
Massachusetts Institute of Technology
6.863J/9.611J Natural Language Processing, Spring, 2003

Department of Electrical Engineering and Computer Science
Department of Brain and Cognitive Sciences

Handout 1: Notes 1: Introduction to Computational Linguistics

Handed Out: February 5
I. Administrivia.

II. Agenda:

• What is computational linguistics? NL and the computer representation of knowledge.
Levels of representation.

• What is parsing? A definition, and difficulty of parsing.

• Laboratory 1: morphology.

1 Levels of representation
In studying any complex system like language it is wise to keep in mind a variety of perspectives.
Just as there is no single right description of an animal—we could describe organs, cells,
digestive system, or enzymes—language can be understood on a number of different levels.

What do we mean by the information structure of language? Our rich and varied knowledge
about language can be illustrated even by a simple sentence like the cats ate the ice-cream:

• We know how each word sounds and whether it’s an English word at all. Ca begins a
valid English word, but no English word will start out ptk . Further, the s on cats marks
it as plural.

• We know that the words must appear in a certain order. Cats the the ice-cream ate
doesn’t say the same thing.

• We know that the sentence can be roughly divided into two parts familiar from grammar
school: the cats, which is the Subject of the sentence, and ate the ice-cream, which is
the Predicate. So the sentence’s words are divided into distinct parts, or constituents.
(These are also called the sentence’s phrases.)

• We know who did what to whom: the cats is the agent of the action ate while the
ice-cream is the thing eaten, or the affected object.

• We know that it’s possible for cats to eat things, and we can picture what this means.
The sentence would seem odd if it were the paper clip ate the ice-cream.

• We know that the cats refers to some group of particular cats, rather than cats in general.

2 6.863J/9.611J Handout 1, Spring, 2003

• We know that the two sentences John claimed the cats ate the ice-cream and John denied
the cats ate the ice-cream are logically incompatible.

• We know whether the sentence is true or not—perhaps whether in some particular sit-
uation the cats did indeed eat ice-cream. Put another way, we know the relationship
between the sentence and the world—the sentence’s meaning .

• We know that the sentence would sound fine if it were a part of the following two-sentence
conversation, but odd if it introduced a conversation by itself: I had fish for dinner last
night. The cats ate the ice-cream.

All this knowledge is clearly useful if we want to answer questions like who ate the ice-cream,
draw inferences or analogies about what happened, or simply tell a joke about cats—in short,
if we want to understand the sentence and use language competently.

Each knowledge source or description is in fact a level of representation or a structural
description. That means three things. First, distinct information sources see the same sentence
projected through different colored lenses—in terms of sounds, sound pieces, words, word
pieces, who is the agent of the sentence, and so on. These information sources have a life
of their own. The description of cats as a string of sounds doesn’t say what cats can eat or
whether the cats are the agents of the action. A good representation highlights exactly what
needs to be said at a certain level of description while suppressing irrelevant detail. Put another
way, a level of representation has its own atomic primitives—sounds like k in one case, words
in another, or elements like agent and action.

Necessarily each kind of representation must be partial—because each tells us only part
of what we know about the sentence. In the extreme of course, a particular representation
might be so partial that it says nothing at all about a particular sentence—if the sentence
were French instead of English, for example, then a non-French speaker might not be able to
assign any representation of who did what to whom. In the view of parsing presented here
then, there can be no such thing as an “ill-formed” sentence, simply sentences for which one
can construct a more or less complete set of structural descriptions.

Second, the primitives can be put together in certain ways but not others. The word
sequence ice-cream like cats is different from like cats ice-cream. For this reason, we will often
call a representation a structural description, because it is a description that can be constructed
in certain ways but not others.

Third and finally, distinct structural descriptions may be related to others. For instance,
word order often matters in the description of a sentence in terms of the agent and the affected
object. Schank killed the spider and the spider killed Schank clearly have very different impli-
cations about who gets affected, yet these two sentences contain the very same words, just in
a different order.

Here we will briefly just list some of these different structural descriptions for sentences,
mostly to introduce terminology.

1. Sound structure includes phonetics and phonology. Phonetics studies the actual pattern
of speech sounds or phones roughly as they occur in speech. Phonology analyzes the
sound pattern rules in a language, grouping together phones that behave the same under
certain rules even if they sound different.

