
Bush
3

0 electionthe

lose

4 5

2

1

Bush

could

will

lost

big

6

Massachusetts Institute of Technology
6.863J/9.611J Natural Language Processing, Spring, 2003

Department of Electrical Engineering and Computer Science
Department of Brain and Cognitive Sciences

Handout 2: Notes #2: FSAs, Morphological Processing, and kimmo

Agenda:

1. Finite transition networks, machines, transducers

2. Morphological processing: basic principles

3. The Kimmo system: an outline of how it works

4. A spelling change automaton

5. Racing through an example

6. The complexity of Kimmo; what is to be done?

1 Basic definitions—finite transition networks
(Shannon and Weaver, The Mathematical Theory of Communication, 1949)

The simplest case: base all grammatical relations on left-to-right (binary) precedence rela-
tion ρ. This models pure concatenation only; therefore, assumes the only structure is left-to-
right order.

Note properties of this relation: x1ρx2 if x1 precedes x2. Transitive, antisymmetric (if
x1ρx2 then ¬x2ρx1). Since precedence is a binary relation, we can obviously represent it as a
2-D matrix, or a graph.

Three computational models capture exactly this relation:

• finite-state automata

• finite transition networks (FTNs)

• right/left linear grammars

Definition 1: A finite graph network G is a finite set of triples (p, w, q) where w ∈ Σ = a
(finite) set of labels, or alphabet (vocabulary); p, q ∈ Q= a (finite) set of nodes or states.



2 6.863J/9.611J Handout 2, Spring, 2003

Definition 2: A path p through a finite graph network G is an ordered set of elements of G
in the form (q0, w1, q1), (q1, w2, q2), . . . , (qk−1, wk, qk). The sentence or string associated with
a path p is the sequence of labels w1w2 · · ·wk.
Notation: ε (sometimes λ) denotes the empty string. Given a finite alphabet Σ, w∗ ∈ Σ∗

denotes the set of all strings over Σ. Strings are formed via concatenation, and obey the
following properties, a, b ∈ Σ∗:

(Associativity) a · (b · c) = (a · b) · c

(Left and right identity) a · ε = ε · a = a

(Thus algebraically the set of strings is a monoid .)
Definition 3: A finite transition network (FTN) G is a graph network plus:

1. A distinguished start state∈ Q, marked with an entering arrow that comes from no
preceding state;

2. A set of final states F ⊆ Q, marked with a double circle.

Definition 4: A sentence (string) w = w1w2 · · ·wk is accepted (recognized , generated) by an
FTN G iff there exists a path in G with initial element in the form (q0, w1, q1) and final element
in the form (qk−1, wk, qk), s.t. q0 is the start state, and qk ∈ F .
Definition 5: The language L accepted (recognized, generated) by FTN G, denoted L(G) or
simply L is defined as {w|w accepted by G}. G is a generative grammar for the language L.
L is G’s weak generative capacity .
Definition 6: A parse of w with respect to FTN G is a (representation of) the path(s) such
that w ∈ L(G). (What happens when w 	∈ L(G)?) The set of paths (parses) generated by G
is its strong generative capacity .
Definition 7: A sentence w is ambiguous if there exists more than one distinct path such that
w ∈ L(G). An FTN G is ambiguous if at least one of its sentences is ambiguous.

language can have more than one grammar. Ambiguity and parsing are relative to par-
ticular FTNs (grammars). An ambiguous sentence has two or more structural descriptions
in terms of paths. The intent is that each path has a different meaning (under some sense of
“meaning”). Note that this is just our compositionality (Fregean) assumption again. Example:
fruit flies like a banana. Note that only lexical (word category) ambiguity is possible for FTNs.
Note. Parsing is harder than recognition. Sometimes, it is much harder.
Definition 8: An FTN G is nondeterministic if there exists some state q such that there is
more than one edge labeled wi leaving q, and deterministic otherwise.
Note. Ambiguity→nondeterminism; but nondeterminism	→ambiguity.
Definition 9: A finite-state automaton (fsa) is a 5-tuple (Q,Σ, δ, q0, F ), where Q is a finite
nonempty set of states, Σ a finite, nonempty vocabulary, or alphabet, q0 a (unique) start state,
F ⊆ Q the set of final states, and δ, the transition mapping, a mapping that goes from (state,
alphabet symbol) pairs to subsets of new states that is, from Q× Σ �→ 2Q.



