
6.863J Natural Language Processing
Lecture 7: The Red Pill or the Blue Pill, 

Episode 2: part-of-speech tagging

Instructor: Robert C. Berwick
berwick@ai.mit.edu
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The Menu Bar
• Administrivia:

• Schedule alert: Lab1b due today
• Lab 2b released, this Weds (later today) 

Agenda:
Red vs. Blue:
• Part of speech ‘tagging’ via statistical models
• Part of speech tagging via rules
• Ch. 6 & 8 in Jurafsky
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The Great Divide in NLP: the red pill 
or the blue pill?

“Knowledge
Engineering” approach
Rules built by hand w/
K of Language
“Text understanding”

“Trainable Statistical”
Approach
Rules inferred from lots
of data (“corpora”)
“Information retrieval”
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Two approaches

1. Statistical model 
2. Deterministic baseline tagger composed 

with a cascade of fixup transducers
These two approaches are the guts of Lab 2
(lots of others methods: decision trees, …)
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The problem

• In unseen data,we wish to find the part of 
speech tags

• The set of  part of speech tags are decided 
by experts
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Noishy Chunnel Muddle (statistical)

noisy channel   X Y

real language   X

yucky language   Y

want to recover X from Y

part-of-speech tags

insert words

text
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A picture: the statistical, noisy 
channel view 

x(speech)

Wreck a nice beach?
Reckon eyes peach?
Recognize speech?

Acoustic 
Model
P(x|y)

Language
Model
P(y)

y(text)Bigram Tag 
model
P(T)

Word 
model
P(w|T)x(words) y(tags)
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Formulation, in general

arg max Pr( | )
Label

Label Label Data=
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General probabilistic decision 
problem

• E.g.: data = bunch of text
• label = language
• label = topic
• label = author

• E.g.2: (sequential prediction)
• label = translation or summary of entire text
• label = part of speech of current word
• label = identity of current word (ASR) or character 

(OCR)
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Language models – statistical view
• Application to speech recognition (and parsing, 

generally)
• x= Input (speech/words)
• y= output (text/Tags)
• We want to find max P(y|x) Problem: we don’t know 

the tags – that is what we want to find!
• Solution: We have an estimate of P(y) [the language 

model] and P(x|y) [the prob. of some sound/words 
given text/Tags = an acoustic model or Tag model]
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Finding inner form given outside:

From Bayes’ law, we have, 
max P(y|x) = max P(x|y) • P(y) =  
max Pr acoustic model x lang model
(hold P(x) fixed, i.e., P(x|y) • P(y) / P(x), but 

max is same for both)

So, in tagging case, we have a word model 
instead - so we find max P(tags|w) from: 
max P(words|tags) • P(tags)
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HMM for POS tagging

• In a Hidden Markov model, it is hypothesized 
that there is an underlying finite state 
machine (not directly observable, hence 
hidden) that changes state with each input 
element

• For us, the hidden states are the tags, and 
the input elements are the words
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Hidden Markov Model tagging for 
POS

• Prob(Tag sequence) – based on n-grams: train on 
marked up, tagged text

• Prob(W|T) – unigram prob, based on tagged text
• Prob(T, w)  computed from Viterbi trellis computation  

- max over all possible tag sequence paths, and 
‘emission’ probabilities of word, tag combination

• Unseen tag sequence
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Cartoon form Review

Tag sequence 
bigrams:   P(T)

Unigram: p(W | T)

p(T, w)

*

==

*
score candidate tag seqs
on their joint probability with observed words;
we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *
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HMM construction

• Hidden state transition model governs observed word 
sequences

• Transitions probabilistic
• Estimate transition probabilities from an annotated 

corpus  state ‘s’ = tag state 
• P(sj | sj-1, wj) 
• Based just on prior state and current word seen 

(hence Markovian assumption)
• At runtime, find maximum likelihood path through 

the network, using a max-flow algorithm (Viterbi)
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Cartoon form Review

Tag sequence 
bigrams:   P(T)

Unigram: p(W | T)

p(T, w)

*

==

* *
p(w | W)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *
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P(T) - Tag bigram picture

Det

BOS

Adj
Noun EOS

Adj 0.3

Adj 0.4
Noun
0.5

ε 0.2

Det 0.8

p(tag seq)

BOS Det Adj Adj Noun EOS = 0.8 * 0.3 * 0.4 * 0.5 * 0.2
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Unigram replacement model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

P(word| tag)
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Compose with
actual word seq

Det:a 0.48
Det:the 0.32

Det

BOS

Adj
Noun EOS

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos
0.00002

the

Det:the 0.32

0.32 x
D:the 

# 0.2

cool

.0009 x
A:cool

Adj:cool 0.0009

directed

.0002  x
A:directed

Adj:directed 0.00020

# 0.2

x.2 ≈ .3 10-6 total

path prob,  
done! 

