
6.863J Natural Language Processing
Lecture 8: Going nonlinear - Marxist analysis

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 8

The Menu Bar
• Administrivia:

• Lab 2a/2b due Friday
Agenda:

Going nonlinear: beyond finite-state machines
• Marxist analysis – simple & post-modern
• What: hierarchical representations;

constituents, representation
• How: constituent or ‘context-free’ parsing

(next time – how to do it fast)
• Why: to extract ‘meaning’

6.863J/9.611J SP04 Lecture 8

Motivation

• What, How, and Why
• What: word chunks behave as units, like

words or endings (morphemes), like ing
• How: we have to recover these from input
• Why: chunks used to discover meaning
• Parsing: mapping from strings to structured

representation

6.863J/9.611J SP04 Lecture 8

Why parsing?

• A (context-free) grammar tells us what
(syntactic)structure(s) we can assign to a
string

• It doesn't tell us is how we should go about
assigning a string a structure

6.863J/9.611J SP04 Lecture 8

Applications of parsing

Grammar checking (Microsoft)

Indexing for information retrieval (Woods 72-1997)

... washing a car with a hose ... vehicle maintenance

Information extraction (Keyser, Chomsky ’62 to Hobbs 1996)

NY Times
archive

Database

query

6.863J/9.611J SP04 Lecture 8

Why: Q&A systems (lab 4)
(top-level)
Shall I clear the database? (y or n) y
>John saw Mary in the park
OK.
>Where did John see Mary
IN THE PARK.
>John gave Fido to Mary
OK.
>Who gave John Fido
I DON'T KNOW
>Who gave Mary Fido
JOHN
>John saw Fido
OK.
>Who did John see
FIDO AND MARY

6.863J/9.611J SP04 Lecture 8

Language & hierarchical structure

• Claim: Most, perhaps all properties in syntax
are defined over hierarchical structure

• One needs to parse to see subtle distinctions

6.863J/9.611J SP04 Lecture 8

More examples: Marxist analysis

• This morning, I shot an elephant in my
pajamas

• “How he got into my pajamas, I’ll never
know” (G. Marx)

6.863J/9.611J SP04 Lecture 8

Examples (courtesy Dave Barry)

• National Park Service:
• Avoid the traffic by using a shuttle bus and

view the elk rut with a park ranger
• PA Patriot News:
• “Smoking organ causes stir at nursing home”

• Where do these come from??
• Visiting relatives can be dangerous/smoking

organs can be dangerous

6.863J/9.611J SP04 Lecture 8

Why: linguistic properties defined
over hierarchical structure

• What are the linguistic properties we need?
• Subject-of, object-of – to get predicate

structure
• Scope
• Structural ambiguity (hence multiple

meaning)
• All these from syntax

6.863J/9.611J SP04 Lecture 8

Predication depends on configuration

• Subject-of: Bill-kill

• Object-of: kill-Bill

Sentence

Noun phrase Verb phrase

Verb

killVerb phrase
Verb

kill
Noun phrase

Bill

6.863J/9.611J SP04 Lecture 8

Configurational properties

More sophisticated configurational property

Sara likes her. (her ≠ Sara)
Sara thinks that someone likes her. (her = or ≠ Sara)
Sara dislikes anyone’s criticism of her. (her = Sara or her ≠ Sara)
Who did John see? → For which x, x a person, likes(Bill, x)

Distinction here is based on hierarchical structure = scope
in natural language

6.863J/9.611J SP04 Lecture 8

Why: express ‘long distance’ relationships
via adjacency

• The guy that we know in Somerville likes ice-cream
• Who did the guy who lives in Somerville see __?

S

NP+sg VP+sg

SThe guy

that we know in Somerville

V NP
likes

ice-cream

6.863J/9.611J SP04 Lecture 8

Why: recover meaning from
structure

John ate ice-cream → ate(John, ice-cream)

-This must be done from structure
-Actually want something like λxλy ate(x,y)
How?

6.863J/9.611J SP04 Lecture 8

Structure must be recovered

who

did

S

V

VP

x

S

NP

‘gap’ or
empty element

see

6.863J/9.611J SP04 Lecture 8

But now we have a more complex
Marxist analysis

• I shot an elephant in my pajamas

• This is hierarchically ambiguous – not just
linear! (each possible hierarchical structure
corresponds to a distinct meaning)

• A case of structural ambiguity

6.863J/9.611J SP04 Lecture 8

What is the structure that matters?

Turns out to be SCOPE for natural languages!