Notes #2: FSAs, Morphological Processing, and kimmo 3

finite-state automaton is simply a mathematical version of an FTN, under an obvious 1-1
correspondence between graph nodes and states, labels and alphabet symbols, and graph edges
and the transition mapping. An fsa is deterministic if δ is a function, and nondeterministic if
it is a general relation, mapping to any subset of states.

trong generative capacity and FTNs. Even a cursory glance shows that FTNs are insuffi-
cient for describing natural languages, because of insufficient strong generative capacity. Con-
sider ambiguity again: a dark blue sky . FTNs must obey associativity, under concatenation.
What does this say about phrases and this example?

eak generative capacity and FTNs. FTNs are even insufficient, it appears, to describe
the possible words in some languages, like Bambarra (Mali), where words can be in the form
Noun+o+Noun, as in wulu o wulu (‘whichever dog’). Because: can form patterns of the form
ancbn. Example: wulu+nyini+la=‘dog searcher’. Then:

wulunyinina+nyini+la = ‘one who searches for dog searchers’
wulunyininanyinila+nyini+la = ‘one who searches for one who searches for dog searchers’,

. . .
Now, the coup de grace: combine this with the Noun o Noun pattern:
wulunyininanyinila+o+wulunyininanyinila = ‘whichever one who searches for dog searchers’
wulunyininanyinilanyinila o wulunyininanyinilanyinila= etc!
Is this analysis correct? Can one really extend this forever?

2 Morphological processing
Morphological (word) parsing demonstrates all the problems of full-blown parsing. Plus, it’s
a key part of all NLP systems.

We can define morphological processing as retrieving the information carried by individual
words, as they contribute to the meaning and the structure of sentences.

There are several different kinds of morphological information:

• Inflectional morphology refers to the way in which a surface word form relates to the
pure syntax of a sentence, e.g., adding an s to a verb to reflect “agreement” with the
verb and also a particular tense, as in English with he hits the ball vs. we hit the ball
(null marker in the second case). In particular, inflectional morphology does not change
a word’s syntactic category.

• Derivational morphology refers to the relation of one word to another; classically, it is
said to change a word’s syntactic category. For example: revolt–revolution (Verb to a
Noun); transmit—transmission. Note that the last case shows that derivationally related
forms may have noncompositional meanings (that is, meanings that are not the sum of
their parts): transmission can be the transmission of a car. (In this way they behave
much like idioms.) Inflectional forms are purely compositional. It’s common in other
languages to have diminuative forms, e.g., libro–librito in Spanish.

• Clitics like the n’t in don’t or as in l’article in French, are part of the phonology of a host
word, but don’t specify the properties of that word. They are of two sorts: (i) simple
clitics that have their own syntactic category (like n’t) but need to be glued onto another
word to get pronounced; and (ii) others that are part of the syntax, like the ’s (the



4 6.863J/9.611J Handout 2, Spring, 2003

genitive or possessive marker) that is glued onto a phrase, as in the guy from Boston’s
name. (Note where the ’s occurs and what it modifies; we don’t have the guy’s from
Boston name.)

Why not just use a dictionary to look up this information? There are two general reasons
why you shouldn’t or can’t:

1. Some languages associate a single meaning with an astronomically large number of dis-
tinct surface word forms. Example: Finnish, where the verb categories multiply out to
tens of thousands of potential surface forms for every such verb. (Hankamer estimate:
600 billion forms for Turkish)

2. Speakers don’t represent what they know about words with a list. They can recognize new
inflected forms and nonsense words; this argues for some kind of rule-based regularity, not
a memorized list. (Though as we will see access may be based in part on memorization.)

Conclusion (Anderson): we look up the pieces of the word, as in,

mis + interpret + ation + s
‘mis’ ‘interpret’ noun form plural

But, we might not find all the pieces in the dictionary,

karahka + i + ta
‘stick’ plural partitive

Here obviously several spelling-change rules must be undone. Starting from the decomposed
form, there is a rule that changes the a to an o before an i ; a second rule that eliminate the
t between short vowels like i and a; and finally a rule that turns the i into a gliding sound j
between the two vowels o and a.

This leads to the following general plan for morphological analysis:

• Starting from the surface form, undo the phonology by inverting the rules. Retrieve a
list of the possible representations that could underlie this form.

• Paste these together and return the composition of their individual meanings.

Let’s review this approach and its problems, summarizing some of the material from Anderson’s
(1989) paper.
Step (1) is possible only if the phonological rules are truly invertible. C. Douglas Johnson
(1972) showed that the spelling change rules could be described as finite-state automata, and
be inverted, if one assumed that they were simultaneous (applied as a group, like equations).

