
6.863J Natural Language Processing
Lecture 9: Going nonlinear - Marxist analysis

Instructor: Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J SP04 Lecture 9

The Menu Bar
• Administrivia:

• Lab 2a/2b due MONDAY; 3a out Monday
Agenda:

Going nonlinear: beyond finite-state machines
• Parsing strategies: parsing as search; top-

down; bottom-up methods
• Parsing strategies: chart parsing as all-purpose

search data structure – algorithm & time
complexity; CKY and Earley algorithm

• Preview of Lab 3

6.863J/9.611J SP04 Lecture 9

Three senses of rules

• generation (production): S → NP VP
• parsing (comprehension): S ← NP VP
• verification (checking): S = NP VP
• CFGs are declarative – tell us what the well-

formed structures & strings are
• Parsers are procedural – tell us how to

compute the structure(s) for a given string

6.863J/9.611J SP04 Lecture 9

Where are we at? Marxist analysis:
simple version for linear parsing

• Suppose just linear relations to recover
• Need complete description of parse state =

[state name, ‘you are here’ index]=
[dotted rule, i] = (for example):
[q→t • q’, 1]

Fruit flies like a banana

tq q’

6.863J/9.611J SP04 Lecture 9

Parsing = building State sets via operation
of ‘scanning’ from word to word

S2S1S0:

{[q0 → • fruit q1, 0, 0]}

fruit

{[q0 → fruit • q1,0, 1],
[q0 → fruit • q0, 0, 1]}

SCAN

flies

{[q1 → flies • q2, 1, 2],
[q0 → flies • q1, 0, 2]

{[q1 → flies • q3 , 2, 2}
SCAN

6.863J/9.611J SP04 Lecture 9

State set parsing = compute
machine state after i words

• Given grammar G, input string w=w1 w2 …wn

Note: we mark interword positions 0w1 w2
…wn

• Initialize: write down what can be in “start
state set” S0

• Loop: for each word wi , compute Si from
Si-1

• Final: see if final state is in last state set Sn

6.863J/9.611J SP04 Lecture 9

What information do we need for
nonlinear (hierarchical) parsing?

• All that we need in linear case (state name
AKA dotted rule, where we are in input) plus

• One more additional piece of information
• Who dominates me? (Who called me?)
• This is necessary for hierarchical description
• This plus precedence (as we saw) is also

sufficient

6.863J/9.611J SP04 Lecture 9

Picture: what we need
0 1 2 3 4

The ice-cream with jimmies

0 1 2
The ice-cream

2 3 4
with jimmies

Noun Phrase (NP)

Prepositional Phrase (PP)
Starts (called from)
position 2

Ends at
position 4 =
PP[0, 4]

= NP[0,4]

6.863J/9.611J SP04 Lecture 9

Another way to view it

NP

Start
Phrase
(“predict”
Or “push”)

Complete phrase
(“pop”)

NN

guy
Scan

DT

the
Scan

6.863J/9.611J SP04 Lecture 9

Three operations suffice

• One to scan (needed for linear relation) plus:
• One to push for new phrases
• One to complete or pop new phrases

• These 3 show up under different stage
names, but always there as ‘abstract’ ops for
context-free parsing

6.863J/9.611J SP04 Lecture 9

So the extra info we need

• In addition to the phrase type
• The start and stop position (spanning) of a phrase
• The start position tells us ‘who called’ us (= caller

address, also return address)
• This is all we need to describe hierarchical info
• If we update the State set algorithm with this, we

can extend it to parse context-free grammars (we will
simulate a nondeterministic machine on-the-fly, as
before. Q: why can’t we convert it offline?)

6.863J/9.611J SP04 Lecture 9

Example

0 I 1 shot 2 an 3 elephant 4 in 5 my 6 pajamas 7 #

S(entence)[0, 7]; NP[0, 1];
Verb Phrase VP[1, 7]; NP[2, 3];
PP[4,7]; NP[5, 6]

What else?