Notes 1: Introduction to Computational Linguistics 3

2. Word structure, or morphology and morphophonemics (after morphos, shape) analyzes
how words are formed from minimal units of meaning, or morphemes; thus cats is the
root cat and the plural morpheme s. Laboratory 1 explores this further.

3. Phrase structure syntax , sometimes called simply syntax (literally from the Greek syn-
taxis, συνταξιζ, meaning “arranged together”) describes possible word combinations or
phrases and how phrases are hierarchically arranged into sentences. For instance, in fa-
miliar terms the sentence the cats ate the ice-cream may be divided into two phrases: the
cats forms a Subject phrase while ate the ice-cream is a Predicate Phrase. Laboratory
2 looks at the computational analysis of phrase structure in depth. We will also use the
term Surface structure or S-structure, for an enriched phrase-structure representation.

4. Thematic structure or case structure casts sentences in a broad “who did what to whom”
form, using notions like agent, theme, affected object, recipient of the action, and the like.
Note how this ties to syntax: lexical properties affect what patterns we can have. For
example: the guy left ; the guy solved the problem; vs. the guy solved ; this problem, the
guy solved the problem. These are verb subcategories; the constraint is that each verb
must discharge all its thematic roles, and all participants must receive a thematic role,
somehow: the theta criterion. The level of D-structure we take to be a representation
of the thematic relations. This is systematically related to an actual surface form, or S-
structure, as we shall see.

5. Lexical-conceptual structure looks at words in terms of simple physical, causal elements
and object classes, such as the representation of ate as meaning a thing moving along
a path from one place to another (which happens when ice-cream moves into a cat’s
stomach). Laboratories 3, 4, and 5 look at phrase structure and thematic structure from
statistical and modern linguistic points of view.

6. Meaning structure or Semantic structure covers both thematic structure and lexical-
conceptual structure but also much more. It of course depends on what one takes
“meaning” to mean. One popular view associates the meaning of a sentence with pre-
cisely those conditions that make the sentence true—its truth conditions (Tarski, Frege).
On this view, language is a relation between meaning and the world, and so the meaning
of the cats ate the ice-cream is identified with conditions C such that the cats ate the
ice-cream is true if and only if conditions C hold. Clearly if we can represent C, we
can draw inferences about the cats, paraphrase it, and so forth—all the things that one
would normally associate with meaning.

We use syntactic structure as a scaffolding on which to compositionally determine truth
conditions. (Note that this is similar to what is done in programming languages using
the model of syntax-directed translation.) Laboratory 6 explores this topic.

Let’s sketch how it works. To connect language to the world, we use the standard notion
of an interpretation that systematically associates objects in the natural language to
objects in a model world. We use set theory to build a model M in which particular
sentences are true. So for example, we have words and syntactic phrases in our language,
built according to specific rules. Corresponding to these, in the Model we have set-
theoretic objects, and semantic rules for combining set-theoretic objects. (This is also

4 6.863J/9.611J Handout 1, Spring, 2003

the same idea in denotational semantics for programming languages.) The set-oriented
view is often very useful for natural language database query situations.

Here is a simple example. Let A be a set of individuals, entities in a model world M .
Suppose there are just common nouns, like cats, dogs; determiners like the, a, and single
thematic role verbs (intransitive predi-cats) like sits and eats. Now, word categories in
our language can correspond to set-theoretic objects built out of A. E.g., cat is associated
with the subset of A that contains cats; eats is associated with the subset that contains
eaters. Nouns and Verbs are just subsets of A in the model; Determiners (the, a, etc.)
are binary relations on subsets of A, that is, determiners are relations between properties
(Frege).

