
6.863J Natural Language Processing
Lecture 9: Writing grammars;

feature-based grammars

Robert C. Berwick
berwick@ai.mit.edu

6.863J/9.611J Lecture 9 Sp03

The Menu Bar
• Administrivia:

• Schedule alert: Lab 3 out; due next Weds.
• Lab time today, tomorrow
• Please read notes3.pdf!!

englishgrammar.pdf (on web)

• Agenda:
• Building grammars – basics to complex
• Limits of context-free grammars: the

trouble with tribbles
• Foundation for the laboratory

6.863J/9.611J Lecture 9 Sp03

Grammars for natural languages

• Where do the rules come from?
• Roughly: read them off of parse trees…
• A “rule-based”, construction-based point

of view
• Take ‘surface’ phrase patterns (mostly)
• But we still want to map to an underlying

‘logical’ form
• How do we start out?

6.863J/9.611J Lecture 9 Sp03

Reading rules from parse trees…

S→NP VP
VP→V NP
NP→Det N
NP→ N*

Can’t we get a computer to do this?

6.863J/9.611J Lecture 9 Sp03

Key elements – part 1

• Establish basic phrase types: S, VP, NP,
PP, …

• Where do these come from???

6.863J/9.611J Lecture 9 Sp03

What kinds of phrases are there?

• Noun phrases, verb phrases, adjectival
phrases (“green with envy”), adverbial
phrases (“quickly up the hill”),
prepositional phrases (“off the wall”), etc.

• In general: grounded on lexical items
• Shows us the constraints on context-free

rules for natural grammars
• Example:

6.863J/9.611J Lecture 9 Sp03

Phrase types are constrained by
lexical projection

Verb Phrase → Verb Noun Phrase
“is-a” (“kick the ball”)

Prepositional Phrase →Preposition Noun Phrase

(“on the table”)
Adjective Phrase → Adjective Prep. Phrase

(“green with envy”)
Etc. … what is the pattern?

6.863J/9.611J Lecture 9 Sp03

Function-argument relation

XP →X arguments, where X= Noun, Verb,
Preposition, Adjective (all lexical categories
in the language)

Like function-argument structure
(so-called “Xbar theory”)
Constrains what grammar rules cannot be:
Verb Phrase →Noun Noun Phrase
or even
Verb Phrase →Noun Phrase Verb Noun Phrase

6.863J/9.611J Lecture 9 Sp03

English is function-argument
form

function

at

args

green

sold
the stock

a bargain price

with envy

the over-priced stock

6.863J/9.611J Lecture 9 Sp03

Other languages are the mirror-
inverse: arg-function

at

green

sold
the stock

a bargain price

with envy

theover-priced stock

This is like Japanese

6.863J/9.611J Lecture 9 Sp03

Key elements – part 2

• Establish verb subcategories
• What are these?

• Different verbs take different # arguments
• 0, 1, 2 arguments (‘complements’)
• Poirot thought; Poirot thought the gun; Poirot

thought the gun was the cause.
• Some verbs take certain sentence complements:
• I know who John saw/? I think who John saw

propositional types:
• Embedded questions: I wonder whether…
• Embedded proposition: I think that John saw Mary

6.863J/9.611J Lecture 9 Sp03

Key elements

• Subtlety to this
• Believe, know, think, wonder,…

• ? I believe why John likes ice-cream
• I know why John likes ice-cream
• I believe that John likes ice-cream
• I believe (that) John likes ice-cream

• # args, type: Verb subcategories
• How many subcategories are there?
• What is the structure?

6.863J/9.611J Lecture 9 Sp03

Idea for phrases

• They are based on ‘projections’ of words
(lexical items) – imagine features
‘percolating’ up

know [V +proposition]

XP []V +proposition

6.863J/9.611J Lecture 9 Sp03

Heads of phrases

know [V +proposition]

V +proposition

6.863J/9.611J Lecture 9 Sp03

The parse structure for
‘embedded’ sentences

I believe (that) John likes ice-cream
S

NP VP

I

V

believe

that J. likes ice-cream

6.863J/9.611J Lecture 9 Sp03

New phrase type: S-bar

NP VP

I

V

believe

S

Sbar

that J. likes ice-cream

6.863J/9.611J Lecture 9 Sp03

Sbar
VP

V

believe

Sbar

that

Comp S

J. likes ice-cream

6.863J/9.611J Lecture 9 Sp03

Sbar
VP

V

believe

Sbar

Comp S

J. likes ice-cream

ε

6.863J/9.611J Lecture 9 Sp03

In fact, true for all sentences…

Comp S

ε

S

J. likes ice-cream

Sbar
John likes ice-cream

Why?

