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The Menu Bar
• Administrivia:

• Schedule alert: Lab2 due today; Lab 3 out 
late Weds. (context-free parsing)

• Lab time today, tomorrow
• Please read notes3.pdf, englishgrammar.pdf 

(on web)

• Agenda: 
• Chart parsing summary; time complexity
• How to write grammars
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Chart parsing summary

• Data structures & Algorithm
• Data structures
• A chart parser has three data structures: 

• an input stack, which holds the words of the 
input sentence (in order) 

• a chart, which holds completed phrases 
organized by starting position and length 

• a set of edges, organized by ending position. 
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Input sentence stack

• The input
• Positions in the input sentence will be 

numbered starting with zero and will be the 
positions between successive words. For 
example: 

0 I 1 shot 2 an 3 elephant 4 in 5 my 6 pajamas 7

For now, assume POS  already assigned, 
words consumed l-to-r
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We have presented the chart 
graphically so far…
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Chart
• Example of chart

I         shot    an   elephant  in    my       pajamas

n       v       d          n         p       d         n
NP

PP

NP

NP

S
VP

NP

VP
S
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Chart in graphical form
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At the end…

6543210start
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Corresponding to Marxist analysis
S

I

VP

V NP

NP

shot Det N

an elephant

PP

P
Det

in
pj’s

NP
N

my
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The chart

• A cell in the chart can contain more than one 
phrase  (e.g., n & np)

• With each constituent is frequently stored 
information about which parsing rule was used 
to generate it and what smaller constituents 
make it up (to recover the parse)

• Used to prevent redundant work if 2 or more 
possible internal structures for a single phrase 
(“blue socks and shoes”)
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Edges

• Each edge consists of a grammar rule, plus info 
about how it matches up against the input, 
specifically:
• A rule, e.g., S(entence)→NP VP

• The position up to which we’ve matched the rule to 
the input, indicated by a dot (• ), e.g., S →NP • VP

• The starting position of the edge (the first input word 
matched) (e.g., VP ‘shot…’ starts at position 1

• The # of input words matched so far
• Edges organized by ending position (the last 

input word matching against their rule so far) 
• Edges are added but never deleted



6.863J/9.611J Lecture 8 Sp03

Edges, cont’d

Start
0 S → • NP VP

NP → • Det N
NP→ • N
NP→ • NP PP

1 NP → N •
S → NP • VP
NP→ NP • PP
VP → • V NP
VP → • V NP PP
PP → • P NP

Etc…
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State-set construction
Initialize: S0←initial state set= initial

state edge
[Start → • S , 0, n] ∪
ε-closure of this set under 
predict, complete

Loop:           For word i=1,…,n
Si computed from Si-1
(using scan, predict, complete)
try scan; then predict, complete

Final:            Is  a final edge in Sn?
[Start → S• , 0, n]∈ Sn ?
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The overall algorithm

• Suppose there are n words in the input
• Set up chart of height and width n
• Add input words onto stack, last word at bottom
• For each ending position i in the input, 0 

through n,  set up two sets, Si and Di (“Start”, 
“Done”)
S0 ← all rules expanding start node of grammar

Si ←∅ for i ≠ 0

Si will be treated as search queue (BFS or DFS). 
Edges will be extracted one by one from Si & 
put into Di . When Si becomes empty, remove 
1st word from stack & go to next ending position 
i  +1
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Or:

• Loop until Si is empty
• Remove first edge e from Si

• Add e to Di

• Apply 3 extension operations to e, using the 3 
operators: scan, complete, predict (which may produce 
new edges)

• New edges added to Si or Si+1, if they are not already in 
Si, Di, or Di+1

• Pop first word off input stack

• When all ending positions processed, chart 
contains all complete phrases found
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Adding edges by the 3 operations 
– like extending a search

Predict (start a phrase)

Scan (match words)

Complete (finish phrase)
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Another way to view it

NP

DT NN
scan scan

Predict
Phrase

Complete phrase

the          guy
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Connecting the dots

Sentence

The guy

NP

Det Noun

Dotted rule form

NP→ •Det Noun

Dot at beginning=
just started building a
phrase of this type

Predict
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The dots – in the middle

Sentence

The guy

NP

Det Noun

Dotted rule form

NP→Det • Noun

Scan
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Dot at end

Sentence

The guy

NP

Det Noun

Dotted rule form

NP→Det • Noun

Advance in input = scan

NP→Det Noun •

(finished building 
phrase)
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The three ops add edges in our 
full chart representation …

• Loops  (Predict) – start a phrase
• Skips  (Scan) – build phrase
• Pastes – glue 2 edges to make a third, 

larger one  (Complete) – finish a phrase
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Picture: Predict adds the ‘loops’

I         shot    an   elephant  in      my       pajamas

S → • NP VP
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Picture: Scan adds the ‘jumps’

I         shot    an   elephant  in      my       pajamas

S → •NP VP
NP → • D  N
NP → • N
NP → • NP PP

NP → N •
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Picture: Complete combines 
edges

NP → D  N • 

NP → • NP PP

I         shot    an   elephant  in      my       pajamas

NP → N •

S → NP • VP

VP → V NP •

VP → VP • PP

S → NP VP •
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The ops

• 3 ops: scan, predict, complete; or
scan, push, pop

1.Scan: move forward, consuming a token (word class) -
what if this is a phrase name, though?