Now we let [[a]]be the denotation or “the interpretation of” a. Note that this objects are
just sets. We define the interpretation of the to be [[the]]= the binary relation the(x, y),
where ∀x, y, the(x, y) is true iff x ⊆ y ∧ |x| = 1. The denotation of nouns is just the
sets that correspond to them, e.g., [[cats]]={x: x is a cat in M} Similarly for verbs. Now,
to map between syntax and semantics, we need to have a (rule-for-rule) correspondence
between the syntactic and semantic structures, with interpretations of syntactic objects
on one side, and corresponding set relations on the other:

(1) (i) [[[X α]]]= [[α]]
(ii) [[[VP V]]]= [[V]](Denotation of single word or verb leaf is just that set of indi-

viduals.)
(iii) [[[NP Det N]]]= {Y:[[Det]]([[N]], Y)} (NPs are families of sets that stand in the

Determiner relation to the set associated with the main noun.)
(iv) [[[ntype:S NP VP]]]is true if [[VP]]∈ [[NP]], o.w. false. (S is true in model M iff

set associated with VP falls into family of sets associated with subject NP.)

Now we can evaluate the truth conditions of a sentence like the cat sleeps by first eval-
uating the denotation rules at the leaves of the corresponding syntactic tree, and then
combining the resulting sets as per the semantic combination rules until we get a truth
condition for the whole sentence (with respect to M):

(2) (i) The interpretation of the, cat , and sleeps are simple:
(ii) [[the]]= the;
(iii) [[[N cat]]]= [[cat]]={x: x is a cat in M};
(iv) [[[VP sleeps]]]= {x: x is a sleeper in M}

(3) Now we combine the Det and N, to get a family of sets, Y : [[[NP the cat]]]=
{Y :the([[cat]], Y)}= {Y : {x:x is a cat}⊆ Y ∧ |{x:x is a cat}|=1} (the family
of cats with at least 1 cat)

(4) The truth conditions for the whole sentence: if VP denotation, the set of sleepers,
is a subset of subject NP denotation (i.e., their intersection is nonempty), i.e., the
sentence is true iff exactly one cat that is also a sleeper, the intuitive result. (What
about if cats?)

Notes 1: Introduction to Computational Linguistics 5

We will look at a more complex example later to see how the constraint on syntax, logical
form, and semantics (model interpretation) can interact online.

Often meaning structure includes a level of logical form that explicitly represents the
properties needed to properly evaluate such logical statements. Such forms generally
include variables, hence the notion of variable binding—what set of things the variable
can correspond to—as well as the scope of a variable, that part of the logical form to
which a variable can be linked. (In our example, y may be linked to the second occurrence
of the but not the first, thus y’s scope mirrors the structure of the logical form.)

Pragmatic and discourse structure describe how language is used across sentences. People
organize what they say into multiple utterances. At least on occasion people talk to
each other, taking turns in conversation. Ritual interchanges like please and thank you
are common. This activity too is part of language, and we can ask what the atoms
of this descriptive level are, how they are put together, and how they relate to other
structural descriptions. Pragmatic structure may include a different concept of meaning
that does not affect the truth conditions of a sentence—what is dubbed its implicatures.
For example the sentence, The cats ate the ice-cream, but Elissa still likes them. might
not hold in the world (it might not be true that if the cats ate the ice-cream then I still
like them, no matter what), but Elissa still might mean what she says. The structural
descriptions required here often include a complete reasoning system about knowledge,
belief, causes, and intentions, what we know and what we think others think we know—
something that extends into our general abilities to reason. The line between language
and thinking blurs quickly indeed.

It is conventional to divide the study of language into two parts: syntax, the study of word
arrangements without regard for meaning; and semantics, the study of meaning. This division
has been the source of much controversy. From the structural description point of view it
is a needless border dispute. Sentences and even linguistic descriptions don’t come labeled
“syntactic” or “semantic.” All structural descriptions—sound structure, lexical-conceptual,
phrasal, and logical—are syntactic, in the sense that they allow some combinations of primitives
and not others. Further, there is no unitary field of semantics. There are only different
structural descriptions, each of which are ultimately related to meaning in different ways.
When we use the term syntax , it will always be clear from context just what kind of syntax is
meant—what structural description is being constructed.

To summarize, a particular structural description or level of representation for a sentence
has three components:

1. A proprietary, primitive vocabulary ;

2. A syntax , or constraints on how to glue atoms and strings of atoms into bigger pieces;

3. A (possibly empty) systematic relation to other structural descriptions for that sentence.

It is the business of linguistics to ask what these linguistic representations should look like.