#
autos

.00002 x
N:autos

N:autos
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Unroll the fsa - All paths together 
form ‘trellis’

Det:t
he 0

.32
Det

BOS Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
BOS Det  Adj   Adj         Noun EOS = 0.32 * 0.0009 …

the  cool  directed  autos

Adj:cool 0.0009
Noun:cool 0.007

WHY?
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Cross-product construction forms 
trellis

So all paths here must have 5 words on output side

All paths here are 5 words

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*

0 1

2

3
4

ε
ε
ε

ε
ε
ε
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Finding the best path from start to stop

• Use dynamic programming 
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start 

(as probability plus one backpointer)
• Special acyclic case of Dijkstra’s shortest-path 

algorithm
• Faster if some arcs/states are absent

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007
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Method to find max probability path: 
Viterbi algorithm

• For each path reaching state s at step (word) w, 
we compute a path probability. We call the max of 
these viterbi(s,w)

• [Base step]       Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',w+1), assuming 

we know viterbi(s,w) for all s
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Viterbi recursion

path-prob(s'|s,w) = viterbi(s,w)    *           a[s,s']

probability of path to max path score  *      transition prob
s’ through s for state s at word w           s →s’

viterbi(s',w+1) = max s in STATES path-prob(s' | s,w)

Bi-gram POS 
probability
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Method…

• This is almost correct…but again, we need to 
also factor in the unigram prob of a state s’ 
‘emitting’ a word w given an observed surface 
word w, or b(ow) at tag state s’

• So the correct formula for the path prob is:
path-prob(s'|s,w) = viterbi(s,w) *  a[s,s'] * bs’ (ow)

bigram unigram
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Or as in your text…p. 179 (NB: t 
used instead of w for index)
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Summary
• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• This is a “Hidden Markov Model”:

Start PN Verb Det     Noun  Prep Noun   Prep Det  Noun Stop

Bill  directed   a    cortege  of   autos  through  the  dunes

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement
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How much data is needed?

• System performance bears a roughly log-
linear relationship to the training data 
quantity, at least up to about 1.2 million 
words

• Obtaining 1.2 million words of training data 
requires transcribing and annotating 
approximately 200 hours of broadcast news 
programming, or if annotating text, this 
would amount to approximately 1,777 
average-length Wall Street Journal articles
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Other tasks
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If you think POS tagging is not 
relevant, then… 

• Microsoft announced plans to include “Smart 
Tags” in its browser and other products. This 
is a feature that automatically inserts 
hyperlinks from concepts in text to related 
web pages chosen by Microsoft.

• The best way to make automatic hyperlinking
unbiased is to base it on an unbiased source 
of web pages, such as Google.
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How to do this?
• The main technical problem is to find pieces of text that 

are good concept anchors… like names!
• So: Given a text, find the starting and ending points of all 

the names. Depending on our specific goals, we can 
include the names of people, places, organizations, 
artifacts (such as product names), etc.

• . Once we have the anchor text, we can send it to a 
search engine, retrieve a relevant URL (or set of URLs, 
once browsers can handle multi-way hyperlinks), and 
insert them into the original text on the fly.
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Example – “Message understanding” 
(MUC)

ST1-MUC3-0011

SANTIAGO, 18 MAY 90 (RADIO COOPERATIVA NETWORK) -- [REPORT] [JUAN
ARAYA] 
[TEXT] 
EDMUNDO VARGAS CARRENO, CHILEAN FOREIGN MINISTRY UNDER
SECRETARY, HAS STATED THAT THE BRYANT TREATY WITH THE UNITED STATES WILL 
BE APPLIED IN THE LETELIER CASE ONLY TO COMPENSATE THE RELATIVES OF THE 
FORMER CHILEAN FOREIGN MINISTER MURDERED IN WASHINGTON AND THE 
RELATIVES OF HIS U.S. SECRETARY, RONNIE MOFFIT.  THE CHILEAN FOREIGN UNDER 
SECRETARY MADE THIS STATEMENT IN REPLY TO U.S. NEWSPAPER REPORTS STATING 
THAT THE TREATY WOULD BE PARTIALLY RESPECTED.