2.Predict (push): start building a phrase (tree) at this point 
in the input; or jump to subnetwork;

3.Complete (pop): finish building a phrase (tree) at this 
point; pop stack and return from subnet (which also says 
where the subphrase gets attached)

Scan = linear precedence; 
Predict, complete: dominance
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Another way to view it

Push NP

Scan NP

Pop NP

d n
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Definitions – words & symbols

• Scan
Suppose current edge e is not finished & 
part of speech tag X follows the dot in the 
rule for e 
Scan examines next word in input
If word has pos X, create new edge e’, 
identical to e except dot is moved one 
place to the right & length increment by 1
Add e’ to Si+1
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Scan - formally

• Scan: (jump over a token)
• Before: [A →α•t β, k, i] in State Set Si & word i= t
• Result: Add [A →αt • β, k, i+1] to State Set Si+1
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Picture: Scan adds the ‘jumps’

I         shot    an   elephant  in      my       pajamas

S → •NP VP
NP → • D  N
NP → • N
NP → • NP PP

NP → N •
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Predict operation

• Suppose current edge e is not finished
• Predict extracts next item X needed by e –

the phrase after the dot in the edge
• Find all rules in grammar whose lefthand 

side is X
• For each of these, make a new edge with 

the dot on the left, and add edges to Si+1
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And again…

• Predict (Push):
• Before: [A →α•B β, k, i] , B=nonterminal, in Si

then
• After:  Add all new edges of form [B → • γ, i+1, i+1] 

to State Set Si+1
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Picture: Predict adds the ‘loops’

I         shot    an   elephant  in      my       pajamas

S → • NP VP
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Complete (finish phrase)

• Suppose current edge e is finished (dot at rh 
end). Suppose e looks like:
X → y1 y2 … yp • from start pos k, length m

• Check if X is already in chart cell (k,m). If so, 
add e to set of derivations for this phrase X.  

• If X is not already in cell (k,m) then:
• Examine each edge E in Dk If E is incomplete, and 

the next item needed for E is X, create a new edge E’ 
with dot hopped over X to the right

• Length of E’ is sum of lengths of E + e
• Add E’ to  Si
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Picture of this – ‘pasting’  X+Y 
together

k meE

E’

j

+

j m

=
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“The fundamental rule”

VP→ V NP•

NP→ d n •VP→ V • NP 

+ =

shot 
start pos= 1, len 1 

an elephant
start= 2, len=2

1 2 2 4

start pos= 1, len 3 1 4
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Adding to chart…

6543210start
ndpndvn1

NP2
VP3

4
5

6

7

length

Position 

p
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This new edge E’ will itself be
processed… since dot is at end...

VP→ V NP•

start pos= 1, len 3 1 4

Go back to state set 1 & see what rule was
looking for a VP

It’s the rule  S→NP•VP… so we can paste these two
subtrees together to get a complete S, 
“I shot an elephant”
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Adding the S

6543210start
ndpndvn1

NP2
VP3
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More precisely

• Complete(Pop): (finish w/ phrase)
• Before: If Si contains e in form [B → γ •, k, i]  then 

go to state set Sk and for all rules of form 
[A →α•B β, k, j], add E’ [A →αB • β, j, i] to state 
set Si 
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Picture: Complete combines 
edges

NP → D  N • 

NP → • NP PP

I         shot    an   elephant  in      my       pajamas

NP → N •

S → NP • VP

VP → V NP •

VP → VP • PP

S → NP VP •
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Scan examples
NP→ • Det Noun

•the book

NP

[A →α•tβ, k, i-1]

•

the • book

[A →αt •t'β′, k,  i] 

NP→ Det • Noun

the •

[A →αtt' •β″, k, i+1]

the book •
the book •

NP→ Det Noun •
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Predict (‘wish’) example

S→•NP VP

A →α•Bβ, k, i-1

•the book 

S

•

B → • γ,  i, i

NP→•Det Noun
NP →•Name

NP NP

• Det… • Name…

•
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‘Complete’ example

VP→Verb • NP PP
VP→Verb • NP
NP→Det Noun •

…ate the ice-cream •

VP

•NP
ate

the ice-cream•

…go back to previous
State Set & jump dot
(in all rules that called
for NP)

[B → γ •, k, i]

VP→Verb NP • PP
VP →Verb NP •

•

[A →αB • β, k, i]
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At the end..