6 6.863J/9.611J Handout 1, Spring, 2003

2 Multiple levels of representation and the parsing problem
If structural descriptions tell us what we know about a sentence, then how is that knowledge
used? Even though we have barely touched upon what knowledge of language is, one can
already define the central how question of computational linguistics, which will occupy us in
the rest of this course. This the parsing problem:

The parsing problem: Given a sentence (or set
of sentences) compute some or all of the structural
descriptions associated with that sentence (or set
of sentences).

Figure 1 illustrates the parsing problem for a sentence like the cats ate the ice-cream. The
sentence lies along one axis, like the spine of a spiral notebook, and the different descriptions
hang off it like the notebook’s leaves. Separately and collectively these structural descriptions
are called a parse of the sentence. Our goal is to develop explicit algorithms to mimic the effect
of the projection lines in the figure.

This approach raises a whole host of questions. Putting aside the crucial questions of what
the descriptions are and how they are put together, we have not said a word about how the
different structural descriptions are related; in figure 1 the different descriptions coexist in
parallel. Presumably, a sentence might not even have a particular structural description. This
would be true, for instance, if the sentence was malformed in some conventional way, such as the
cats—the cats they ate ice-cream. Then one could possibly still recover enough of the structural
descriptions to figure out what the sentence means. Then too, it could be that the structural
descriptions that say what we know about language are only indirectly related to the structural
descriptions that people actually use or that we design computers to use. Nor have we said how
these representations are computed. Are they to be built up one at a time? In some particular
order? How are they to be combined? Do they act like joint constraints, so that we can
solve the solution(s) to structural descriptions like a set of simultaneous equations? Because
we’ve used the word compute we have implied that the procedure used to recover structural
descriptions is effective, or computable. Is this even possible? Can it be done efficiently?

3 Computation and Parsing
It is important to note that in this book parsing means recovering any kind of structural
description, not just the familiar grammar-school notions like subject and predicate. It is even
a broader picture than what’s usually found even in computer science, where parsing means
simply chopping up a sentence into constituents like the cats and ate the ice-cream.

Plainly parsing depends on what linguistic representations are adopted. Different theories
can emphasize completely different structural descriptions or even exclude descriptions that
other theories take as essential. For example, some approaches omit the influence of word
order and word groups on meaning, instead relying on the cues provided by individual words to
recover descriptions of who did what to whom. An important goal of computational linguistics
is to find the right descriptions that aid language processing.

Parsing is possible because the levels of representation are systematically connected. The-
matic constraints tell us about syntactic phrases: if we run into sleep, we shouldn’t expect a

The cats ate the ice-cream

Agent: the cats
Affected object: the ice-cream

Thematic structure

∃ x

Logical structure

Phrase structure

noun phrase

sentence phrase

verb phrase

the cats

ate ice-cream

the cat s ate theicecream

x ∈ {cats} &
(ate x, y)

Morphophonemic structure

noun phraseverb

Phonetic
structure

θ kats at is krem[]

∃ y, y ∈{ice-cream}

εε θ

the

Morphological or

Notes 1: Introduction to Computational Linguistics 7

Figure 1: The “spiral notebook” picture of language description and parsing. The sentence the
cats ate the ice-cream forms the backbone of the notebook. Different structural descriptions
are projected from the spine, including the sound structure of the sentence, its word structure,
a hierarchical tree structure of its phrases like Subject and Predicate, and so forth. Collectively
these representations form a parse of the sentence. If two or more structural descriptions of
the same type are projected from the same sentence, we say that the sentence is ambiguous.
See the next section for more discussion about the topology of this picture.

8 6.863J/9.611J Handout 1, Spring, 2003

thematic role next. Similarly, syntactic configurations help fix interpretation, as we have seen.
Important: the levels of representation view is agnostic about the temporal order of compu-
tation. It should be obvious that, given a sentence, we need not wait until all the syntactic
phrases are built before we start interpreting them. We can use any piece of information at
any time—semantic information or verb subcategories can constraint syntactic analysis, and
vice-versa. In fact, it is crucial to do this to gain computational efficiency.