S

6.863J/9.611J SP04 Lecture 8

The language for hierarchical
structure

• What are the basic elements
• How are they put together?

6.863J/9.611J SP04 Lecture 8

The elements

1. What: hierarchical representations
(anything with recursion) using phrases AKA
“constituents”

2. Constituents are equivalence classes of
words

3. How: context-free parsing (plus…)
4. Why: (meaning)

6.863J/9.611J SP04 Lecture 8

Recursive Transition Networks to
context-free grammars (CFGs) and
back: 1-1 correspondence

Sentence: NP VP

NP:

VP:

S→NP VP

Name

Det Noun

Verb NP VP→Verb NP

NP→Name
NP→Det Noun

+ terminal expansion
rules

6.863J/9.611J SP04 Lecture 8

Added information

• FSA represents pure linear relation: what can
precede or (follow) what

• CFG/RTN adds a single new predicate:
dominate

• Claim: The dominance and precedence
relations amongst the words exhaustively
describe its syntactic structure

• When we parse, we are recovering these
predicates

6.863J/9.611J SP04 Lecture 8

Dominance & precedence define
context-free grammars completely

• Definition of context-free grammar (CFG)

• Definition of derives : determines hierarchy

• We’ll get to that soon…but first, from linear
machines to hierarchical ones…

6.863J/9.611J SP04 Lecture 8

The deepest lesson

• Claim: all apparently nonadjacent
relationships in languge can be reduced to
adjacent ones via projection to a new level of
representation

• (In one sense, vacuous; in another, deep)
• Example: Subject-Verb agreement

(agreement generally)
• Example: so-called wh-movement

6.863J/9.611J SP04 Lecture 8

OK: start with finite-state machines

• Marxist analysis, step 1
• Then historical revisionism…

6.863J/9.611J SP04 Lecture 8

Marxist analysis: simple version

• Suppose just linear relations to recover
• Still can be ambiguity – multiple paths
• Consider:

Fruit flies like a banana

6.863J/9.611J SP04 Lecture 8

Parsing for fsa’s: keep track of what
‘next state’ we could be in at each
step

NB: ambiguity = > 1 path through network
= > 1 sequence of states (‘parses’)
= > 1 ‘syntactic rep’ = >1 ‘meaning’

fruit flies like a banana

fruit

fruit flies
flies

0 1 2 3 4

5

like
like
ε

a
banana

6.863J/9.611J SP04 Lecture 8

Methods for parsing
• How do we handle ambiguity?
• Methods:

1. Backtrack
2. Convert to deterministic machine (ndfsa →

dfsa): offline compilation
3. Pursue all paths in parallel: online

computation (“state set” method)
4. Use lookahead

– We will use all these methods for more
complex machines/language representations

6.863J/9.611J SP04 Lecture 8

FSA terminology

• Input alphabet,Σ; transition mapping, δ; finite
set of states, Q; start state q0; set of final
states, qf

• δ(q, s)→ q’
• Transition function: next state unique =

deterministic fsa
• Transition relation: > 1 next state =

nondeterministic fsa

6.863J/9.611J SP04 Lecture 8

State-set method: simulate a
nondeterministic fsa

• Compute all the possible next states the machine can
be in at a step = state-set

• Denote this by Si = set of states machine can be in
after analyzing i tokens

• Algorithm has 3 parts: (1) Initialize; (2) Loop; (3) Final
state?

• Initialize: S0 denotes initial set of states we’re in, before
we start parsing, that is, q0

• Loop: We must compute Si , given Si-1

• Final?: Sf = set of states machine is in after reading all
tokens; we want to test if there is a final state in there

6.863J/9.611J SP04 Lecture 8

State-set parsing

Accept/reject
1. If qf ∈ Sn then accept else reject

Final:

Compute Si from Si-1

1. For each word wi , i=1,2,…,n
2.

3. Si← ε−closure(Si)
4. if Si = ∅ then halt & reject else continue

Loop:

Compute initial state set, S0

1. S0←q0

2. S0← ε−closure(S0)

Initialize:

1
(,)

ii q S iS q wδ
−∈← ∪

6.863J/9.611J SP04 Lecture 8

States in sequence dictate parse
path:

S0:[0] S1:[0,1] S2:[1, 2, 3] S3:[2, 3] S4:[4] S5:[5]

State set 0
(initial state set)

State set f
(final state set)

States: {0} →{0,1} →{1,2,3} →{2,3} →{4} →{5} (final)

6.863J/9.611J SP04 Lecture 8

What’s the minimal data structure we
need for this?