6543210start
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At the end…
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Corresponding to Marxist analysis
S

I

VP

V NP

NP

shot Det N

an elephant

PP

P
Det
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pj’s
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N
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Please note:
• How ambiguity is handled

• Multiple attachments, with dynamic programming 
principle: once we have built a PP spanning positions 
[3, 7] we use it twice

• This is the key to sub-exponential parsing: we don’t 
have to enumerate all the possibilities explicitly

• Why we don’t have to list identical items twice 
(another part of the same rule)

• For parsing, we use backpointers to keep track 
of which item causes a new item to be added -
this gives us a chain for the state sequence = 
the path



6.863J/9.611J Lecture 8 Sp03

So time complexity picture looks 
like this:

Max. # state sets x Max time to build ONE
State set

n

Max # edges x Max time to
process 1 edge

O(|G|n) O(|G|n)
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Time complexity

• Decompose this in turn into:
1. time to process a single edge in the set 
2. times maximum # distinct edges possible in one

state set (assuming no duplicates!)
• Worst case: max. # of distinct edges: 

• Max # of distinct dotted rules x max # of distinct 
return values, i.e., |G |x n

• (Why is this?)
• (Edges have form: dotted rule, start, len) 

• Note use of grammar size here: amount of 
‘chalk’ = Σ # symbols in G.
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Max # distinct edges: loops, incoming 
from scans, incoming from paste:

from predict (loops) –
at most |G|

from scan via 
previous state –
at most |G|

From complete – could come from any
preceding state – at most n•|G|
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Time complexity, continued

• The time to process a single edge is found by 
separately considering time to process scan, 
predict, and complete operations

• Claim: Scan, predict constant time (in |G| and n, 
n= length of sentence)

• Because we can build in advance all next-state 
transitions, given the Grammar

• Only action that takes more time is complete !
• For this, we have to go back to previous state 

set and look at all (in worst case) edges in that
state set - and we just saw that in the worst 
case this could be O (|G|x n)
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So time complexity picture looks 
like this:

Max. # state sets x Max time to build ONE
State set

n

Max # edges
in 1 state set

x Max time to
process 1 edge

O(|G|n) O(|G|n)
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Grand total

• O(|G|2 n3)  - depends on both grammar size 
and sentence length (which matters more?)

• Lots of fancy techniques to precompute & speed 
this up

• We can extend this to optional elements, and 
free variation of the ‘arguments’ to a verb
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How do we recover parses?
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State set pointer structure that 
represents both parses

• Just like fruit flies like a banana
• Keep multiple backpointers to keep track of 

multiple ways that we use a ‘completed’ item 
(a whole phrase)

• The actual backpointer structure looks 
something like the following (one can show 
that it takes just log(n) extra time to construct 
this)
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Backpointer structure

Start→S• (34)

S→ NP VP • (33)

VP→ V NP PP • (31) VP→ V NP • (35)

NP→ Name PP • (32)

PP→ Prep NP • (30)

NP→ Det N • (29)
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Recovering parses (structure, state 
sequence)

• Two basic methods: online & offline
• Simple offline method can build parse ptrs for all 

possible parses in time O(n3 ) – key is to build a 
‘pruned’ collection of items (triples) in the state 
sets

• Why do we want to prune the state sets?
• Many items ‘die out’ because they fit the first 

part of an input sentence, but not the rest: e.g., 
I think that blocks the light

• Here we predict an NP for that and an NP for 
that blocks – one or more might die out.
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Recovering parses

• Since semantic interpretation routines will 
run on syntactic structure and these are 
often more costly (why?) we want to 
reduce false paths ASAP
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Simple queue algorithm to do this, based on 
the notion of ‘useful’ items- those that actually 
cause others to get added

i               k              j

-Any item
in final state set is useful:
-If item s=[A →α•Β,i]
is in state set k & useful
−then item q=[A →αΒ •,k]
& item r= =[B →γ •,j] are 
useful

[s,i] in state set j 

q r

Let [s,i] denote an item with a dotted rule s & 
return pointer i.

α γ
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Algorithm for recovering parses

[Initialize] Mark all items in state set Sn in the form Start →
αS•, 0

[Loop] for j=n downto 0 do
for i=0 to j do

for every marked [s,i] in state set j do
for i≤ k ≤j, if

[q,i]∈ Sk & 
[r,k] ∈ Sj &
s= q⊗ r then
mark [q,i] and [r,k] 
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This is called a ‘parse forest’

• Exponential # of paths, but we avoid 
building them all explicitly – we can 
recover any one parse efficiently
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Worst case time for Earley 
algorithm

• Is the cubic bound ever reached in artificial or natural 
languages?

