
6.863J Natural Language Processing
Lecture 7: The Red Pill or the Blue Pill,

Episode 2: part-of-speech tagging

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 7

The Menu Bar
• Administrivia:

• Schedule alert: Lab1b due today
• Lab 2b released, this Weds (later today)

Agenda:
Red vs. Blue:
• Part of speech ‘tagging’ via statistical models
• Part of speech tagging via rules
• Ch. 6 & 8 in Jurafsky

6.863J/9.611J SP04 Lecture 7

The Great Divide in NLP: the red pill
or the blue pill?

“Knowledge
Engineering” approach
Rules built by hand w/
K of Language
“Text understanding”

“Trainable Statistical”
Approach
Rules inferred from lots
of data (“corpora”)
“Information retrieval”

6.863J/9.611J SP04 Lecture 7

Two approaches

1. Statistical model
2. Deterministic baseline tagger composed

with a cascade of fixup transducers
These two approaches are the guts of Lab 2
(lots of others methods: decision trees, …)

6.863J/9.611J SP04 Lecture 7

The problem

• In unseen data,we wish to find the part of
speech tags

• The set of part of speech tags are decided
by experts

6.863J/9.611J SP04 Lecture 7

Noishy Chunnel Muddle (statistical)

noisy channel X Y

real language X

yucky language Y

want to recover X from Y

part-of-speech tags

insert words

text

6.863J/9.611J SP04 Lecture 7

A picture: the statistical, noisy
channel view

x(speech)

Wreck a nice beach?
Reckon eyes peach?
Recognize speech?

Acoustic
Model
P(x|y)

Language
Model
P(y)

y(text)Bigram Tag
model
P(T)

Word
model
P(w|T)x(words) y(tags)

6.863J/9.611J SP04 Lecture 7

Formulation, in general

arg max Pr(|)
Label

Label Label Data=

6.863J/9.611J SP04 Lecture 7

General probabilistic decision
problem

• E.g.: data = bunch of text
• label = language
• label = topic
• label = author

• E.g.2: (sequential prediction)
• label = translation or summary of entire text
• label = part of speech of current word
• label = identity of current word (ASR) or character

(OCR)

6.863J/9.611J SP04 Lecture 7

Language models – statistical view
• Application to speech recognition (and parsing,

generally)
• x= Input (speech/words)
• y= output (text/Tags)
• We want to find max P(y|x) Problem: we don’t know

the tags – that is what we want to find!
• Solution: We have an estimate of P(y) [the language

model] and P(x|y) [the prob. of some sound/words
given text/Tags = an acoustic model or Tag model]

6.863J/9.611J SP04 Lecture 7

Finding inner form given outside:

From Bayes’ law, we have,
max P(y|x) = max P(x|y) • P(y) =
max Pr acoustic model x lang model
(hold P(x) fixed, i.e., P(x|y) • P(y) / P(x), but

max is same for both)

So, in tagging case, we have a word model
instead - so we find max P(tags|w) from:
max P(words|tags) • P(tags)

6.863J/9.611J SP04 Lecture 7

HMM for POS tagging

• In a Hidden Markov model, it is hypothesized
that there is an underlying finite state
machine (not directly observable, hence
hidden) that changes state with each input
element

• For us, the hidden states are the tags, and
the input elements are the words

6.863J/9.611J SP04 Lecture 7

Hidden Markov Model tagging for
POS

• Prob(Tag sequence) – based on n-grams: train on
marked up, tagged text

• Prob(W|T) – unigram prob, based on tagged text
• Prob(T, w) computed from Viterbi trellis computation

- max over all possible tag sequence paths, and
‘emission’ probabilities of word, tag combination

• Unseen tag sequence

6.863J/9.611J SP04 Lecture 7

Cartoon form Review

Tag sequence
bigrams: P(T)

Unigram: p(W | T)

p(T, w)

*

==

*
score candidate tag seqs
on their joint probability with observed words;
we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

6.863J/9.611J SP04 Lecture 7

HMM construction

• Hidden state transition model governs observed word
sequences

• Transitions probabilistic
• Estimate transition probabilities from an annotated

corpus state ‘s’ = tag state
• P(sj | sj-1, wj)
• Based just on prior state and current word seen