• [S, i] where S = denotes set of states we could be in; i
denotes current point we’re at in sentence

• As we’ll see, we can use this same representation for
parsing w/ more complex networks (grammars) - we
just need to add one new piece of information for state
names

• In network form
• In rule form:

qi→t • qk where τ= some token of the input,

qk
αqi

β

6.863J/9.611J SP04 Lecture 8

State to state jumps…
• Progress (& ultimately parse) recorded by what state

machine is in
• Consider each transition as rule:

q0 → fruit q1 , also loop: q0 → fruit q0

q1 → flies q2 ; q0 → flies q1 also epsilon transition: q1 → q3

q2 → like q3 also epsilon transition: q2 → q3

q3 → a q4

q4 → banana q5

• We can record progress path via ‘bouncing ball’ dot telling us
how to sing the song…

6.863J/9.611J SP04 Lecture 8

q0 → fruit • q0

Follow the bouncing ball…

Fruit flies like a banana
q0 → • fruit q1

q0 q1

q0 → fruit • q1

Fruit flies like a banana

S0 S1

q0 → fruit • S1
q1 → flies • q2

6.863J/9.611J SP04 Lecture 8

To be picky about the ‘dotted rules’

• We can write it this way:

• [qi→t •qj , k] where k= index of where we
are at in the parse (i=0, 1, 2, …, n for a
string n words long)

• Let us also call this an item
• A collection of items in a state set is an item

set

6.863J/9.611J SP04 Lecture 8

Reviewing this representation
• Dotted rules indicate ‘progress so far’
• They also denote traversal between categories (aka

‘states’)
• The collection of dotted rules at any step in a parse

denotes the set of possible states the parser could be
in at that step (a set union), more precisely, it is
State Set i, that denotes the set of all possible states
the parsing could be in after processing i words

• We could also add a ‘return pointer’ that tells us how
we got to the current state

• So now an item looks like:
[dotted rule, return ptr, current word so far] e.g
[q0 → fruit • q1 , 0, 1]

6.863J/9.611J SP04 Lecture 8

States in sequence dictate parse path
– from this:

S0:[0] S1:[0,1] S2:[1, 2, 3] S3:[2, 3] S4:[4] S5:[5]

State set 0
(initial state set)

State set f
(final state set)

States: {0} →{0,1} →{1,2,3} →{2,3} →{4} →{5} (final)

6.863J/9.611J SP04 Lecture 8

To this:

S2S1S0:

{[q0 → • fruit q1, 0, 0]}

fruit

{[q0 → fruit • q1,0, 1],
[q0 → fruit • q0, 0, 1]}

flies

{[q1 → flies • q2, 1, 2],
[q0 → flies • q1, 0, 2]

{[q1 → flies • q3 , 2, 2}

6.863J/9.611J SP04 Lecture 8

How do we move from linear to
hierarchical?

saw

the guy

Bush

Sentence:

Noun
phrase:

“splice out” common
subnets

We already have the machinery for this…

6.863J/9.611J SP04 Lecture 8

Use of epsilon transitions (‘jump’
arcs) – they consume no input

Sentence:

S-0 S-1 S-2

verb

NP-0 NP-1 NP-3
determiner noun

e
e VP-0 VP-1 VP-2

e

NP VP

e e

Verb phrase
subnet

e

Noun
phrase
subnet

…note that no input is
consumed during jump

6.863J/9.611J SP04 Lecture 8

This will work… with one catch

• Consider tracing through “the guy ate the ice-
cream”

• What happens when we get to the second
noun phrase????

• Where do we return to?
• Epsilon transition takes us back to different

points

6.863J/9.611J SP04 Lecture 8

But now we have a more complex
Marxist analysis

• I shot an elephant in my pajamas

• This is hierarchically ambiguous – not just
linear! (each possible hierarchical structure
corresponds to a distinct meaning)

6.863J/9.611J SP04 Lecture 8

Marxist analysis
S

I

VP

V NP
NP

shot Det N

an elephant

PP

P
Det

in
pj’s

NP
N

my

6.863J/9.611J SP04 Lecture 8

What: Context-free grammars (CFG)

S(entence)→NP VP
VP→V NP
NP→Det N
N → pizza, N → guy, Det → the } pre-terminals,

lexical entries
V → ate

A context-free grammar (CFG):
Sets of terminals (either lexical items or parts of speech)
Sets of nonterminals (the constituents of the language)
Sets of rules of the form A → α where α is a string of zero

or more terminals and nonterminals

6.863J/9.611J SP04 Lecture 8

More precisely

• A context-free grammar (CFG) is a 4-tuple (N, Σ, P, S)
where:

• N is a finite set of nonterminal symbols (phrase names,
categories);

• Σ is a finite set of terminal symbols (words);
• P is a set of production rules <A∈N, α>, where α is a

sequence of terminal or nonterminals; and
• S ∈N is a designated start symbol.