6.863J/9.611J SP04 Lecture 9

Parsing as search

• “All” we need to do is find the right elements
S[0,7], etc. – these are ‘points’ in a search
space of possibilities

• How?
• Q: What is the size of the search space?
• Q: well, consider the # of possible elts of the

form X[i,j]
• Question 2: How do we search from point to

point?

6.863J/9.611J SP04 Lecture 9

What does the search look like?

6.863J/9.611J SP04 Lecture 9

Parsing as a Search Problem (II)

• Search space: The set of phrasal extents
• PhraseType[start:end]
• E.g.: NP[0:2]

• Goal:
• Find a set of paths through the search space…

That don’t overlap…
And that connect S[0:n] to each word.

• Size of search space: |G|n2 (G=grammar; n=words)
• Time to search the space: ?

• If we look at each phrasal extent once, Gn2

• otherwise, it might be more (exponential)
6.863J/9.611J SP04 Lecture 9

How should we explore the ‘phrase
space’ most efficiently?

• Depth first search = top-down parsing
• Parallel - Breadth-first search
• Bottom-up parsing
• ?Best first (we’ll get to it later)
• Let’s take a quick look

6.863J/9.611J SP04 Lecture 9

Top-Down Parsing

• Two basic operations:
1. Expand LHS of rule into RHS elements
2. Match against against input

• When good?
• When bad?
• When does it do useless work?
• What is its complexity?

6.863J/9.611J SP04 Lecture 9

Top Down Parsing Issues
• "Left-recursive" rules can cause infinite loops

• NP → NP and NP
• Explores trees that are inconsistent with the input
• Redundant parsing of phrases.

"I saw the dog in the tall building behind the
hill."

(the dog was in the building)
"I saw the dog in the tall building behind the

hill."
(I was in the building)

6.863J/9.611J SP04 Lecture 9

Bottom-up parsing

• Two basic operations
1. Shift words onto stack
2. Reduce stack elts and replace with LHS

of rule

6.863J/9.611J SP04 Lecture 9

Parsing Issues: Solutions

• Re-use the sub-parses we've already
computed

• Combine top-down and bottom-up approaches
• Get the "best of both worlds"
• We need some common representation for

the information from top-down and bottom-
up approaches.

• Use heuristics to decide when to use
bottom-up or top-down approaches.

6.863J/9.611J SP04 Lecture 9

Use can use a chart to record hypotheses about possible
syntactic constituents.
A chart contains a set of edges

Each edge represents a possible phrase.
Edges provide a common representation for parse

information.

NP
Det N

I saw the man on the hill

Chart

{Sentence

Edge

Phrase
Type

Phrase
Children

Chart Parsing

6.863J/9.611J SP04 Lecture 9

General method: Chart Parsing

• Note: parses share common constituents
• Build chart = graph data structure for storing partial &

complete parses (AKA well-formed substring table)
• Graph:

• Vertices: used to delimit subsequences of the input
• Edges (active, inactive)

• Active = denote incompletely parsed (or found) phrase
• Inactive = completely found phrase
• Labels = name of phrase

• Note: chart sufficient to attain polynomial time
parsability = O (n3 |G|), |G| = ‘size’ of grammar, no
matter what strategy we use

6.863J/9.611J SP04 Lecture 9

Chart parsing

• Example of chart

I shot an elephant in my pajamas

n v d n p d n
NP

PP

NP

NP

S
VP

NP

VP
S

6.863J/9.611J SP04 Lecture 9

Chart parsing

• Chart entries represent three types of
constituents (phrases):
• predicted constituents
• in-progress constituents
• completed constituents

6.863J/9.611J SP04 Lecture 9

Chart as a Matrix
• We can represent a chart as an upper triangular

matrix.
• chart[i,j] is the set of dotted rules that span [i:j]

