6.863J Natural Language Processing Lecture 8: Going nonlinear - Marxist analysis

 Instructor: Robert C. Berwick berwick@ai.mit.edu

The Menu Bar

Administrivia: Lab 2a/2b due Friday
Agenda:
Going nonlinear: beyond finite-state machines

- Marxist analysis - simple \& post-modern
- What: hierarchical representations; constituents, representation
- How: constituent or 'context-free' parsing (next time - how to do it fast)
- Why: to extract 'meaning'

- What, How, and Why
- What: word chunks behave as units, like words or endings (morphemes), like ing
- How: we have to recover these from input
- Why: chunks used to discover meaning
- Parsing: mapping from strings to structured representation

Applications of parsing

- Grammar checking (Microsoft)
- Indexing for information retrieval (Woods 72-1997)
\ldots washing a car with a hose $\ldots \longrightarrow$ vehicle maintenance
- Information extraction (Keyser, Chomsky '62 to Hobbs 1996)

Language \& hierarchical structure

- Claim: Most, perhaps all properties in syntax are defined over hierarchical structure
- One needs to parse to see subtle distinctions

Examples (courtesy Dave Barry)

- National Park Service:
- Avoid the traffic by using a shuttle bus and view the elk rut with a park ranger
- PA Patriot News:
- 'Smoking organ causes stir at nursing home"
- Where do these come from??
- Visiting relatives can be dangerous/smoking organs can be dangerous

Why: linguistic properties defined over hierarchical structure

- What are the linguistic properties we need?
- Subject-of, object-of - to get predicate structure
- Scope
- Structural ambiguity (hence multiple meaning)
- All these from syntax

Why: recover meaning from structure

John ate ice-cream \rightarrow ate(John, ice-cream)
-This must be done from structure -Actually want something like $\lambda x \lambda y$ ate (x, y) How?

But now we have a more complex Marxist analysis

- I shot an elephant in my pajamas
- This is hierarchically ambiguous - not just linear! (each possible hierarchical structure corresponds to a distinct meaning)
- A case of structural ambiguity

What is the structure that matters?

Turns out to be SCOPE for natural languages!

The language for hierarchical structure

- What are the basic elements
- How are they put together?

Recursive Transition Networks to

 context-free grammars (CFGs) and back: 1-1 correspondenceSentence $O \xrightarrow{N P} O \xrightarrow{V P}(O) \quad S \rightarrow N P V P$
NP:

$\square \mathrm{NP} \rightarrow$ Name $N P \rightarrow$ Det Noun

VP:
$\bigcirc \xrightarrow{\text { Verb }} \xrightarrow{N P}(\mathrm{O}$ VP \rightarrow Verb NP

+ terminal expansion
6.863J/9.611J SP04 Lecture 8 SS

Added information

- FSA represents pure linear relation: what can precede or (follow) what
- CFG/RTN adds a single new predicate: dominate
- Claim: The dominance and precedence relations amongst the words exhaustively describe its syntactic structure
- When we parse, we are recovering these predicates

Dominance \& precedence define context-free grammars completely

- Definition of context-free grammar (CFG)
- Definition of derives : determines hierarchy
- We'll get to that soon...but first, from linear machines to hierarchical ones...

Marxist analysis: simple version

- Suppose just linear relations to recover
- Still can be ambiguity - multiple paths
- Consider:

Fruit flies like a banana

FSA terminology

- Input alphabet, Σ; transition mapping, δ; finite set of states, Q; start state q_{0}; set of final states, q_{f}
- $\delta(q, s) \rightarrow q^{\prime}$
- Transition function: next state unique = deterministic fsa
- Transition relation: > 1 next state $=$ nondeterministic fsa

State-set method: simulate a nondeterministic fsa

- Compute all the possible next states the machine can be in at a step $=$ state-set
- Denote this by $S_{i}=$ set of states machine can be in after analyzing i tokens
- Algorithm has 3 parts: (1) Initialize; (2) Loop; (3) Final state?
- Initialize: S_{0} denotes initial set of states we're in, before we start parsing, that is, q_{0}
- Loop: We must compute S_{i}, given S_{i-1}
- Final?: $S_{f}=$ set of states machine is in after reading all tokens; we want to test if there is a final state in there

State-set parsing

Inifialize: Compute initial state set, S_{0}

1. $S_{0} \leftarrow q_{0}$
2. $\mathrm{S}_{0} \leftarrow \varepsilon$-closure $\left(\mathrm{S}_{0}\right)$

Loop: \quad Compute S_{i} from S_{i-1}

1. For each word $w_{i}, i=1,2, \ldots, n$
2.
3. $\mathrm{S}_{\mathrm{i}} \leftarrow \varepsilon$-closure $\left(\mathrm{S}_{\mathrm{i}}\right)$
4. if $S_{i}=\varnothing$ then halt \& reject else continue

Final: Accept/reject

1. If $q_{f} \in S_{n}$ then accept else reject

What's the minimal data structure we need for this?

- $[S, i]$ where $S=$ denotes set of states we could be in; i denotes current point we're at in sentence
- As we'll see, we can use this same representation for parsing w/ more complex networks (grammars) - we just need to add one new piece of information for state names
- In network form

- In rule form:
$q_{l} \rightarrow t \bullet q_{k}$ where $\tau=$ some token of the input,

State to state jumps...

