
6.863J Natural Language Processing
Lecture 8: Going nonlinear - Marxist analysis

Instructor: Robert C. Berwick
berwick@ai.mit.edu
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The Menu Bar
• Administrivia:

• Lab 2a/2b due Friday
Agenda:

Going nonlinear: beyond finite-state machines
• Marxist analysis – simple & post-modern
• What: hierarchical representations; 

constituents, representation
• How: constituent or ‘context-free’ parsing 

(next time – how to do it fast)
• Why: to extract ‘meaning’
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Motivation

• What, How, and Why
• What: word chunks behave as units, like 

words or endings (morphemes), like ing
• How: we have to recover these from input
• Why: chunks used to discover meaning
• Parsing: mapping from strings to structured 

representation
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Why parsing?

• A (context-free) grammar tells us what 
(syntactic)structure(s) we can assign to a 
string 

• It doesn't tell us is how we should go about 
assigning a string a structure 
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Applications of parsing

Grammar checking  (Microsoft)

Indexing for information retrieval (Woods 72-1997)

... washing a car with a hose ...                vehicle maintenance

Information extraction  (Keyser, Chomsky ’62 to Hobbs 1996)

NY Times
archive

Database

query
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Why: Q&A systems (lab 4)
(top-level)
Shall I clear the database? (y or n) y
>John saw Mary in the park
OK.
>Where did John see Mary
IN THE PARK.
>John gave Fido to Mary
OK.
>Who gave John Fido
I DON'T KNOW
>Who gave Mary Fido
JOHN
>John saw Fido
OK.
>Who did John see
FIDO AND MARY
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Language & hierarchical structure

• Claim: Most, perhaps all properties in syntax  
are defined over hierarchical structure 

• One needs to parse to see subtle distinctions
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More examples: Marxist analysis

• This morning, I shot an elephant in my 
pajamas

• “How he got into my pajamas, I’ll never 
know” (G. Marx)
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Examples (courtesy Dave Barry)

• National Park Service:
• Avoid the traffic by using a shuttle bus and 

view the elk rut with a park ranger
• PA Patriot News:
• “Smoking organ causes stir at nursing home”

• Where do these come from??
• Visiting relatives can be dangerous/smoking 

organs can be dangerous
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Why: linguistic properties defined 
over hierarchical structure

• What are the linguistic properties we need?
• Subject-of, object-of – to get predicate 

structure
• Scope
• Structural ambiguity (hence multiple 

meaning)
• All these from syntax
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Predication depends on configuration

• Subject-of:  Bill-kill

• Object-of:  kill-Bill

Sentence

Noun phrase Verb phrase

Verb

killVerb phrase
Verb

kill
Noun phrase

Bill

6.863J/9.611J SP04 Lecture 8

Configurational properties

More sophisticated configurational property

Sara likes her.                      (her ≠ Sara)
Sara thinks that someone likes her.    (her = or ≠ Sara)
Sara dislikes anyone’s criticism of her.      (her = Sara or her ≠ Sara)
Who did John see? → For which x, x a person, likes(Bill, x)

Distinction here is based on hierarchical structure = scope
in natural language
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Why: express ‘long distance’ relationships 
via adjacency

• The guy that we know in Somerville likes ice-cream
• Who did the guy who lives in Somerville see __?

S

NP+sg VP+sg

SThe guy

that we know in Somerville

V NP
likes

ice-cream
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Why: recover meaning from 
structure

John ate ice-cream → ate(John, ice-cream)

-This must be done from structure 
-Actually want something like λxλy ate(x,y)
How?
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Structure must be recovered 

who

did  

S

V

VP

x

S

NP

‘gap’ or
empty element

see
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But now we have a more complex 
Marxist analysis

• I shot an elephant in my pajamas

• This is hierarchically ambiguous – not just 
linear!  (each possible hierarchical structure 
corresponds to a distinct meaning)

• A case of structural ambiguity
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What is the structure that matters?

Turns out to be SCOPE for natural languages!