(hence Markovian assumption)
• At runtime, find maximum likelihood path through

the network, using a max-flow algorithm (Viterbi)

6.863J/9.611J SP04 Lecture 7

Cartoon form Review

Tag sequence
bigrams: P(T)

Unigram: p(W | T)

p(T, w)

*

==

* *
p(w | W)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

6.863J/9.611J SP04 Lecture 7

P(T) - Tag bigram picture

Det

BOS

Adj
Noun EOS

Adj 0.3

Adj 0.4
Noun
0.5

ε 0.2

Det 0.8

p(tag seq)

BOS Det Adj Adj Noun EOS = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

6.863J/9.611J SP04 Lecture 7

Unigram replacement model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

P(word| tag)

6.863J/9.611J SP04 Lecture 7

Compose with
actual word seq

Det:a 0.48
Det:the 0.32

Det

BOS

Adj
Noun EOS

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos
0.00002

the

Det:the 0.32

0.32 x
D:the

0.2

cool

.0009 x
A:cool

Adj:cool 0.0009

directed

.0002 x
A:directed

Adj:directed 0.00020

0.2

x.2 ≈ .3 10-6 total

path prob,
done!

#
autos

.00002 x
N:autos

N:autos

6.863J/9.611J SP04 Lecture 7

Unroll the fsa - All paths together
form ‘trellis’

Det:t
he 0

.32
Det

BOS Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
BOS Det Adj Adj Noun EOS = 0.32 * 0.0009 …

the cool directed autos

Adj:cool 0.0009
Noun:cool 0.007

WHY?

6.863J/9.611J SP04 Lecture 7

Cross-product construction forms
trellis

So all paths here must have 5 words on output side

All paths here are 5 words

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*

0 1

2

3
4

ε
ε
ε

ε
ε
ε

6.863J/9.611J SP04 Lecture 7

Finding the best path from start to stop

• Use dynamic programming
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start

(as probability plus one backpointer)
• Special acyclic case of Dijkstra’s shortest-path

algorithm
• Faster if some arcs/states are absent

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007

6.863J/9.611J SP04 Lecture 7

Method to find max probability path:
Viterbi algorithm

• For each path reaching state s at step (word) w,
we compute a path probability. We call the max of
these viterbi(s,w)

• [Base step] Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',w+1), assuming

we know viterbi(s,w) for all s

6.863J/9.611J SP04 Lecture 7

Viterbi recursion

path-prob(s'|s,w) = viterbi(s,w) * a[s,s']

probability of path to max path score * transition prob
s’ through s for state s at word w s →s’

viterbi(s',w+1) = max s in STATES path-prob(s' | s,w)

Bi-gram POS
probability

6.863J/9.611J SP04 Lecture 7

Method…

• This is almost correct…but again, we need to
also factor in the unigram prob of a state s’
‘emitting’ a word w given an observed surface
word w, or b(ow) at tag state s’

• So the correct formula for the path prob is:
path-prob(s'|s,w) = viterbi(s,w) * a[s,s'] * bs’ (ow)

bigram unigram

6.863J/9.611J SP04 Lecture 7

Or as in your text…p. 179 (NB: t
used instead of w for index)

6.863J/9.611J SP04 Lecture 7

Summary
• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• This is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement

6.863J/9.611J SP04 Lecture 7

How much data is needed?

• System performance bears a roughly log-
linear relationship to the training data
quantity, at least up to about 1.2 million
words

• Obtaining 1.2 million words of training data
requires transcribing and annotating
approximately 200 hours of broadcast news
programming, or if annotating text, this
would amount to approximately 1,777
average-length Wall Street Journal articles

6.863J/9.611J SP04 Lecture 7

Other tasks

6.863J/9.611J SP04 Lecture 7

If you think POS tagging is not
relevant, then…

• Microsoft announced plans to include “Smart
Tags” in its browser and other products. This
is a feature that automatically inserts
hyperlinks from concepts in text to related
web pages chosen by Microsoft.

• The best way to make automatic hyperlinking
unbiased is to base it on an unbiased source
of web pages, such as Google.