What is the problem with invertibility? Consider this example. Here are spelling changes
that add s to English words. These rules convert try to tries, fox to foxes, book to books, and
so forth. The CAPITAL letters are the underlying forms in the dictionary, while the small
roman letters are the surface forms.



Notes #2: FSAs, Morphological Processing, and kimmo 5

1. S → es/Sibilant
2. S → es/Y
3. S → s
4. Y → y/ i
5. Y → i/ Vowel
6. Y → y
7. T → t
8. R → r

Sibilant={ch, s, sh, x, z}
Vowel={a, e, i, o, u}

For example, the dictionary form TRYS is just try plus the suffix s. The mapping rules change
it to the spelling form that we all know as tries.

How do the mapping rules work? The interpretation of a rule such as Y → y is that the
dictionary letter Y may be rewritten as the output form y. That is, no matter where we see
a Y we can rewrite it with the new symbol y . Since we carry out this replacement anywhere,
regardless of the surrounding letters, this is a context-free rewrite rule. Rules 1, 2, 4, and 5 are
different. They also specify a rewriting directive, but the notation after the slash means that
the rewriting can only be carried out in the context specified after the slash, where the underbar
stands for the symbol on the lefthand side of the rule that is being rewritten. Therefore, these
are context-sensitive rules. For example, rule 2 says that S can be rewritten as as if that S
has a Y to its immediate left. Remember that the matching here is strict: it must be a capital
Y that is to the left, not y. The symbols sibilant and vowel stand for classes of letters, to save
writing.

To actually apply the set of rules to a given word, we try to match them to the supplied
dictionary word in the order given above, top to bottom.

Let’s try an example to see how this works. Start with TRYS. We now run through the list
top to bottom. Rule 1 cannot apply because the S is not followed by a sibilant (ch, s, etc.).
Rule 2 can trigger, because S is preceded by Y. So we replace TRYS with TRYes. Now rule 5
can fire: the Y is before a Vowel, namely, e. So we replace Y with i, yielding TRies. Finally,
rules 7 and 8 replace the T and the R to give tries.

Step Form Rule applied

0 TRYS 2 S → es/Y
1 TRYes 5 Y → i/ Vowel
2 TRies 7 T → t
3 tRies 8 R → r
4 tries None

In this particular example, the rules are arranged so that we don’t have to rescan the entire
list of rules each time. Why are they ordered in this way?

The mapping procedure gives us the spelling if we know the dictionary entry, but our



6 6.863J/9.611J Handout 2, Spring, 2003

lookup routines need to go in the other direction. Given a spelled-out word, we need to find
the dictionary form. To reverse the process, one simple idea is to reverse the arrows:

6′ y → Y
5′ i → Y/ Vowel

What about the ordering of the reversed rules? How should we start with tries and go back-
wards to get TRYS?

While this one example works fine, it is hand-tailored. In fact, the ordered reversed-rule
system is peculiar because it won’t be able to recover some potential dictionary forms. For
example, suppose there was an (underlying) dictionary entry TRIES. The forward-working
spelling change rules would produce tries (assuming two new rules mapping S to s and E to
e). Therefore, we would now have an ambiguous spelling on the surface. Just as in parsing,
our goal is to map from the spelling form to the dictionary entry, but our rule system would
recover only one possibility. This problem pops up for many words where there are two or
more underlying dictionary forms: ranged could be either RANG+ED or RANGE+ED. Thus
the recovery of dictionary entries seems to be nondeterministic.

Besides nondeterminism, a second problem with the reversal method is that the rules must
be carefully ordered to work. While rule interactions seem easy to work out for small sets of
rules, in a full-scale system of spelling changes it may not be so easy to see what to do.

To fix this problems, the kimmo system assumes that all rules are simultaneously applicable.
It is fairly easy to show (as C.D. Johnson did in 1972) that if this assumption is made then
the resulting system can generate only finite-state languages. Since it is the relation between a
surface and underlying form that is finite-state, we might call it a finite-state relation. However,
if we allow ordered rewrite rules of any sort, then it is likewise easy to show that we can simulate
any Turing machine computation i.e., any computable procedure at all. Since an arbitrary
computable procedure can’t be inverted—it might not even terminate—the nondeterminism in
reversing things could be deadly. Hence kimmo. It was also argued by the original authors of
kimmo that such as system would be inherently fast because the finite-state character would
guarantee linear time parsability. We shall see that those claims are formally incorrect, though
they seem to hold on the average. We will return to the complexity issue and these other
problems later.