S
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The language for hierarchical 
structure

• What are the basic elements
• How are they put together?
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The elements

1. What: hierarchical representations 
(anything with recursion) using phrases AKA 
“constituents”

2. Constituents are equivalence classes of 
words 

3. How: context-free parsing (plus…)
4. Why: (meaning)
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Recursive Transition Networks to 
context-free grammars (CFGs) and 
back: 1-1 correspondence

Sentence: NP VP

NP:

VP:

S→NP VP

Name

Det Noun

Verb NP VP→Verb NP

NP→Name
NP→Det Noun

+ terminal expansion
rules
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Added information

• FSA represents pure linear relation: what can 
precede or (follow) what

• CFG/RTN adds a single new predicate: 
dominate

• Claim: The dominance and precedence 
relations amongst the words exhaustively 
describe its syntactic structure

• When we parse, we are recovering these 
predicates
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Dominance & precedence define
context-free grammars completely

• Definition of context-free grammar (CFG)

• Definition of derives : determines hierarchy

• We’ll get to that soon…but first, from linear 
machines to hierarchical ones… 
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The deepest lesson

• Claim: all apparently nonadjacent 
relationships in languge can be reduced to 
adjacent ones via projection to a new level of 
representation

• (In one sense, vacuous; in another, deep)
• Example: Subject-Verb agreement 

(agreement generally)
• Example: so-called wh-movement
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OK: start with finite-state machines

• Marxist analysis, step 1
• Then historical revisionism…
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Marxist analysis: simple version

• Suppose just linear relations to recover
• Still can be ambiguity – multiple paths
• Consider:

Fruit flies  like   a     banana
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Parsing for fsa’s: keep track of what 
‘next state’ we could be in at each 
step

NB: ambiguity =   > 1 path through network
=   > 1 sequence of states (‘parses’)
=   > 1 ‘syntactic rep’ =  >1  ‘meaning’

fruit flies like a banana

fruit

fruit flies
flies

0 1 2 3 4

5

like
like
ε

a
banana
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Methods for parsing
• How do we handle ambiguity? 
• Methods:

1. Backtrack
2. Convert to deterministic machine (ndfsa →

dfsa):  offline compilation
3. Pursue all paths in parallel: online

computation (“state set” method)
4. Use lookahead

– We will use all these methods for more 
complex machines/language representations
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FSA terminology

• Input alphabet,Σ; transition mapping, δ; finite 
set of states, Q; start state q0; set of final 
states, qf

• δ(q, s)→ q’
• Transition function: next state unique = 

deterministic fsa
• Transition relation: > 1 next state = 

nondeterministic fsa
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State-set method: simulate a 
nondeterministic fsa

• Compute all the possible next states the machine can 
be in at a step = state-set

• Denote this by Si = set of states machine can be in 
after analyzing i tokens

• Algorithm has 3 parts: (1) Initialize; (2) Loop; (3) Final 
state?

• Initialize: S0 denotes initial set of states we’re in, before 
we start parsing, that is, q0

• Loop: We must compute Si , given Si-1

• Final?: Sf = set of states machine is in after reading all 
tokens; we want to test if there is a final state in there
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State-set parsing

Accept/reject
1. If qf  ∈ Sn then accept else reject

Final:

Compute Si  from Si-1

1. For each word wi , i=1,2,…,n
2.

3. Si← ε−closure(Si )
4. if Si  = ∅ then halt & reject else continue

Loop:

Compute initial state set, S0

1. S0←q0

2. S0← ε−closure(S0 )

Initialize:

1
( , )

ii q S iS q wδ
−∈← ∪
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States in sequence dictate parse 
path: 

S0:[0]      S1:[0,1]      S2:[1, 2, 3]      S3:[2, 3]   S4:[4]  S5:[5]    

State set 0
(initial state set)

State set f
(final state set)

States: {0} →{0,1} →{1,2,3} →{2,3} →{4} →{5} (final)
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What’s the minimal data structure we 
need for this?