6.863J/9.611J Lecture 9 Sp03

What rules will we need?

• (U do it..)

6.863J/9.611J Lecture 9 Sp03

Verb types - continued

• What about:
Clinton admires honesty/Honesty admires

Clinton

How do we encode these in a CFG?
Should we encode them?
• Colorless green ideas sleep furiously
• Revolutionary new ideas appear

infrequently

6.863J/9.611J Lecture 9 Sp03

Features

6.863J/9.611J Lecture 9 Sp03

The trouble with tribbles

morphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

provided α is in the set TRANSITIVE-VERBS

6.863J/9.611J Lecture 9 Sp03

3 Common Ways to Use Features

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

num=singnum=sing

(comprehension
perspective)

num=sing

thrills

6.863J/9.611J Lecture 9 Sp03

CFG Solution

• Encode constraints into the non-terminals
• Noun/verb agreement

Sà SgS
S à PlS
SgS à SgNP SgVP
SgNP à SgDet SgNom

• Verb subcategories:
IntransVP à IntransV
TransVP à TransV NP

6.863J/9.611J Lecture 9 Sp03

Problems with this – how much
info?

6.863J/9.611J Lecture 9 Sp03

Agreement gets complex…

POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

–Czech: AGFS3----1A----

§ Lots of features
(tense, number, person,
gaps, vowels, commas,
wh, etc., etc....)

§ Sorry, that’s just how language is …
§ You know too much to write it down easily!

He

gone

has

6.863J/9.611J Lecture 9 Sp03

Other sentence types

• Questions:
• Will John eat ice-cream?
• Did John eat ice-cream?

• How do we encode this?

6.863J/9.611J Lecture 9 Sp03

`Empty’ elements or categories

• Where surface phrase is displaced from its
canonical syntactic position

• Examples:
• The ice-cream was eaten vs.
• John ate the ice-cream
• What did John eat?
• What did Bill say that that John thought the cat ate?
• For What x, did Bill say… the cat ate x
• Bush is too stubborn to talk to
• Bush is too stubborn [x to talk to Bush]
• Bush is too stubborn to talk to the Pope
• Bush is too stubborn [Bush to talk to the Pope]

6.863J/9.611J Lecture 9 Sp03

More interesting clause types

• Apparently “long distance” effects:
‘displacement’ of phrases from their ‘base’
positions

1. So-called ‘wh-movement’:
What did John eat ?

2. Topicalization (actually the same)
On this day, it snowed two feet.

3. Other cases: so-called ‘passive’:
The eggplant was eaten by John

• How to handle this?

6.863J/9.611J Lecture 9 Sp03

We can think of this as ‘fillers’
and ‘gaps’

• Filler= the displaced item
• Gap = the place where it belongs, as

argument
• Fillers can be NPs, PPs, S’s
• Gaps are invisible- so hard to parse! (we have

to guess)
• Can be complex:

Which book did you file__ without__
reading__ ?
Which violins are these sonatas difficult to

play__ on ___

6.863J/9.611J Lecture 9 Sp03

Gaps (“deep” grammar!)

• Pretend “kiss” is a pure transitive verb.
• Is “the president kissed” grammatical?

• If so, what type of phrase is it?

• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

6.863J/9.611J Lecture 9 Sp03

Gaps

• Object gaps:
• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

§ Subject gaps:
§ the sandwich that
§ I wonder what
§ What else has

e kissed the president
Sally said e kissed the president

[how could you tell the difference?]

6.863J/9.611J Lecture 9 Sp03

Gaps

• All gaps are really the same – a missing XP:
• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Phrases with missing NP:
X[missing=NP]

or just X/NP for short

e kissed the president
Sally said e kissed the president

6.863J/9.611J Lecture 9 Sp03

Representation & computation
questions again

• How do we represent this displacement?
(difference between underlying & surface forms)

• How do we compute it? (I.e., parse sentences
that exhibit it)

• We want to recover the underlying structural
relationship because this tells us what the
predicate-argument relations are – Who did what
to whom

• Example: What did John eat → For which x, x a
thing, did John eat x?

• Note how the eat-x predicate-argument is
established

6.863J/9.611J Lecture 9 Sp03

Representations with gaps
• Let’s first look at a tree with gaps:

what

Did

S

V

VP

NP

S

ε

NP

‘gap’ or
empty element

filler

6.863J/9.611J Lecture 9 Sp03

Crisper representation:

Comp S

what

Auxv

did

NP

Sbar

NP VP

J

eat ε

‘gap’ or
empty element

‘filler’

6.863J/9.611J Lecture 9 Sp03

Fillers can be arbitrarily far from
gaps they match with…

• What did John say that Mary thought that
the cat ate___?