FOLLOWING ARE VARGAS CARRENO'S STATEMENTS AT A NEWS CONFERENCE HE 
HELD IN BUENOS AIRES BEFORE CONCLUDING HIS OFFICIAL VISIT TO
ARGENTINA:
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Extracted info – names, events0.  MESSAGE: ID                     TST1-MUC3-0011
1.  MESSAGE: TEMPLATE              1
2.  INCIDENT: DATE              18 MAY 90
3.  INCIDENT: LOCATION              UNITED STATES: WASHINGTON D.C. (CITY)
4.  INCIDENT: TYPE                 ATTACK
5.  INCIDENT: STAGE OF EXECUTION    ACCOMPLISHED
6.  INCIDENT: INSTRUMENT ID       -
7.  INCIDENT: INSTRUMENT TYPE    -
8.  PERP: INCIDENT CATEGORY       STATE-SPONSORED VIOLENCE
9.  PERP: INDIVIDUAL ID       -
10. PERP: ORGANIZATION ID         "CHILEAN GOVERNMENT"
11. PERP: ORGANIZATION 

CONFIDENCE   REPORTED AS FACT: "CHILEAN GOVERNMENT"
12. PHYS TGT: ID                    -
13. PHYS TGT: TYPE                  -
14. PHYS TGT: NUMBER                -
15. PHYS TGT: FOREIGN NATION        -
16. PHYS TGT: EFFECT OF INCIDENT    -
17. PHYS TGT: TOTAL NUMBER          -
18. HUM TGT: NAME                   "ORLANDO LETELIER"

"RONNIE MOFFIT"
19. HUM TGT: DESCRIPTION          "FORMER CHILEAN FOREIGN MINISTER": "ORLANDO 

LETELIER"
"U.S. SECRETARY" / "ASSISTANT" / 
"SECRETARY": "RONNIE MOFFIT"

20. HUM TGT: TYPE                   GOVERNMENT OFFICIAL: "ORLANDO LETELIER"
CIVILIAN: "RONNIE MOFFIT"

21. 
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Recognizing domain patterns
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What about part of speech tagging here?

• Advantages
• Ambiguity can be potentially reduced (but we shall 

see in our laboratory if this is true)
• Avoid errors due to incorrect categorization of rare 

senses e.g., “has been” as noun
• Disadvantages

• Errors taggers make often those you’d most want 
to eliminate

• High performance requires training on similar 
genre

• Training takes time
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Proper names…

• Proper names are particularly important for 
extraction systems

• Because typically one wants to extract 
events, properties, and relations about some 
particular object, and that object is usually 
identified by its name
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…A challenge…

• Problems though…
• proper names are huge classes and it is 

difficult, if not impossible to enumerate 
their members 

• Hundreds of thousands of names of 
locations around the world

• Many of these names are in languages 
other than the one in which the extraction 
system is designed
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How are names extracted?

• (Hidden) Markov Model
• Hypothesized that there is an underlying finite state 

machine (not directly observable, hence hidden) that 
changes state with each input element

• probability of a recognized constituent is conditioned 
not only on the words seen, but the state that the 
machine is in at that moment 

• “John” followed by “Smith” is likely to be a person, 
while “John” followed by “Deere” is likely to be a 
company (a manufacturer of heavy farming and 
construction equipment). 
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HMM statistical name tagger

Person name

End

Not-a-name

Company nameStart
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Method 2: Rule system (but learned)

• Error-based tagging
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Another FST Paradigm: Successive 
Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …

In
itia

l a
nnota

tio
n

Fixu
p 1

Fixu
p 2input

outputFixu
p 3
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Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts
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Transformation-Based Tagging
(Brill 1995)

figure from Brill’s thesis
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Transformations Learned

figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*
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Initial Tagging of OOV Words

figure from Brill’s thesis
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Laboratory 2 

• Goals: 
1. Use both HMM and Brill taggers
2. Find errors that both make
3. Compare performance – use of kappa & 

‘confusion matrix’
4. All the slings & arrows of corpora – use Wall 

Street Journal excerpts
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Transformation based tagging
• Combines symbolic and stochastic approaches: uses 

machine learning to refine its tags, via several passes
• Analogy: painting a picture, use finer and finer brushes -

start with broad brusch that covers a lot of the canvas, 
but colors areas that will have to be repainted. Next 
layer colors less, but also makes fewer mistakes, and so 
on.