321
j

0

3

Mary → •
NP → Mary•

NP → • Maryi 2

VP → V NP •saw → •
V → • saw
VP → V • NP

VP → • V NP
V → • saw

1

S -> NP VP •John → •
NP → John •
S → NP • VP

S → • NP VP
NP → • John

0

6.863J/9.611J SP04 Lecture 9

Chart parsing

• Think of chart entries - edges as sitting
between words in the input string keeping
track of states of the parse at these positions

• For each word position, chart contains the set
of states representing all partial parse trees
generated to date

6.863J/9.611J SP04 Lecture 9

The chart

• A cell in the chart can contain more than one
phrase (e.g., n & np)

• With each constituent is frequently stored
information about which parsing rule was
used to generate it and what smaller
constituents make it up (to recover the parse)

• Used to prevent redundant work if 2 or more
possible internal structures for a single phrase
(“blue socks and shoes”)

6.863J/9.611J SP04 Lecture 9

• A dotted rule is a CFG rule with a dot on the right
hand side. This denotes a state in the nondet
machine simulation

• A dotted rule is complete if its dot is at the end (=
phrase it is building is finished)

• Otherwise, a dotted rule is incomplete
• An edge is a dotted rule at a location (start+end)

• An edge is complete if its dotted rule is complete
• A chart is a set of edges

Chart parsing teminology

6.863J/9.611J SP04 Lecture 9

Chart parsing

• A chart parser has three data structures:
• an input stack, which holds the words of the input

sentence (in order)
• a chart, which holds completed constituents

organized by starting position and length (the
edges)

• a set of edges, organized by ending position
• As we parse, edges are always added to the chart;

never deleted from the chart

6.863J/9.611J SP04 Lecture 9

How do we build the chart?

• Idea: as parts of the input are successfully
parsed, they are entered into chart

• Like memoization
• Can use any combo strategy of t-d, b-u, or in

between to build the edges
• Annotate edges as they are built w/ the

corresponding dotted rule
• Parser is a combination of chart + strategy

6.863J/9.611J SP04 Lecture 9

Chart Parsing Strategies

• Chart parser rules define the basic operations.
• A strategy defines what rules are applied when.
• The chart parser keeps applying every rule until no

more edges are added.
• But we can avoid redundant work with better

strategies. E.g.:
• Process edges in a fixed order
• Use a queue, and examine each edge once
• Use a more general data structure (aka “Agenda”)

for this

6.863J/9.611J SP04 Lecture 9

Representing complete (inactive) vs.
incomplete (active) edges (phrases)

• Complete: full phrase found, e.g., NP, VP
• So: corresponding rule something like

• NP→NP PP (“an elephant in my pajamas”)
• S → NP VP (“I saw an elephant”)
• NP → Det N (“an elephant”)

• Representation: use “dot” in rule to denote progress in
discovering LHS of the rule:
NP→• Det NP = I’ve just started to find an NP (“predict”)
NP → Det • NP = Found a Det in input, now find NP
NP → Det NP • = Completed phrase (dot at end)

6.863J/9.611J SP04 Lecture 9

Complete (Inactive) vs. In-progress
(active) edges

• Completed edges correspond to “having found a
phrase” so really should be labeled with info like
NP → Det NP •

• We should go back & annotate our chart like this
• These edges are “inactive” because there is no more

processing to be done to them
• Incomplete or “active” edges: work in progress, i.e.,

NP→• Det NP or NP → Det • NP
• We build up the chart by extending active edges,

gluing them together – let’s see how

6.863J/9.611J SP04 Lecture 9

The input

• Positions in the input sentence will be numbered
starting with zero and will be the positions between
successive words. For example:

The vine climbed the trellis
0 1 2 3 4 5

I saw an elephant in my pajamas
0 1 2 3 4 5 6 7

Words annotated w/ pos – eg
The vine climbed the trellis
DT NNs Vbed DT NNs

6.863J/9.611J SP04 Lecture 9

Input sentence stack

• The input
• Positions in the input sentence will be numbered

starting with zero and will be the positions
between successive words. For example:

0 I 1 shot 2 an 3 elephant 4 in 5 my 6 pajamas 7

For now, assume POS already assigned, words
consumed l-to-r

6.863J/9.611J SP04 Lecture 9

The Edges

• Each edge consists of a (dotted) grammatical
rule, plus information about how it matches
up against the input

• The edge contains:
• A grammar rule, e.g, Verb Phrase (VP) → Verb NP
• The position up to which we have matched the rule to the

input, usually indicated by a dot in the middle of the rule
(e.g. VP → Verb • NP)

• Its starting position, i.e. first input word matched
• The number of input words matched (so far)

6.863J/9.611J SP04 Lecture 9

Edges can represent partial phrases

PP
P NP

I saw the guy on the hill

PP starts
hereSo far, we've

found a P
We still need to find
an NP

P

PP

NP

Edges

6.863J/9.611J SP04 Lecture 9

Edges (continued)

• An edge consists of:
• S: A start index (1...n)
• E: An end index (1...n)
• Type: A phrase type (NP, PP, etc.)
• Found: What we've found so far (list of phrase

types)
• Need: What we still need (list of phrase types)

Type
Found Need
S E

6.863J/9.611J SP04 Lecture 9

• A chart parser rule adds new edges to the chart.

• Each chart parsing strategy defines a set of rules and how
they are applied
• Top down:

top-down initialization rule
top-down rule
fundamental rule

• Bottom-up:
bottom-up rule
fundamental rule

Other strategies possible -

Chart Parser Rules: only 3!

6.863J/9.611J SP04 Lecture 9

Generality of the Chart

• Chart lets us use either Top-down or BU
strategy

• In fact – lets us mix strategies – depending
on their value

• Extensible to features, probabilities

6.863J/9.611J SP04 Lecture 9

The Fundamental Rule

• Glues two subpieces into a larger one

• One rule to ring them all, one rule to bind
them…

6.863J/9.611J SP04 Lecture 9

Picture of this – ‘pasting’ X+Y
together (denoted ⊗)

k meE

E’

j

⊗

j m

=

6.863J/9.611J SP04 Lecture 9

“The fundamental rule”: glues
smaller trees into larger ones

VP→ V NP•

NP→ d n •VP→ V • NP

⊗ =

shot
start pos= 1, len 1

an elephant
start= 2, len=2

1 2 2 4

start pos= 1, len 3 1 4 6.863J/9.611J SP04 Lecture 9

The Fundamental Rule (AKA “paste”)

• The fundamental rule is used by both top-down and
bottom-up strategies.

If the chart contains: Then add:

A
α Cγ

C
β

A
αC γ

α

A

C

C

β
β

γ

α

A

C γ

i j k i k

6.863J/9.611J SP04 Lecture 9

How can we make trees in the first
place? (= make active edges)

• Only two ways – these exhaust the
possibilities – we don’t need anything else to
search the phrase space

• There is a rule for each one of these
possibilities

Rule a Rule b
6.863J/9.611J SP04 Lecture 9

Rule a: Top-Down Rule (“Blow up”)

• Top-down initialization:
For any rule S→α:

• Add S →• α to the left side of the chart (start = end = 0).

• Top-down rule (expansion)
If the chart contains: For each rule: Add:

A
α Yβ

Y
γ

α

A

Y γ

Y

β

Y→γ jji

6.863J/9.611J SP04 Lecture 9

Rule b: Bottom-Up Rule (“Boil Down”)

• Bottom-Up Rule (Reduction)
If the chart contains: For each rule: Add:

B→Αβ
A
α

A

α

B
Αβ

B

βA

6.863J/9.611J SP04 Lecture 9

Summary

• Chart: Set of edges (arcs), each
characterizing a completed or partial
constituent spanning a group of words

• Active edge: edge which still has words to be
found

• Inactive edge: completed