6.863J/9.611J SP04 Lecture 7

How to do this?
• The main technical problem is to find pieces of text that

are good concept anchors… like names!
• So: Given a text, find the starting and ending points of all

the names. Depending on our specific goals, we can
include the names of people, places, organizations,
artifacts (such as product names), etc.

• . Once we have the anchor text, we can send it to a
search engine, retrieve a relevant URL (or set of URLs,
once browsers can handle multi-way hyperlinks), and
insert them into the original text on the fly.

6.863J/9.611J SP04 Lecture 7

Example – “Message understanding”
(MUC)

ST1-MUC3-0011

SANTIAGO, 18 MAY 90 (RADIO COOPERATIVA NETWORK) -- [REPORT] [JUAN
ARAYA]
[TEXT]
EDMUNDO VARGAS CARRENO, CHILEAN FOREIGN MINISTRY UNDER
SECRETARY, HAS STATED THAT THE BRYANT TREATY WITH THE UNITED STATES WILL
BE APPLIED IN THE LETELIER CASE ONLY TO COMPENSATE THE RELATIVES OF THE
FORMER CHILEAN FOREIGN MINISTER MURDERED IN WASHINGTON AND THE
RELATIVES OF HIS U.S. SECRETARY, RONNIE MOFFIT. THE CHILEAN FOREIGN UNDER
SECRETARY MADE THIS STATEMENT IN REPLY TO U.S. NEWSPAPER REPORTS STATING
THAT THE TREATY WOULD BE PARTIALLY RESPECTED.

FOLLOWING ARE VARGAS CARRENO'S STATEMENTS AT A NEWS CONFERENCE HE
HELD IN BUENOS AIRES BEFORE CONCLUDING HIS OFFICIAL VISIT TO
ARGENTINA:

6.863J/9.611J SP04 Lecture 7

Extracted info – names, events0. MESSAGE: ID TST1-MUC3-0011
1. MESSAGE: TEMPLATE 1
2. INCIDENT: DATE 18 MAY 90
3. INCIDENT: LOCATION UNITED STATES: WASHINGTON D.C. (CITY)
4. INCIDENT: TYPE ATTACK
5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED
6. INCIDENT: INSTRUMENT ID -
7. INCIDENT: INSTRUMENT TYPE -
8. PERP: INCIDENT CATEGORY STATE-SPONSORED VIOLENCE
9. PERP: INDIVIDUAL ID -
10. PERP: ORGANIZATION ID "CHILEAN GOVERNMENT"
11. PERP: ORGANIZATION

CONFIDENCE REPORTED AS FACT: "CHILEAN GOVERNMENT"
12. PHYS TGT: ID -
13. PHYS TGT: TYPE -
14. PHYS TGT: NUMBER -
15. PHYS TGT: FOREIGN NATION -
16. PHYS TGT: EFFECT OF INCIDENT -
17. PHYS TGT: TOTAL NUMBER -
18. HUM TGT: NAME "ORLANDO LETELIER"

"RONNIE MOFFIT"
19. HUM TGT: DESCRIPTION "FORMER CHILEAN FOREIGN MINISTER": "ORLANDO

LETELIER"
"U.S. SECRETARY" / "ASSISTANT" /
"SECRETARY": "RONNIE MOFFIT"

20. HUM TGT: TYPE GOVERNMENT OFFICIAL: "ORLANDO LETELIER"
CIVILIAN: "RONNIE MOFFIT"

21.

6.863J/9.611J SP04 Lecture 7

Recognizing domain patterns

6.863J/9.611J SP04 Lecture 7

What about part of speech tagging here?

• Advantages
• Ambiguity can be potentially reduced (but we shall

see in our laboratory if this is true)
• Avoid errors due to incorrect categorization of rare

senses e.g., “has been” as noun
• Disadvantages

• Errors taggers make often those you’d most want
to eliminate

• High performance requires training on similar
genre

• Training takes time

6.863J/9.611J SP04 Lecture 7

Proper names…

• Proper names are particularly important for
extraction systems

• Because typically one wants to extract
events, properties, and relations about some
particular object, and that object is usually
identified by its name

6.863J/9.611J SP04 Lecture 7

…A challenge…

• Problems though…
• proper names are huge classes and it is

difficult, if not impossible to enumerate
their members

• Hundreds of thousands of names of
locations around the world

• Many of these names are in languages
other than the one in which the extraction
system is designed

6.863J/9.611J SP04 Lecture 7

How are names extracted?

