(finished building 
phrase)
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Representing the edges

• 0 Book 1 that 2 flight 3
S → • VP, [0,0] (predicting VP)

NP → Det • Nom, [1,2] (finding NP)

VP → V NP •, [0,3] (found VP)

• [x,y] tells us where a phrase begins (x) and where 
the dot lies (y) wrt the input – how much of the 
phrase is built so far

• So, a FULL description of a chart edge is:
Edge Label, [start node, current progress dot pos]

.e.g., 
NP → Det • Nom, [1,2]
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Set of dotted rules encodes state 
of parse

• = all states parser could be in after 
processing i tokens

• We now have almost all the ingredients…
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FSA, or linear Example

fruit flies like a banana

fruit

fruit flies
flies

1 2 3 4

5

like
like
ε

a
banana

0
fruit

fruit

0 1

fruit

flies
flies

fruit

fruit

flies

0 2
ε

3

like

like
like

flies
flies

1
a

4

a

like
like ε

2 3

banana

banana
4

5

a
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State-set parsing for fsa

Accept/reject
1. If qf  ∈ Sn then accept else reject

Final:

Compute Si  from Si-1

1. For each word wi , i=1,2,…,n
2.
3. Si← ε−closure(Si )
4. if Si  = ∅ then halt & reject else 

continue

Loop:

Compute initial state set, S0

1. S0←q0

2. S0← ε−closure(S0 )

Initialize:

1
( , )

ii q S iS q wδ
−∈← ∪
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Use backpointers to keep track of 
the different paths (parses): 

S0:[0]      S1:[0,1]      S2:[1, 2, 3]      S3:[2, 3]   S4:[4]  S5:[5]    

State set 0 State set f
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Chart parsing is the same, 
except…

• Notion of ‘state set’ is just more 
complicated – not just the state #, but 
also the # of the state we started building 
the phrase at = the return ptr 

• Note this is what the chart graph structure 
encodes
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State set = chart after i words

• Given grammar G, input string w=w1 w2
…wn
Note: we mark interword positions 0w1 w2 …wn

• Initialize: write down what can be in “start 
state set”  S0

• Loop: for each word wi , compute Si
from Si-1

• Final: see if final state is in last state set
Sn
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Compute initial state set S0 Compute initial state set S0
1. S0← q0
2. S0← eta-closure (S0)

1. S0←q0
2. S0← eta-closure (S0)

q0= [Start→•S,  0] q0= [Start→•S,   0, 0]
eta-closure= transitive
closure of jump arcs

eta-closure= transitive closure
of  Predict and Complete

FTN Parser CFG Parser

Initialize:

Compute Si from Si-1 Compute Si from Si-1
For each word, wi, 1=1,...,n For each word, wi , 1=1,...,n

Si←∪δ(q, wi)
q∈Si-1

Si←∪δ(q, wi)
q∈Si-1

= Scan(Si-1)
q=itemSi←e-closure(Si) Si←e-closure(Si )

e-closure=
closure(Predict, Complete)

Loop:

Accept/reject:
If qf ∈ Sn then accept;
else reject

If qf∈Sn then accept;
else reject

Accept/reject:

qf= [Start→S•, 0] qf= [Start→S•, 0, n]

Final:
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Parsing procedure w/ chart

• Move through each set of states in order, 
applying one of three operators to each 
state:
• predictor: add new active edges, predictions, 

to the chart
• scanner: read input and advance dot, add 

corresponding active edge to chart
• completer: if dot at the right end of a rule,  

then see if we can glue two edges together to 
form a larger one
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Note:

• Results (new edges) added to current or 
next set of states in chart

• No backtracking and no edges removed: 
keep complete history of parse

• When we get to the end, there ought to 
be an edge labeled S, extending from 0 to 
n (n= length of sentence)



6.863J/9.611J Lecture 7 Sp03

As in

I         shot    an   elephant  in    my       pajamas

n       v       d         n         p       d         n
NP

PP

NP

NP

S
VP

NP

VP
S
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Predictor (‘wishor’)

• Intuition:  new states represent top-down 
expectations

• Applied when non part-of-speech non-terminals 
are to the right of a dot – until closure
S → • VP [i,i]

• Adds new states to current chart
• One new state for each expansion of the non-

terminal in the grammar
VP → • V [i,i]
VP → • V NP [i,i]
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Scanner (as in fsa)

• New states for predicted part of speech
• Applicable when part of speech is to the 

right of a dot
VP → • V NP [0,0] ‘Book…’

• Looks at current word in input
• If match, adds dotted rule edge starting 

at next point over, e.g., 
VP → V • NP [0,1]

Just as with fsa’s – jump to next point
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Completer

• Intuition:  parser has discovered a 
complete constituent, so must see if this 
completed edge can be pasted together 
with any preceding active edge to make a 
bigger one… 

• E.g., NP[0, 2] & VP[2, 7] yields S[0,7]
• “Glue together” two edges
• Must do this until closure… 
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Examples – will use v, v simple G

• S → NP VP
• VP → V  NP
• VP → V NP PP
• NP → D  N
• NP → N
• NP → NP PP
• PP → P NP
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Strategies w/ Chart

• Top-down
• Bottom-up
• Left-corner (what’s that??)
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Example: Top-down w/ chart

I         shot    an   elephant  in      my       pajamas

State set S0 - nothing more can be added, so scan next word

Note how top-down strategy can introduce rules unconnected
to the input..

S → •NP VP
NP → • D  N [from predict]
NP → • N   [from predict]
NP → • NP PP   [from predict]
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Scan to next word…follow the 
bouncing dot…

I         shot    an   elephant  in      my       pajamas

S → •NP VP
NP → • D  N
NP → • N
NP → • NP PP

NP → N •
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Dot at end…so we ‘complete’ NP

I         shot    an   elephant  in      my       pajamas

S → •NP VP
NP → • D  N
NP → • N
NP → • NP PP

NP → N •

S → NP • VP

S → •NP VP + NP →N • yields new
edge S → NP • VP

NP → NP • PP
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And now predict…expand VP (t-d)

I         shot    an   elephant  in      my       pajamas

NP → N •

S → NP • VP

PP → • P NP

VP → • V  NP
VP → • V

NP → NP • PP

VP → • VP  NP
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Scan Verb

I         shot    an   elephant  in      my       pajamas

NP → N •

S → NP • VP

VP → V • NP

VP → • VP  PP

What next?  … Predict NP
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NP Predictions added

NP → • D  N
NP → • N
NP → • NP PP

I         shot    an   elephant  in      my       pajamas

NP → N •

S → NP • VP

VP → V • NP

VP → • VP  PP

Skip ahead a bit to where next NP ‘an elephant’ 
is done
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Process NP object

NP → D  N •

NP → • NP PP

I         shot    an   elephant  in      my       pajamas

NP → N •

S → NP • VP

VP → V NP •

VP → VP • PP
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Enough…no more!  Demo easier!