There are many other problems with the kimmo view. There is a second problem with
what it means to look up the pieces of a form in the dictionary, since for a complex word the
pieces might not correspond to any distinct substring: for example, the way that sit and past
are combined to form sat (what is called ablaut, umlaut, and other types of word mutation).



T    R    I    E    S    #

  FSA   

recognition

generation

underlying (lexical) 
form

surface form

plural suffix
morpheme

word boundary
marker

affix boundary
marker

root
(stem)

T    R    Y    +    S   #

Notes #2: FSAs, Morphological Processing, and kimmo 7

3 The kimmo system
kimmo consists of two sets of fsa’s, run together:

• FSA1: Encodes spelling changes as a finite-state transducer

• FSA2: Encodes root+suffix combinations as series of root, suffix (lexicon) classes. Ex-
ample classes for English: noun, verb, noun-singular, noun-plural, progressive, agentive,
comparative. Each state of this automaton encodes a different root+suffix class, like
plural nouns (C2 below) vs. singular nouns (C1), which could allow different endings.



N

C2C1

ROOT

f/f

o/o

x/x

0/e

0/e

+/e

#

s/s

leftover input
fox+s 
plural

+/e

automata
blocks

= FTN2 (spelling)

= FTN1
(word classes)

8 6.863J/9.611J Handout 2, Spring, 2003

Notation: The kimmo system uses the following terminology.

morpheme= a minimal unit of meaning

affix= morpheme added to root or stem of a word, e.g., s to form plural. Suffix= added
at end; prefix= at beginning; infix=inside word (e.g., sit–sat)

surface form = how a word is normally spelled

underlying form, lexical form = spelling form used to look up word in dictionary

lexicon= when referring to the kimmo system, a state in FSA2 corresponding to a root
or suffix class.

alternation class= a label made up of one or more lexicon classes, used to summarize
what lexicon (FSA2) states might follow an actual dictionary word.

a continuation class= a label for FSA2 not covered as an alternation class

+ = root boundary marker

ε= null (empty) character

# = end of input marker



1

y/i
t/t, r/r

+/any

2

3

To add:
i/i, a/a,  y/y (in state 1)

V/V (almost)

C/C

y/y

5

4

6
?/?

C/C

?/?

trying, try+s

Notes #2: FSAs, Morphological Processing, and kimmo 9

4 A spelling change example

Handling multiple spelling changes
Apply all changes in parallel (or used merged fsa), so as to enforce the simultaneous applicabil-
ity principle discovered by Johnson (1972). (FTN intersection) Merger can sometimes require
the cross-product of automaton states, but usually not. (Why is it the cross-product?)

Spelling rules for English. 5 rules plus 1 identity rule (required for implementation). A
“full” rule set might include 50+ rules, but some systems have used up to 350 rules.

Rule Example # states
1. [Insert an e if sibilant] Epenthesis (EP) fox–foxes; cat–cats 6

2. [doubling] Gemination (G) cool–cooler; big–bigger 16

3. Y-spelling (Y) toy–toys; try–tries 6

4. [drop e] Elision (EL) large–larger 15

5. I-spelling (I) lie–lying 7

In English a regular verb takes the following endings:



10 6.863J/9.611J Handout 2, Spring, 2003

Category Ending Example Abbreviation
First person, I ∅ I like
Second person, You ∅ You like
Third person, it +s It likes P3
First person, plural We ∅ We like
Past +ed liked PS
Past Participle +ed were liked PR
Progressive +ing liking PP
Agentive +er liker AG
Able +able likable AB

The abbreviations P3, PS, PR, PP, AG, and AB are dictionary divisions that we need
because, for example, a past tense verb liked takes a different ending from a progressive liking .
Besides these divisions, we need others because certain verbs take some of these endings but
not others. First of all, there are two main classes of irregular verbs: those that can just take
the regular progressive, agentive, and able endings, but is otherwise irregular (an example is
do, since we have doing and doable but not doed); and those verbs that take the third person
singular, progressive, and agentive and able endings (an example is bite, since we have bites
and biting but not bited).

Call the first irregular verb class IV1, and the second IV2. Further, there are verbs that
appear just in third person, like is (class IP3); verbs that are irregular past forms, like kept
(class IPS); and irregular past participles, like bitten (Class IPP). Adding these up, we have 6
verb dictionary divisions: regular verbs, V; IV1; IV2; IP3, IPS, and IPP. In addition, the class
V leads to 7 possible choices, because a verb could have one of 7 possible endings: P3, PS,
PP, PR, I(irregular), AG, and AB. Each of these acts like the state in a finite-state device, to
prepare the lookup procedure for what might come next.