• Here is the artificial ‘worst case’ - # of parses 
arbitrarily large with sentence length; infinite 
ambiguity

• Here is the grammar:
S→ SS, SS→ a
{a, aa, aaa, aaaa,…}

• # of binary trees with n leaves= 
1,1,2,5,14,42,132,429,1430,4862,16796,…=

21
( 1)

n
nn

 
 +  
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Does this ever happen in natural 
languages?

• It does if you write cookbooks… this 
from an actual example (from 30M word 
corpus)

Combine grapefruit with bananas, strawberries and
bananas, bananas and melon balls, raspberries or
strawberries and melon balls, seedless white grapes
and melon balls, or pineapple cubes with orange
slices.

# parses with 10 conjuncts is 103, 049
(grows as 6#conjuncts) 
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This does indeed get costly -Verb NP PP 
example

3020100
0

2

4

6

8

10

12

NP–PP ambiguity sentences  NP P NP...

with Earley's algorithm

length,
words

Ti
m

e,
 s

ec
on

ds
time, secs.
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How this algorithm is clever
• Handling left-recursion
• Tail-recursion trick
• Example:  John’s brother’s book
• NP→ NP NP | NP → Noun | Noun ’s
• Note how this loops on endless call to 

NP NP

NP

NP
’s

NP
Noun

book
John NP

’sbrother

NP

…but predict cuts
off after 1 round!
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Note tail recursion

• State set S0 :
• Add triples: [NP→ • Noun, 0, 0]

[NP→ • NP NP, 0, 0] predict: 
?[NP→ • NP NP, 0, 0] … No need!

Duplicate!

Note tail recursion: the call returns to itself – so no
need to ‘keep’ return addresses in stack!
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The edge loops to itself:

[NP→ • NP NP, 0, 0]
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Anything else?

• If anything, Earley parsing is too good – it 
gets all the parses, even ones that people 
do not

• We shall see how to deal with this, using 
probabilities on rules; and

• Other parsing methods
• But first, what do people do?
• Consider the examples
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Wouldn’t matter so much – but it 
does seem to match what people do

• Both left- and right- branching ‘structures’ 
seem to be readily parseable by people 
without any sort of memory load (all other 
things being equal)

• John’s brother’s mother’s aunt….
• I believed that Mary saw that Fred knew 

that Bill shoveled snow
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Pictures of this..

John’s brother’s book
saw that Fred knew that 

Bill shoveled snow
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So what’s hard for people to 
process?

The rat died

the cat        chased

the dog bit “center-embedded”
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Why is this hard?

• Model: people have to “hold onto” open 
predicates (definition: open if verb+arguments 
have not yet been put together)

• In the preceding example, we have to hold onto 
a stack of Subjects (the rat, the cat, the dog…) 
before the corresponding verbs are seen

• This even shows up in unexpected places –
speech intonational pattern actually seems to 
transduce center-embedded structures into left-
or right- branching ones
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Chomsky & Miller, 1959-63 
analysis

the dog that chased the cat that bit the rat
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Parsing vs. intonational contours
Syntactic structure is center-embedded:

NP

NP
the rat

S

that
chased

NP VP

NP

the cat

pro
S

that
bit

NP VP

NP
the ratpro

NP
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But the intonational structure 
follows this:

NP

NP
the rat

S

that
NP

chased

VP

pro

NP

the cat
NP

Suggests 2-stage parser (proposed by C&M):
Stage 1: parse into ‘flat’ structure
Stage 2: make 2nd pass & rearrange hierarchically
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Also hints at how to do semantic 
interpretation – akin to syntax-driven 
translation
• Recall from compilers: if we complete the right-

hand side of a rule, we can now fire off any 
associated semantic action (because we now 
have the item and all its ‘arguments’

• This amounts to getting left-most complete 
subtree at each point to interpret

• Example:
VP→V NP• , e.g., “ate the ice-cream”
Can now ‘interpret’ this
pair syntactic, ‘semantic’ rule:
VP→V NP, apply VP(NP)
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One more search space enumeration 
that will be of some value

• Left-corner parsing
• Looks bottom-up in serial fashion for the 

first symbol (left-corner) of a phrase; and 
then tries to confirm the rest of the 
phrase top-down

• Tries to combine best features of b-u and 
t-d

• Clearly geared to the way a particular 
language (eg English) is set up
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A picture of left-corner parsing

S

NP

the

VP

Noun

S→ NP VP

NP→ the Noun

1
2

find

predict

ate

VP→ ate   NP
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This works well

• In a language like English:
• A head-first language (function-argument)
• What about German, Dutch, Japanese?
• dat het mesije van Holland houdt
• “that the girl from Holland liked”
• These are head-final languages
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What about constructing 
grammars?