• [S, i  ] where S = denotes set of states we could be in; i 
denotes current point we’re at in sentence

• As we’ll see, we can use this same representation for 
parsing w/ more complex networks (grammars) - we 
just need to add one new piece of information for state 
names

• In network form
• In rule form:

qi→t • qk    where τ= some token of the input,

qk
αqi

β
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State to state jumps…
• Progress (& ultimately parse) recorded by what state

machine is in
• Consider each transition as rule:

q0 → fruit q1 , also loop: q0 → fruit q0

q1 → flies q2 ; q0 → flies q1 also epsilon transition: q1 → q3

q2 → like q3 also epsilon transition: q2 → q3

q3 → a q4    

q4 → banana q5

• We can record progress path via ‘bouncing ball’ dot telling us 
how to sing the song…
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q0 → fruit • q0

Follow the bouncing ball…

Fruit flies  like   a     banana
q0 → • fruit q1

q0 q1

q0 → fruit • q1

Fruit flies  like   a     banana

S0 S1

q0 → fruit • S1
q1 → flies • q2
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To be picky about the ‘dotted rules’

• We can write it this way:

• [qi→t •qj  , k] where k= index of where we 
are at in the parse (i=0, 1, 2, …, n for a 
string n words long)

• Let us also call this an item
• A collection of items in a state set is an item 

set
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Reviewing this representation
• Dotted rules indicate ‘progress so far’
• They also denote traversal between categories (aka 

‘states’)
• The collection of dotted rules at any step in a parse 

denotes the set of possible states the parser could be 
in at that step (a set union), more precisely, it is 
State Set i,  that denotes the set of all possible states 
the parsing could be in after processing i words

• We could also add a ‘return pointer’ that tells us how 
we got to the current state

• So now an item looks like:  
[dotted rule, return ptr, current word so far] e.g
[q0 → fruit • q1 , 0, 1]
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States in sequence dictate parse path 
– from this:

S0:[0]      S1:[0,1]      S2:[1, 2, 3]      S3:[2, 3]   S4:[4]  S5:[5]

State set 0
(initial state set)

State set f
(final state set)

States: {0} →{0,1} →{1,2,3} →{2,3} →{4} →{5} (final)
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To this:

S2S1S0:

{[q0 → • fruit q1, 0, 0]}

fruit

{[q0 → fruit • q1,0, 1],
[q0 → fruit • q0, 0, 1]}

flies

{[q1 → flies • q2, 1, 2],
[q0 → flies • q1, 0, 2]

{[q1 → flies • q3 , 2, 2}
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How do we move from linear to 
hierarchical?

saw

the guy

Bush

Sentence:

Noun 
phrase:

“splice out” common
subnets

We already have the machinery for this… 

6.863J/9.611J SP04 Lecture 8

Use of epsilon transitions (‘jump’ 
arcs) – they consume no input

Sentence:

S-0 S-1 S-2

verb

NP-0 NP-1 NP-3
determiner noun

e
e VP-0 VP-1 VP-2

e

NP VP

e e

Verb phrase
subnet

e

Noun
phrase
subnet

…note that no input is
consumed during jump
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This will work… with one catch

• Consider tracing through “the guy ate the ice-
cream”

• What happens when we get to the second 
noun phrase????

• Where do we return to?
• Epsilon transition takes us back to different

points
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But now we have a more complex 
Marxist analysis

• I shot an elephant in my pajamas

• This is hierarchically ambiguous – not just 
linear!  (each possible hierarchical structure 
corresponds to a distinct meaning)
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Marxist analysis
S

I

VP

V NP
NP

shot Det N

an elephant

PP

P
Det

in
pj’s

NP
N

my
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What: Context-free grammars (CFG)

S(entence)→NP VP
VP→V NP
NP→Det N
N → pizza, N → guy, Det → the } pre-terminals, 

lexical entries
V → ate

A context-free grammar (CFG):
Sets of terminals (either lexical items or parts of speech)
Sets of nonterminals (the constituents of the language)
Sets of rules of the form A → α where α is a string of zero 

or more terminals and nonterminals



6.863J/9.611J SP04 Lecture 8

More precisely

• A context-free grammar (CFG) is a 4-tuple (N, Σ, P, S) 
where:

• N is a finite set of nonterminal symbols (phrase names, 
categories); 

• Σ is a finite set of terminal symbols (words); 
• P is a set of production rules <A∈N, α>, where α is a 

sequence of terminal or nonterminals; and
• S ∈N is a designated start symbol. 