6.863J/9.611J Lecture 9 Sp03

Fillers and gaps

• Since ‘gap’ is NP going to empty string,
we could just add rule, NP→ε

• But this will overgenerate why?
• We need a way to distinguish between

• What did John eat
• Did John eat

• How did this work in the FSA case?

6.863J/9.611J Lecture 9 Sp03

So, what do we need

• A rule to expand NP as the empty symbol;
that’s easy enough: NP→ε

• A way to make sure that NP is expanded
as empty symbol iff there is a gap (in the
right place) before/after it

• A way to link the filler and the gap
• We can do all this by futzing with the

nonterminal names: Generalized Phrase
Structure Grammar (GPSG)

6.863J/9.611J Lecture 9 Sp03

Still other ‘missing’ elements

• John promised Mary ___ to leave
• John promised Mary [John to leave]
• Known as ‘control’

• John persuaded Mary [___ to leave]
• John persuaded Mary [Mary to leave]

6.863J/9.611J Lecture 9 Sp03

Limits of CFGs

• Agreement (A cat sleeps. Cats sleep.)
S à NP VP
NP à Det Nom
But these rules overgenerate, allowing,

e.g., *A cat sleep…
• Subcategorization (Cats dream. Cats eat

cantaloupe.)

6.863J/9.611J Lecture 9 Sp03

VP à V
VP à V NP
But these also allow *Cats dream

cantaloupe.

• We need to constrain the grammar rules
to enforce e.g. number agreement and
subcategorization differences

• We’ll do this with feature structures and the
constraint-based unification formalism

6.863J/9.611J Lecture 9 Sp03

CFG Solution

• Encode constraints into the non-terminals
• Noun/verb agreement

Sà SgS
S à PlS
SgS à SgNP SgVP
SgNP à SgDet SgNom

• Verb subcat:
IntransVP à IntransV
TransVP à TransV NP

6.863J/9.611J Lecture 9 Sp03

• But this means huge proliferation of
rules…

• An alternative:
• View terminals and non-terminals as

complex objects with associated features,
which take on different values

• Write grammar rules whose application is
constrained by tests on these features, e.g.
S à NP VP (only if the NP and VP agree in

number)

6.863J/9.611J Lecture 9 Sp03

Design advantage

• Decouple skeleton syntactic structure
from lexicon

• We’ll explore later, for now…

6.863J/9.611J Lecture 9 Sp03

Feature Structures

• Sets of feature-value pairs where:
• Features are atomic symbols
• Values are atomic symbols or feature structures
• Illustrated by attribute-value matrix












nFeature

Feature
Feature

...
2

1













nValue

Value
Value

....
2

1

6.863J/9.611J Lecture 9 Sp03

• Number feature

• Number-person features

• Number-person-category features
(3sgNP)


Num 



SG











Pers
Num
Cat











3
SG
NP








Pers
Num









3
SG

6.863J/9.611J Lecture 9 Sp03

• How do we define 3plNP?
• How does this improve over the CFG solution?

• Feature values can be feature structures
themselves
• Useful when certain features commonly co-occur,

e.g. number and person

• Feature path: path through structures to value
(e.g.

Agr à Num à SG












Agr

Cat



























3Pers
SGNum

NP

6.863J/9.611J Lecture 9 Sp03

Graphical Notation for Feature
Structures

6.863J/9.611J Lecture 9 Sp03

Reentrant Structures

• Feature structures may also contain features
that share some feature structure as a value

• Numerical indices indicate the shared values
























































































1

3
1

AgrSubj

Pers
SGNumAgr

Head

SCat

6.863J/9.611J Lecture 9 Sp03

Operations on Feature Structures

• What will we need to do to these structures?
• Check the compatibility of two structures
• Merge the information in two structures

• We can do both using unification
• We say that two feature structures can be

unified if the component features that make
them up are compatible
• [Num SG] U [Num SG] = [Num SG]
• [Num SG] U [Num PL] fails!
• [Num SG] U [Num []] = [Num SG]

6.863J/9.611J Lecture 9 Sp03

• [Num SG] U [Pers 3] =

• Structure are compatible if they contain
no features that are incompatible

• Unification of two feature structures:
• Are the structures compatible?
• If so, return the union of all feature/value

pairs

• A failed unification attempt

















3Pers
SGNum















































1
3

1

AgrSubj
Pers

SGNumAgr











































































3

3

Pers
PLNumAgrSubj

Pers
PlNumAgr

U

6.863J/9.611J Lecture 9 Sp03

Features, Unification and
Grammars

• How do we incorporate feature structures into
our grammars?
• Assume that constituents are objects which have

feature-structures associated with them
• Associate sets of unification constraints with

grammar rules
• Constraints must be satisfied for rule to be satisfied

• For a grammar rule β0à β1 …βn
• <β i feature path> = Atomic value
• <β i feature path> = <β j feature path>