• We write the productions as A→ α (‘is-a’)

6.863J/9.611J SP04 Lecture 8

Definitions for CFGs

• The derive relation ⇒
• Define wrt grammar G= (N, Σ, P, S) as

follows
α⇒β iff ∃ α1, α2 s.t. α = α1 A α2 ; β= α1 γ α2;
and A→γ ∈P. (Some rule rewrites α as β)

• Reflexive, transitive closure of ⇒ is ⇒∗

If α, β is in ⇒∗ then we say that α derives β (by
0 or more steps)

6.863J/9.611J SP04 Lecture 8

Derivation by a context-free
grammar:rewrite line by line

1. S
2. NP VP (via S→NP VP)
3. NP V NP (via VP→V NP)
4. NP V Det N (via NP→Det N)
5. NP V Det pizza (via N → pizza)
6. NP V the pizza (via Det → the)
7. NP ate the pizza (via V → ate)
8. Det N ate the pizza (via NP→Det N)
9. Det guy ate the pizza (via N → guy)
10. the guy ate the pizza (via Det → the)

generation

6.863J/9.611J SP04 Lecture 8

Derives relation

• Relates all elts by either dominance or
precedence

• Induces a (derivation) tree (Q: do we lose
any information in this tree?)

6.863J/9.611J SP04 Lecture 8

Definition of derivation tree

• Binary Relation D, dominance:
A D v iff ∃ α1, α2 (α⇒β via A →α1v α2)

• Binary relation < precedence:
v < w iff ∃ α1, α2 (α = α1vw α2 or β = α1vw α2 & α⇒β)

Confirm that our derivation steps previously induce such a
tree… note that all elts are related by < or D. (Suppose
not…?)

The yield of a nonterminal (category) A consists of all
strings derivable from A

6.863J/9.611J SP04 Lecture 8

Context-free representation

• Is this representation adequate – Not really…why?
• We’ll start here, though & illustrate parsing methods

– how to make parsing efficient (in length of
sentence, size of grammar)

• Obvious methods are exponential; we want
polynomial time (or, even linear time, or, even, real
time…)

• Challenges: recursion, ambiguity, nondeterminism

6.863J/9.611J SP04 Lecture 8

How: context-free parsing

• Parsing: assigning a correct hierarchical structure (or
its derivation) to a string, given some grammar

• The leaves of the hierarchical structure cover all
and only the input;

• The hierarchical structure (‘tree’) corresponds to a
valid derivation wrt the grammar

• Note: ‘correct’ here means consistent w/ the input &
grammar – NOT the “right” tree or “proper” way to
represent (English) in any more global sense

6.863J/9.611J SP04 Lecture 8

Parsing

• What kinds of constraints can be used to
connect the grammar and the example
sentence when searching for the parse tree?

• Top-down (goal-directed) strategy
• Tree should have one rot (grammar

constraint)
• Bottom-up (data-driven) strategy

• Tree should have, e.g., 3 leaves (input
sentence constraint)

6.863J/9.611J SP04 Lecture 8

The input

• For now, assume:
• Input is not tagged (we can do this…)
• The input consists of unanalyzed word

tokens
• All the words are known
• All the words in the input are available

simultaneously (ie, buffered)

6.863J/9.611J SP04 Lecture 8

Ambiguity Can Yield Exponential # of
Parses

Me See A man The telescope The hill

“I was on the hill that has a telescope
when I saw a man.”

“I saw a man who was on the hill
that has a telescope on it.”

“I was on the hill when I used the
telescope to see a man.”

“I saw a man who was on a hill and
who had a telescope.”

“Using a telescope, I saw a man who
was on a hill.”

. . .

I saw the man on the hill with the telescope

6.863J/9.611J SP04 Lecture 8

How do we do this?

• Searching FSAs
• Finding the right path through the automaton
• Search space defined by structure of FSA

• Searching CFGs
• Finding the right parse tree among all possible

parse trees
• Search space defined by the grammar

• Constraints provided by the input sentence and the
automaton or grammar