• (Hidden) Markov Model
• Hypothesized that there is an underlying finite state

machine (not directly observable, hence hidden) that
changes state with each input element

• probability of a recognized constituent is conditioned
not only on the words seen, but the state that the
machine is in at that moment

• “John” followed by “Smith” is likely to be a person,
while “John” followed by “Deere” is likely to be a
company (a manufacturer of heavy farming and
construction equipment).

6.863J/9.611J SP04 Lecture 7

HMM statistical name tagger

Person name

End

Not-a-name

Company nameStart

6.863J/9.611J SP04 Lecture 7

Method 2: Rule system (but learned)

• Error-based tagging

6.863J/9.611J SP04 Lecture 7

Another FST Paradigm: Successive
Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …

In
itia

l a
nnota

tio
n

Fixu
p 1

Fixu
p 2input

outputFixu
p 3

6.863J/9.611J SP04 Lecture 7

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts

6.863J/9.611J SP04 Lecture 7

Transformation-Based Tagging
(Brill 1995)

figure from Brill’s thesis

6.863J/9.611J SP04 Lecture 7

Transformations Learned

figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*

6.863J/9.611J SP04 Lecture 7

Initial Tagging of OOV Words

figure from Brill’s thesis

6.863J/9.611J SP04 Lecture 7

Laboratory 2

• Goals:
1. Use both HMM and Brill taggers
2. Find errors that both make
3. Compare performance – use of kappa &

‘confusion matrix’
4. All the slings & arrows of corpora – use Wall

Street Journal excerpts

6.863J/9.611J SP04 Lecture 7

6.863J/9.611J SP04 Lecture 7

6.863J/9.611J SP04 Lecture 7

Transformation based tagging
• Combines symbolic and stochastic approaches: uses

machine learning to refine its tags, via several passes
• Analogy: painting a picture, use finer and finer brushes -

start with broad brusch that covers a lot of the canvas,
but colors areas that will have to be repainted. Next
layer colors less, but also makes fewer mistakes, and so
on.

• Similarly: tag using broadest (most general) rule; then
an narrower rule, that changes a smaller number of
tags, and so on. (We haven’t said how the rules are
learned)

• First we will see how the TBL rules are applied

6.863J/9.611J SP04 Lecture 7

Contextual Rules

• Change tag a to tag b when:
• 1. The preceding (following) word is tagged z.

2. The word two before (after) is tagged z.
3. One of the two preceding (following) words is
tagged z.
4. One of the three preceding (following) words if
tagged z.
5. The preceding word is tagged z and the following
word is tagged w.
6. The preceding (following) word is tagged z and the
word two before (after) is tagged w.
7. The preceding (following) word x.
…

6.863J/9.611J SP04 Lecture 7

Lexical Rules

Change the tag of an unknown word (from X) to Y if:
• 1. Deleting the prefix (suffix) x, |x| =< 4, results in a

word (x is any string of length 1 to 4).
2. The first (last) (1,2,3,4) characters of the word are
x.
3. Adding the character string x as a prefix (suffix)
results in a word (|x| =< 4).
4. Word w ever appears immediately to the left
(right) of the word.
5. Character z appears in the word.

6.863J/9.611J SP04 Lecture 7

Example Lexical Rules

NN s fhassuf 1 NNS

change the tag of an unknown word from NN to
NNS if it has suffix -s

webpages/NN →webpages/NNS

6.863J/9.611J SP04 Lecture 7

Example 2

NN - fchar JJ
change the tag of an unknown word from NN to

JJ if it has character '-'
man-made, rule-based, three-year-old, etc.