• We write the productions as A→ α (‘is-a’)
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Definitions for CFGs

• The derive relation ⇒
• Define wrt grammar G= (N, Σ, P, S) as 

follows
α⇒β iff ∃ α1, α2 s.t. α = α1 A α2 ; β= α1 γ α2; 
and A→γ ∈P.  (Some rule rewrites α as β)

• Reflexive, transitive closure of ⇒ is ⇒∗

If α, β is in ⇒∗ then we say that α derives β (by 
0 or more steps)
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Derivation by a context-free 
grammar:rewrite line by line

1. S
2. NP VP (via S→NP VP)
3. NP V NP (via VP→V NP)
4. NP V Det N (via NP→Det N)
5. NP V Det pizza (via N → pizza)
6. NP V the pizza (via Det → the)
7. NP ate the pizza (via V → ate)
8. Det N ate the pizza (via NP→Det N)
9. Det guy ate the pizza (via N → guy)
10. the guy ate the pizza (via Det → the)

generation
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Derives relation

• Relates all elts by either dominance or 
precedence

• Induces a (derivation) tree (Q: do we lose 
any information in this tree?)
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Definition of derivation tree

• Binary Relation D, dominance:
A D v iff ∃ α1, α2  (α⇒β via A →α1v α2 )

• Binary relation < precedence:
v < w iff ∃ α1, α2  (α = α1vw α2  or β = α1vw α2 & α⇒β )

Confirm that our derivation steps previously induce such a 
tree… note that all elts are related by < or D.  (Suppose 
not…?)

The yield of a nonterminal (category) A consists of all 
strings derivable from A
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Context-free representation

• Is this representation adequate – Not really…why?
• We’ll start here, though & illustrate parsing methods 

– how to make parsing efficient (in length of 
sentence, size of grammar)

• Obvious methods are exponential; we want 
polynomial time (or, even linear time, or, even, real 
time…)

• Challenges: recursion, ambiguity, nondeterminism
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How: context-free parsing

• Parsing: assigning a correct hierarchical structure (or 
its derivation) to a string, given some grammar

• The leaves of the hierarchical structure cover all 
and only the input;

• The hierarchical structure (‘tree’) corresponds to a 
valid derivation wrt the grammar

• Note: ‘correct’ here means consistent w/ the input & 
grammar – NOT the “right” tree or “proper” way to 
represent (English) in any more global sense
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Parsing

• What kinds of constraints can be used to 
connect the grammar and the example 
sentence when searching for the parse tree?

• Top-down (goal-directed) strategy
• Tree should have one rot (grammar 

constraint)
• Bottom-up (data-driven) strategy

• Tree should have, e.g., 3 leaves (input 
sentence constraint)
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The input

• For now, assume:
• Input is not tagged (we can do this…)
• The input consists of unanalyzed word 

tokens
• All the words are known
• All the words in the input are available 

simultaneously (ie, buffered)
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Ambiguity Can Yield Exponential # of 
Parses

Me          See        A man       The telescope          The hill

“I was on the hill that has a telescope 
when I saw a man.”

“I saw a man who was on the hill 
that has a telescope on it.”

“I was on the hill when I used the 
telescope to see a man.”

“I saw a man who was on a hill and 
who had a telescope.”

“Using a telescope, I saw a man who 
was on a hill.”

. . .

I saw the man on the hill with the telescope
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How do we do this?

• Searching FSAs
• Finding the right path through the automaton
• Search space defined by structure of FSA

• Searching CFGs
• Finding the right parse tree among all possible 

parse trees
• Search space defined by the grammar

• Constraints provided by the input sentence and the 
automaton or grammar