- Progress (\& ultimately parse) recorded by what state machine is in
- Consider each transition as rule:
$\mathrm{q}_{0} \rightarrow$ fruit q_{1}, also loop: $\mathrm{q}_{0} \rightarrow$ fruit q_{0}
$\mathrm{q}_{1} \rightarrow$ flies $\mathrm{q}_{2} ; \mathrm{q}_{0} \rightarrow$ flies q_{1} also epsilon transition: $\mathrm{q}_{1} \rightarrow \mathrm{q}_{3}$
$\mathrm{q}_{2} \rightarrow$ like q_{3} also epsilon transition: $\mathrm{q}_{2} \rightarrow \mathrm{q}_{3}$
$\mathrm{q}_{3} \rightarrow \mathrm{aq}_{4}$
$\mathrm{q}_{4} \rightarrow$ banana q_{5}
- We can record progress path via 'bouncing ball' dot telling us how to sing the song...

- We can write it this way:
- $\left[q_{l} \rightarrow t \bullet q_{j}, \mathrm{k}\right]$ where $k=$ index of where we are at in the parse $(i=0,1,2, \ldots, n$ for a string n words long)
- Let us also call this an item
- A collection of items in a state set is an item set

How do we move from linear to hierarchical?

Noun phrase:

"splice out" common subnets

We already have the machinery for this...

But now we have a more complex Marxist analysis

- I shot an elephant in my pajamas
- This is hierarchically ambiguous - not just linear! (each possible hierarchical structure corresponds to a distinct meaning)

What: Context-free grammars (CFG)

S(entence) \rightarrow NP VP
VP \rightarrow V NP
$N P \rightarrow$ Det N
$\mathrm{N} \rightarrow$ pizza, $\mathrm{N} \rightarrow$ guy, Det \rightarrow the $\}$ pre-terminals, lexical entries
$\mathrm{V} \rightarrow$ ate
A context-free grammar (CFG):
Sets of terminals (either lexical items or parts of speech)
Sets of nonterminals (the constituents of the language)
Sets of rules of the form $A \rightarrow \alpha$ where α is a string of zero or more terminals and nonterminals

More precisely

- A context-free grammar (CFG) is a 4-tuple ($\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S}$) where:
- N is a finite set of nonterminal symbols (phrase names, categories);
- Σ is a finite set of terminal symbols (words);
- P is a set of production rules $\langle A \in N, \alpha>$, where α is a sequence of terminal or nonterminals; and
- $S \in N$ is a designated start symbol.
- We write the productions as $\mathrm{A} \rightarrow \alpha$ ('is-a')

Definitions for CFGs

- The derive relation \Rightarrow
- Define wrt grammar $G=(N, \Sigma, P, S)$ as follows
$\alpha \Rightarrow \beta$ iff $\exists \alpha_{1}, \alpha_{2}$ s.t. $\alpha=\alpha_{1} A \alpha_{2} ; \beta=\alpha_{1} \gamma \alpha_{2}$; and $A \rightarrow \gamma \in \mathrm{P}$. (Some rule rewrites α as β)
- Reflexive, transitive closure of \Rightarrow is \Rightarrow^{*}

If α, β is in \Rightarrow^{*} then we say that α derives β (by 0 or more steps)

```
    Derivation by a context-free
    grammar:rewrite line by line
generation
    1. S
    2. NP VP
    3. NP V NP
    4. NP V Det N
    5. NP V Det pizza
    6. NP V the pizza
    7. NP ate the pizza
    8. Det N ate the pizza
    9. Det guy ate the pizza
    10. the guy ate the pizza (via Det }->\mathrm{ the)

\section*{Derives relation}
- Relates all elts by either dominance or precedence
- Induces a (derivation) tree (Q: do we lose any information in this tree?)

\section*{Definition of derivation tree}

Binary Relation \(D\), dominance:
\(A D v\) iff \(\exists \alpha_{1}, \alpha_{2}\left(\alpha \Rightarrow \beta\right.\) via \(\left.A \rightarrow \alpha_{1} v \alpha_{2}\right)\)
- Binary relation < precedence:
\(v<w\) iff \(\exists \alpha_{1}, \alpha_{2}\left(\alpha=\alpha_{1} v w \alpha_{2}\right.\) or \(\left.\beta=\alpha_{1} v w \alpha_{2} \& \alpha \Rightarrow \beta\right)\)
Confirm that our derivation steps previously induce such a tree... note that all elts are related by < or D. (Suppose not...?)
The yield of a nonterminal (category) \(A\) consists of all strings derivable from \(A\)


\section*{How: context-free parsing}
- Parsing: assigning a correct hierarchical structure (or its derivation) to a string, given some grammar
- The leaves of the hierarchical structure cover all and only the input;
- The hierarchical structure ('tree') corresponds to a valid derivation wrt the grammar
- Note: 'correct' here means consistent w/ the input \& grammar - NOT the "right" tree or "proper" way to represent (English) in any more global sense

\section*{Parsing}
- What kinds of constraints can be used to connect the grammar and the example sentence when searching for the parse tree?
- Top-down (goal-directed) strategy
- Tree should have one rot (grammar constraint)
- Bottom-up (data-driven) strategy
- Tree should have, e.g., 3 leaves (input sentence constraint)
- For now, assume:
- Input is not tagged (we can do this...)
- The input consists of unanalyzed word tokens
- All the words are known
- All the words in the input are available simultaneously (ie, buffered)

```