• Similarly: tag using broadest (most general) rule; then 
an narrower rule, that changes a smaller number of 
tags, and so on.  (We haven’t said how the rules are 
learned)

• First we will see how the TBL rules are applied
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Contextual Rules

• Change tag a to tag b when:
• 1. The preceding (following) word is tagged z. 

2. The word two before (after) is tagged z.
3. One of the two preceding (following) words is 
tagged z. 
4. One of the three preceding (following) words if 
tagged z.
5. The preceding word is tagged z and the following 
word is tagged w. 
6. The preceding (following) word is tagged z and the 
word two before (after) is tagged w. 
7. The preceding (following) word x.
…
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Lexical Rules

Change the tag of an unknown word (from X) to Y if:
• 1. Deleting the prefix (suffix) x, |x| =< 4, results in a 

word (x is any string of length 1 to 4). 
2. The first (last) (1,2,3,4) characters of the word are 
x. 
3. Adding the character string x as a prefix (suffix) 
results in a word (|x| =< 4). 
4. Word w ever appears immediately to the left 
(right) of the word. 
5. Character z appears in the word. 
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Example Lexical Rules

NN s fhassuf 1 NNS

change the tag of an unknown word from NN to 
NNS if it has suffix -s

webpages/NN →webpages/NNS
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Example 2

NN - fchar JJ
change the tag of an unknown word from NN to 

JJ if it has character '-'
man-made, rule-based, three-year-old, etc.
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Applying the rules
1. First label every word with its most-likely tag (as 

we saw, this gets 90% right…!) for example, in 
Brown corpus, race is most likely to be a Noun:
P(NN|race)= 0.98
P(VB|race)= 0.02

2. …expected/VBZ to/TO race/NN tomorrow/NN
…the/DT race/NN for/IN outer/JJ space/NN

3. Use transformational (learned) rules to change 
tags:
Change NN to VB when the previous tag is TO

TO race/VB
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Initial Tagging of OOV Words

figure from Brill’s thesis
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OK, the proof is in the (supervised) 
learning pudding - How?

• 3 stages
1. Start by labeling every word with most-likely tag
2. Then examine every possible transformation, and 

selects one that results in most improved tagging
3. Finally, re-tags data according to this rule
4. Repeat 1-3 until some stopping criterion (no new 

improvement, or small improvement)
• Output is ordered list of transformations that 

constitute a tagging procedure 
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How this works

• Set of possible ‘transforms’ is infinite, e.g., 
“transform NN to VB if the previous word was
MicrosoftWindoze & word braindead occurs 
between 17 and 158 words before that”

• To limit: start with small set of abstracted 
transforms, or templates 
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Templates used: Change a to b when…

Variables a, b, z, w, range over parts of speech
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Examples of Contextual Rules

• NN VB PREVTAG TO
• change tag NN to tag VB when the preceding word is 

tagged TO 
to/TO run/NN

would be changed to 
to/TO run/VB

• VBP VB PREV1OR2OR3TAG MD
• Chane tag VBP(verb, non-3rd person singular 

present) to VB(verb, base form) when one of the 
three preceding words is tagged MD (modal verb)
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Method

1. Call Get-best-transform with list of 
potential templates; this calls

2. Get-best-instance which instantiates 
each template over all its variables (given 
specific values for where we are)

3. Try it out, see what score is (improvement 
over known tagged system -- supervised 
learning); pick best one locally



6.863J/9.611J SP04 Lecture 7

6.863J/9.611J SP04 Lecture 7



6.863J/9.611J SP04 Lecture 7

nonlexicalized rules learned by TBL
tagger
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Transformations Learned

figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*
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Error analysis: what’s hard for
taggers

• Common errors (> 4%)
• NN vs .NNP  (proper vs. other nouns) vs. JJ 

(adjective): hard to distinguish prenominally; 
important to distinguish esp. for information 
extraction

• RP vs. RB vs IN: all can appear in sequences
immed. after verb

• VBD vs. VBN vs. JJ: distinguish past tense, 
past participles (raced vs. was raced vs. the 
out raced horse) 
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What’s hard

• Unknown words
• Order 0 idea: equally likely over all parts of speech
• Better idea: same distribution as ‘Things seen 

once’ estimator of ‘things never seen’  - theory for 
this done by Turing (again!)