Of course, it should come as no surprise that in situations where the usual cues drop out
there must be other constraints that take up the slack, else communication would falter. So
we find that newspaper editors cramped for headline space drop some of the usual telltale
structure as well, producing sequences like Executive raises double workers’ whose meaning
must be pieced together some other way. After all, the whole point of a headline is to jam a
few keywords into limited space, so it should not be surprising that in impoverished information
contexts like these we draw on alternative constraints and representations. Some leaves of the
spiral notebook will be obscured or missing. By design, impoverished examples can illuminate
one page or another, but not the whole notebook.

What makes parsing a challenge is ambiguity .
Definition 1: A sentence S is ambiguous if there exists more than one structural description
of a given type associated with S.

In terms of our spiral-notebook figure, this just means that the mapping from a typical
sentence back to any one structural description is in general one-to-many.

Ambiguity is pervasive in natural language. It can occur at every level of structural de-
scription. For example, the sentence every cat ate the ice-cream on a table has many kinds of
ambiguities.

At the level of sounds, ate could project either as ate or eight . At the level of words cream
can be either a noun or a verb (on one calculation, about 40% of words are ambiguous in this
kind of way in running text). At the level of syntactic phrases, on the table could be either the
location of the ice-cream or the location of the cats. At the level of meaning structure, there
is word sense ambiguity (cats could be either animals or people). At the level of thematic
structure, the same verb can have more than one set of thematic roles: e.g., walk can be
intransitive or not, as in John walked to the store, John walked Bill to the store. Further, a
table could have its scope outside the word every , meaning that there was one table on which
every cat ate, or, things could be the other way around, so that there would be more tables
for more cats— for every cat there was some (perhaps different) table on which that cat ate.

Since the projection backwards from the sentence we are given to its structural descriptions
can in general be one to many, this makes it hard to unravel what the right description is.
Parsing therefore involves search. A key goal of computational linguistics is to reduce or
eliminate search, by reducing ambiguity, avoiding the explicit representation of all possible
ambiguities (perhaps by delaying their computation), or, a related strategy, avoiding repeated
computation by factoring multiple ambiguous representations into one.

For example, a typical “factoring” approach to the cats ate ice-cream on the table might
represent the ambiguity this way, as triples of phrases:

T R I E S #

 FSA

recognition

generation

underlying (lexical)
form

surface form

plural suffix
morpheme

word boundary
marker

affix boundary
marker

root
(stem)

T R Y + S #

Notes 1: Introduction to Computational Linguistics 9

(5) (S 0 6) (NP 0 2)
(VP 2 6) (NP 3 6)
(NP 3 4) (PP 4 6)
(NP 5 6)

Note how the PP and the NP the table get built just once, even though they participate in
two parses. This is the key to efficient natural language analysis.

4 Parsing and Morphology
Morphological parsing demonstrates all the problems of full-blown parsing. Plus, it’s a key
part of all NL systems.

What is the problem? Given a surface form, e.g., tries, we want to look it up as try+s
(Why?)

The key questions to ask about morphological analysis are the usual ones: first, what is
the knowledge we must encode; second, how should we represent that knowledge; third, how
can we compute with that representation.

What knowledge? Plainly any system needs to know: (1) what roots (stems) and affixes
(prefixes/suffixes) there are; (2) what affixes precede/follow what stems; (3) how spelling can
change appearances when we glue stems and affixes together. (Thus this assumes the simplest
kind of linear, concatenative syntax; is this enough for all languages? What about foot/feet?

What representation? The most obvious and simplest is “what you see is what you get”:
a linear string for the surface form like tries, and a linear string for the underlying or lexical
form, plus a mapping between them. That’s the kimmo system.

• FSA1: Encodes spelling changes as a finite-state transducer

N

C2C1

ROOT

f/f

o/o

x/x

0/e

0/e

+/e

#

s/s

leftover input
fox+s
plural

+/e

automata
blocks

= FTN2 (spelling)

= FTN1
(word classes)

10 6.863J/9.611J Handout 1, Spring, 2003

• FSA2: Encodes root+suffix combinations as series of root, suffix (lexicon) classes. Ex-
ample classes for English: noun, verb, noun-singular, noun-plural, progressive, agentive,
comparative. Each state of this automaton encodes a different root+suffix class, like
plural nouns vs. singular nouns, which could allow different endings.