6.863J/9.611J Lecture 9 Sp03

• To enforce subject/verb number
agreement
S à NP VP

<NP NUM> = <VP NUM>

6.863J/9.611J Lecture 9 Sp03

Agreement in English

• We need to add PERS to our subj/verb
agreement constraint

This cat likes kibble.
S à NP Vp
<NP AGR> = <VP AGR>
Do these cats like kibble?
S à Aux NP VP
<Aux AGR> = <NP AGR>

6.863J/9.611J Lecture 9 Sp03

• Det/Nom agreement can be handled
similarly

These cats
This cat
NP à Det Nom
<Det AGR> = <Nom AGR>
<NP AGR> = <Nom AGR>
• And so on for other constituents and

rules

6.863J/9.611J Lecture 9 Sp03

Head Features

• Features of most grammatical categories are
copied from head child to parent (e.g. from V
to VP, Nom to NP, N to Nom, …)

• These normally written as ‘head’ features,
e.g.
VP à V NP
<VP HEAD> = <V HEAD>
NP à Det Nom
<NPà HEAD> = <Nom HEAD>
<Det HEAD AGR> = <Nom HEAD AGR>
Nom à N
<Nom HEAD> = <N HEAD>

6.863J/9.611J Lecture 9 Sp03

Subcategorization

• Recall: Different verbs take different
types of argument
• Solution: SUBCAT feature, or

subcategorization frames
e.g.











































































INFVFORMHEAD
VPCAT

NPCATSUBCATHEAD

VCAT
wantORTH

,

6.863J/9.611J Lecture 9 Sp03

• But there are many phrasal types and so
many types of subcategorization frames, e.g.
• believe
• believe [VPrep in] [NP ghosts]
• believe [NP my mother]
• believe [Sfin that I will pass this test]
• believe [Swh what I see] ...

• Verbs also subcategorize for subject as well
as object types ([Swh What she wanted]
seemed clear.)

• And other p.o.s. can be seen as
subcategorizing for various arguments, such
as prepositions, nouns and adjectives (It was
clear [Sfin that she was exhausted])

6.863J/9.611J Lecture 9 Sp03

• NB: p.o.s. that subcategorize similarly
define rough classes e.g. verb
categories like transfer verbs and
subcat frame relationships within verb
classes are called alternations
• George gave Martha a letter [NP NP]
• George gave a letter to Martha [NP PP]

6.863J/9.611J Lecture 9 Sp03

Long-Distance Dependencies

• What happens when a verb’s arguments are not
in the VP?
• What meals does the restaurant serve?
Wh-NP fills a slot in serve
S --> wh-NP Aux NP VP

• How to solve?
• Gap list: GAP feature (filler: what meals) passed up

from phrase to phrase in parse tree -- complicated
mechanism

• Even bigger problem for representations such as
FSAs and Ngrams

6.863J/9.611J Lecture 9 Sp03

How can we parse with feature
structures?
• Unification operator: takes 2 features structures

and returns either a merged feature structure
or fail

• Input structures represented as DAGs
• Features are labels on edges
• Values are atomic symbols or DAGs

• Unification algorithm goes through features in
one input DAG1 trying to find corresponding
features in DAT2 – if all match, success, else fail

6.863J/9.611J Lecture 9 Sp03

Unification and Chart Parsing

• Goal:
• Use feature structures to provide richer

representation
• Block entry into chart of ill-formed constituents

• Changes needed to Earley
• Add feature structures to grammar rules, e.g.

S à NP VP
<NP HEAD AGR> = <VP HEAD AGR>
<S HEAD> = <VP HEAD>

• Add field to states containing DAG representing
feature structure corresponding to state of parse,
e.g.

S à • NP VP, [0,0], [], DAG

6.863J/9.611J Lecture 9 Sp03

• Add new test to Completer operation
• Recall: Completer adds new states to chart by

finding states whose • can be advanced (i.e.,
category of next constituent matches that of
completed constituent)

• Now: Completer will only advance those states if
their feature structures unify

• New test for whether to enter a state in the
chart
• Now DAGs may differ, so check must be more

complex
• Don’t add states that have DAGs that are more

specific than states in chart: is new state
subsumed by existing states?

6.863J/9.611J Lecture 9 Sp03

Summing Up

• Feature structures encoded rich information
about components of grammar rules

• Unification provides a mechanism for merging
structures and for comparing them

• Feature structures can be quite complex:
• Subcategorization constraints
• Long-distance dependencies

• Unification parsing:
• Merge or fail
• Modifying Earley to do unification parsing