• Hapax legomenon
• Assume distribution of unknown words is like this
• But most powerful methods make use of how 

word is spelled
• See file in the course tagging dir on this
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Or unknown language

• Vse schastlivye sen’i pokhozhi brug na druga,
kazhdaja neschastlivaja sem’ja neschastliva 
po-svoemu
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Most powerful unknown word 
detectors

• 3 inflectional endings (-ed, -s, -ing); 32 
derivational endings (-ion, etc.); 
capitalization; hyphenation

• More generally: should use morphological 
analysis!  (and some kind of machine learning 
approach)

• How hard is this?  We don’t know - we 
actually don’t know how children do this, 
either (they make mistakes)
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Laboratory 2 

• Goals: 
1. Use both HMM and Brill taggers
2. Find errors that both make, relative to 

genre
3. Compare performance – use of kappa & 

‘confusion matrix’
4. All the slings & arrows of corpora – use Wall 

Street Journal excerpts, as well as 
‘switchboard’ corpus



6.863J/9.611J SP04 Lecture 7

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts
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Evaluation of systems
• The principal measures for information extraction tasks 

are recall and precision.

• Recall is the number of answers the system got right 
divided by the number of possible right answers 

• It measures how complete or comprehensive the 
system is in its extraction of relevant information 

• Precision is the number of answers the system got right 
divided by the number of answers the system gave 

• It measures the system's correctness or accuracy 
• Example: there are 100 possible answers and the 

system gives 80 answers and gets 60 of them right, 
its recall is 60% and its precision is 75%. 
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A better measure - Kappa

• Takes baseline & complexity of task into 
account – if 99% of tags are Nouns, getting 
99% correct no great shakes

• Suppose no “Gold Standard” to compare 
against?

• P(A) = proportion of times hypothesis agrees
with standard (% correct)

• P(E) = proportion of times hypothesis and 
standard would be expected to agree by chance 
(computed from some other knowledge, or 
actual data)
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Kappa [p. 315 J&M text]

• Note K ranges between 0 (no agreement, 
except by chance; to complete agreement, 1)

• Can be used even if no ‘Gold standard’ that 
everyone agrees on

• K> 0.8 is good

( ) ( )
1 ( )
P A P E

P E
κ −
=

−
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Kappa

• A = actual agreement; E = expected agreement
• consistency is more important than “truth”
• methods for raising consistency

• style guides (often have useful insights into 
data)

• group by task, not chronologically, etc.
• annotator acclimatization

( ) ( )
1 ( )
P A P E

P E
κ −
=

−
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Coda on kids

C: “Mommy,  nobody don’t like me”

A: No, say, “nobody likes me”

C:  Nobody don’t likes me

A: Say, “nobody likes me”

C:  Nobody don’t likes me
[ 7 repetitions]

C:  Oh!   Nobody don’t like me!
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Is that all there is?
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What have we done so far?

• Only information we represent: is whether an 
item precedes (or follows) another

• Inventory of vocabulary items (classes)
• = Finite state machines

• Is there anything else in language???
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Motivation

• What, How, and Why
• What: word chunks behave as units, like 

words or endings (morphemes), like ing
• How: we have to recover these from input
• Why: chunks used to discover meaning
• Parsing: mapping from strings to structured 

representation
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Programming languages
printf ("/charset [%s", (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
assert (p + *p < pend);
for (c = 0; c < 256; c++)if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) {/* Are we starting a range?  */if (last + 1 == c && ! inrange) {putchar ('-');inrange = 1;}/* Have we broken a range?  */else if (last + 1 != c && inrange) {putchar (last);inrange = 0;}

if (! inrange)putchar (c);
last = c;} Easy to parse.

Designed that way!
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Natural languages

No {} () [] to indicate scope & precedence

Lots of overloading (arity varies)

Grammar isn’t known in advance!

What is the best formalism?

printf "/charset %s", re_opcode_t *p - 1 == charset_not ? "^" : ""; assert p + *p < pend; for c = 0; c < 256; c++ if c / 8 < *p && p1 + c/8 & 1 << c % 8 Are we starting a range? if last + 1 == c && ! inrange putchar '-'; inrange = 1; Have we broken a range? else if last + 1 != c && inrange putchar last; inrange = 0; if ! inrange putchar c; last = c;
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What can’t linear relations represent?

• wine dark sea  → (wine (dark sea)) or
((wine dark) sea) ?

• deep blue sky

• Can fsa’s represent this?
• Not really: algebraically, defined as being 

associative (doesn’t matter about 
concatenation order)