6.863J/9.611J SP04 Lecture 7

Applying the rules
1. First label every word with its most-likely tag (as

we saw, this gets 90% right…!) for example, in
Brown corpus, race is most likely to be a Noun:
P(NN|race)= 0.98
P(VB|race)= 0.02

2. …expected/VBZ to/TO race/NN tomorrow/NN
…the/DT race/NN for/IN outer/JJ space/NN

3. Use transformational (learned) rules to change
tags:
Change NN to VB when the previous tag is TO

TO race/VB

6.863J/9.611J SP04 Lecture 7

Initial Tagging of OOV Words

figure from Brill’s thesis

6.863J/9.611J SP04 Lecture 7

OK, the proof is in the (supervised)
learning pudding - How?

• 3 stages
1. Start by labeling every word with most-likely tag
2. Then examine every possible transformation, and

selects one that results in most improved tagging
3. Finally, re-tags data according to this rule
4. Repeat 1-3 until some stopping criterion (no new

improvement, or small improvement)
• Output is ordered list of transformations that

constitute a tagging procedure

6.863J/9.611J SP04 Lecture 7

How this works

• Set of possible ‘transforms’ is infinite, e.g.,
“transform NN to VB if the previous word was
MicrosoftWindoze & word braindead occurs
between 17 and 158 words before that”

• To limit: start with small set of abstracted
transforms, or templates

6.863J/9.611J SP04 Lecture 7

Templates used: Change a to b when…

Variables a, b, z, w, range over parts of speech

6.863J/9.611J SP04 Lecture 7

Examples of Contextual Rules

• NN VB PREVTAG TO
• change tag NN to tag VB when the preceding word is

tagged TO
to/TO run/NN

would be changed to
to/TO run/VB

• VBP VB PREV1OR2OR3TAG MD
• Chane tag VBP(verb, non-3rd person singular

present) to VB(verb, base form) when one of the
three preceding words is tagged MD (modal verb)

6.863J/9.611J SP04 Lecture 7

Method

1. Call Get-best-transform with list of
potential templates; this calls

2. Get-best-instance which instantiates
each template over all its variables (given
specific values for where we are)

3. Try it out, see what score is (improvement
over known tagged system -- supervised
learning); pick best one locally

6.863J/9.611J SP04 Lecture 7

6.863J/9.611J SP04 Lecture 7

6.863J/9.611J SP04 Lecture 7

nonlexicalized rules learned by TBL
tagger

6.863J/9.611J SP04 Lecture 7

Transformations Learned

figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*

6.863J/9.611J SP04 Lecture 7

Error analysis: what’s hard for
taggers

• Common errors (> 4%)
• NN vs .NNP (proper vs. other nouns) vs. JJ

(adjective): hard to distinguish prenominally;
important to distinguish esp. for information
extraction

• RP vs. RB vs IN: all can appear in sequences
immed. after verb

• VBD vs. VBN vs. JJ: distinguish past tense,
past participles (raced vs. was raced vs. the
out raced horse)

6.863J/9.611J SP04 Lecture 7

What’s hard

• Unknown words
• Order 0 idea: equally likely over all parts of speech
• Better idea: same distribution as ‘Things seen

once’ estimator of ‘things never seen’ - theory for
this done by Turing (again!)

• Hapax legomenon
• Assume distribution of unknown words is like this
• But most powerful methods make use of how

word is spelled
• See file in the course tagging dir on this

6.863J/9.611J SP04 Lecture 7

Or unknown language

• Vse schastlivye sen’i pokhozhi brug na druga,
kazhdaja neschastlivaja sem’ja neschastliva
po-svoemu

6.863J/9.611J SP04 Lecture 7

6.863J/9.611J SP04 Lecture 7

Most powerful unknown word
detectors

• 3 inflectional endings (-ed, -s, -ing); 32
derivational endings (-ion, etc.);
capitalization; hyphenation

• More generally: should use morphological
analysis! (and some kind of machine learning
approach)

• How hard is this? We don’t know - we
actually don’t know how children do this,
either (they make mistakes)

6.863J/9.611J SP04 Lecture 7

Laboratory 2

• Goals:
1. Use both HMM and Brill taggers
2. Find errors that both make, relative to

genre
3. Compare performance – use of kappa &

‘confusion matrix’
4. All the slings & arrows of corpora – use Wall

Street Journal excerpts, as well as
‘switchboard’ corpus

6.863J/9.611J SP04 Lecture 7

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts

6.863J/9.611J SP04 Lecture 7

Evaluation of systems
• The principal measures for information extraction tasks

are recall and precision.

