

- Claim: *all* apparently nonadjacent relationships in languge can be reduced to *adjacent* ones via projection to a new level of representation
- (In one sense, vacuous; in another, deep)
- Example: Subject-Verb agreement (agreement generally)
- Example: so-called *wh-*movement

6.863J/9.611J SP04 Lecture 8

State- Initialize:	Set parsing Compute initial state set, S_0 1. $S_0 \leftarrow q_0$
•	2. $S_0 \leftarrow \varepsilon - closure(S_0)$
Loop:	Compute S _i from S _{i-1}
	1. For each word w_i , $i=1,2,,n$
	2.
	3. $S_i \leftarrow \varepsilon - closure(S_i)$
	4. if $S_i = \emptyset$ then halt & reject else continue
Final:	Accept/reject
	1. If $q_f \in S_n$ then accept else reject
	6.863J/9.611J SP04 Lecture 8

How do we do this?

- Searching FSAs
 - Finding the right path through the automaton
 - Search space defined by structure of FSA
- Searching CFGs
 - Finding the right parse tree among all possible parse trees
 - Search space defined by the grammar
- Constraints provided by the input sentence and the automaton or grammar

6.863J/9.611J SP04 Lecture 8