Notation: The kimmo system uses the following terminology.

morpheme= a minimal unit of meaning

affix= morpheme added to root or stem of a word, e.g., s to form plural. Suffix= added
at end; prefix= at beginning; infix=inside word (e.g., sit–sat)

surface form = how a word is normally spelled

underlying form, lexical form = spelling form used to look up word in dictionary

lexicon= when referring to the kimmo system, a state in FSA2 corresponding to a root
or suffix class.

alternation class= a label made up of one or more lexicon classes, used to summarize
what lexicon (FSA2) states might follow an actual dictionary word.

a continuation class= a label for FSA2 not covered as an alternation class

+ = root boundary marker

ε= null (empty) character

= end of input marker

1

y/i
t/t, r/r

+/any

2

3

To add:
i/i, a/a, y/y (in state 1)

V/V (almost)

C/C

y/y

5

4

6
?/?

C/C

?/?

trying, try+s

Notes 1: Introduction to Computational Linguistics 11

5 A spelling change example

6 Handling multiple spelling changes
Apply all changes in parallel (or used merged fsa). (FTN intersection) Merger can sometimes
require the cross-product of automaton states, but usually not. (Why is it the cross-product?)

Spelling rules for English. 5 rules plus 1 identity rule (required for implementation). A
“full” rule set might include 50+ rules, but some systems have used up to 350 rules.

Rule Example # states
1. Epenthesis (EP) fox–foxes; cat–cats 6

2. Gemination (G) cool–cooler; big–bigger 16

3. Y-spelling (Y) toy–toys; try–tries 6

4. Elision (EL) large–larger 15

5. I-spelling (I) lie–lying 7

In English a regular verb takes the following endings:

12 6.863J/9.611J Handout 1, Spring, 2003

Category Ending Example Abbreviation
First person, I ∅ I like
Second person, You ∅ You like
Third person, it +s It likes P3
First person, plural We ∅ We like
Past +ed liked PS
Past Participle +ed were liked PR
Progressive +ing liking PP
Agentive +er liker AG
Able +able likable AB

The abbreviations P3, PS, PR, PP, AG, and AB are dictionary divisions that we need
because, for example, a past tense verb liked takes a different ending from a progressive liking .
Besides these divisions, we need others because certain verbs take some of these endings but
not others. First of all, there are two main classes of irregular verbs: those that can just take
the regular progressive, agentive, and able endings, but is otherwise irregular (an example is
do, since we have doing and doable but not doed); and those verbs that take the third person
singular, progressive, and agentive and able endings (an example is bite, since we have bites
and biting but not bited).

Call the first irregular verb class IV1, and the second IV2. Further, there are verbs that
appear just in third person, like is (class IP3); verbs that are irregular past forms, like kept
(class IPS); and irregular past participles, like bitten (Class IPP). Adding these up, we have 6
verb dictionary divisions: regular verbs, V; IV1; IV2; IP3, IPS, and IPP. In addition, the class
V leads to 7 possible choices, because a verb could have one of 7 possible endings: P3, PS,
PP, PR, I(irregular), AG, and AB. Each of these acts like the state in a finite-state device, to
prepare the lookup procedure for what might come next.

7 An example
In the trace that follows, we’ll keep track of the transduction letter-by-letter. Indentation
will indicate progress through the string, so when we backup the trace will reflect this by
unindenting that line. The number in the left-hand column will mirror this indentation. The
spelling change automata are traced in parallel, via a 6-element vector. Each number in the
vector is the current state of that automaton. Below each part of the 6-element vector we’ll
indicate the abbreviation of the relevant automaton, EP, G, Y, EL, or I. The first element
of the vector is always the identity (default) automaton. Each step will show the pair of
characters being processed in (underlying, surface) form. The symbol 0 is used to denote the
empty string. We’ll now step through the recognition of races’ , one letter at a time.

Notes 1: Introduction to Computational Linguistics 13

Recognizing surface form "races’".
0 (r.r) --> (1 1 1 2 1 1)

EP G Y EL I

1 (a.a) --> (1 1 4 1 2 1)
EP G Y EL I

2 (c.c) --> (1 2 16 2 11 1)

3 (e.0) --> (1 1 16 1 12 1)
EP G Y EL I

4 Entry |race| ends --> new lexicon N, config (1 1 16 1 12 1)
EP G Y EL I