• Recall is the number of answers the system got right
divided by the number of possible right answers

• It measures how complete or comprehensive the
system is in its extraction of relevant information

• Precision is the number of answers the system got right
divided by the number of answers the system gave

• It measures the system's correctness or accuracy
• Example: there are 100 possible answers and the

system gives 80 answers and gets 60 of them right,
its recall is 60% and its precision is 75%.

6.863J/9.611J SP04 Lecture 7

A better measure - Kappa

• Takes baseline & complexity of task into
account – if 99% of tags are Nouns, getting
99% correct no great shakes

• Suppose no “Gold Standard” to compare
against?

• P(A) = proportion of times hypothesis agrees
with standard (% correct)

• P(E) = proportion of times hypothesis and
standard would be expected to agree by chance
(computed from some other knowledge, or
actual data)

6.863J/9.611J SP04 Lecture 7

Kappa [p. 315 J&M text]

• Note K ranges between 0 (no agreement,
except by chance; to complete agreement, 1)

• Can be used even if no ‘Gold standard’ that
everyone agrees on

• K> 0.8 is good

() ()
1 ()
P A P E

P E
κ −
=

−

6.863J/9.611J SP04 Lecture 7

Kappa

• A = actual agreement; E = expected agreement
• consistency is more important than “truth”
• methods for raising consistency

• style guides (often have useful insights into
data)

• group by task, not chronologically, etc.
• annotator acclimatization

() ()
1 ()
P A P E

P E
κ −
=

−

6.863J/9.611J SP04 Lecture 7

Coda on kids

C: “Mommy, nobody don’t like me”

A: No, say, “nobody likes me”

C: Nobody don’t likes me

A: Say, “nobody likes me”

C: Nobody don’t likes me
[7 repetitions]

C: Oh! Nobody don’t like me!

6.863J/9.611J SP04 Lecture 7

Is that all there is?

6.863J/9.611J SP04 Lecture 7

What have we done so far?

• Only information we represent: is whether an
item precedes (or follows) another

• Inventory of vocabulary items (classes)
• = Finite state machines

• Is there anything else in language???

6.863J/9.611J SP04 Lecture 7

Motivation

• What, How, and Why
• What: word chunks behave as units, like

words or endings (morphemes), like ing
• How: we have to recover these from input
• Why: chunks used to discover meaning
• Parsing: mapping from strings to structured

representation

6.863J/9.611J SP04 Lecture 7

Programming languages
printf ("/charset [%s", (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
assert (p + *p < pend);
for (c = 0; c < 256; c++)if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) {/* Are we starting a range? */if (last + 1 == c && ! inrange) {putchar ('-');inrange = 1;}/* Have we broken a range? */else if (last + 1 != c && inrange) {putchar (last);inrange = 0;}

if (! inrange)putchar (c);
last = c;} Easy to parse.

Designed that way!

6.863J/9.611J SP04 Lecture 7

Natural languages

No {} () [] to indicate scope & precedence

Lots of overloading (arity varies)

Grammar isn’t known in advance!

What is the best formalism?

printf "/charset %s", re_opcode_t *p - 1 == charset_not ? "^" : ""; assert p + *p < pend; for c = 0; c < 256; c++ if c / 8 < *p && p1 + c/8 & 1 << c % 8 Are we starting a range? if last + 1 == c && ! inrange putchar '-'; inrange = 1; Have we broken a range? else if last + 1 != c && inrange putchar last; inrange = 0; if ! inrange putchar c; last = c;

6.863J/9.611J SP04 Lecture 7

What can’t linear relations represent?

• wine dark sea → (wine (dark sea)) or
((wine dark) sea) ?

• deep blue sky

• Can fsa’s represent this?
• Not really: algebraically, defined as being

associative (doesn’t matter about
concatenation order)