5 An example
In the trace that follows, we’ll keep track of the transduction letter-by-letter. Indentation
will indicate progress through the string, so when we backup the trace will reflect this by
unindenting that line. The number in the left-hand column will mirror this indentation. The
spelling change automata are traced in parallel, via a 6-element vector. Each number in the
vector is the current state of that automaton. Below each part of the 6-element vector we’ll
indicate the abbreviation of the relevant automaton, EP, G, Y, EL, or I. The first element
of the vector is always the identity (default) automaton. Each step will show the pair of
characters being processed in (underlying, surface) form. The symbol 0 is used to denote the
empty string. We’ll now step through the recognition of races’ , one letter at a time.



Notes #2: FSAs, Morphological Processing, and kimmo 11

Recognizing surface form "races’".
0 (r.r) --> (1 1 1 2 1 1)

EP G Y EL I

1 (a.a) --> (1 1 4 1 2 1)
EP G Y EL I

2 (c.c) --> (1 2 16 2 11 1)

3 (e.0) --> (1 1 16 1 12 1)
EP G Y EL I

4 Entry |race| ends --> new lexicon N, config (1 1 16 1 12 1)
EP G Y EL I

In the first 4 steps the recognizer processes the root race up to its end in the root lexicon,
and starts searching the sublexicon N. This is entirely fortuitous. It is just because we have
listed race as a noun first. The N sublexicon will now be searched, with the automata starting
off in the states indicated. All may seem to be fine, but there’s one problem: The machine
assumed that an underlying e was paired with a surface empty character 0. That is, it is
assuming that it is processing a form like racing . The elision transducer winds up in state 12;
we’ll need to keep track of this later on. This is a bad guess.

Next the N sublexicon points to two others: the first, C1, calls for the end of the word;
the second, C2, calls for +s (the plural ending). Both of these fail, since the next surface
character is an e. In the first case, there is either leftover input or the guess that there is an
’s ending fails; in the second sublexicon, the epenthesis automaton blocks, because in English
the combination + underlying and e on the surface is allowed only after strings like fox , not
rac. The machine is restarted in the state configuration that we had following the recognition
of race as a root.

5 Entry /0 ends --> new lexicon C1, config (1 1 16 1 12 1)
EP G Y EL I

6 Entry /0 is word-final --> path rejected (leftover input).
5 (+.0) --> (1 1 16 1 13 1)

EP G Y EL I
6 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.
4 Entry |race| ends --> new lexicon P3, config (1 1 16 1 12 1)

EP G Y EL I

We now start searching the verb sublexicons. P3 tries to find a verb with underlying form
+s, but this fails (in two ways). Again note the nondeterminism introduced by an empty
character. The machine backtracks to consider the PS (past tense) sublexicon. This choice
plows a little further into the string, since this sublexicon looks for underlying +ed forms, and
hence the underlying e matches with the surface e of races’ , but past that things don’t fare



12 6.863J/9.611J Handout 2, Spring, 2003

so well. Without going into the details, the searches through sublexicons PP, PR, I, AG, and
AB—all without success, since none of these allow the ending es’ . Finally, having exhausted
all these choices, we back up to the really wrong guess: the one that stuck an empty character
after c but before e.

5 (+.0) --> (1 1 16 1 13 1)
EP G Y EL I

6 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.
4 Entry |race| ends --> new lexicon PS, (1 1 16 1 12 1)

EP G Y EL I
5 (+.0) --> (1 1 16 1 13 1)
6 (e.0) --> automaton Elision blocks from state 13.
6 (e.e) --> (1 1 16 1 1 1)
7 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.
4 Entry |race| ends --> new lexicon PP, (1 1 16 1 12 1)
5 (+.0) --> (1 1 16 1 13 1)
6 (e.0) --> automaton Elision blocks from state 13.
6 (e.e) --> (1 1 16 1 1 1)
7 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.
4 Entry |race| ends --> new lexicon PR, (1 1 16 1 12 1)
5 (+.0) --> (1 1 16 1 13 1)
6 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.
4 Entry |race| ends --> new lexicon I, (1 1 16 1 12 1)
5 Entry /0 is word-final -->rejected (leftover input)
4 Entry |race| ends --> new lexicon AG, (1 1 16 1 12 1)
5 (+.0) --> (1 1 16 1 13 1)
6 (e.0) --> automaton Elision blocks from state 13.
6 (e.e) --> (1 1 16 1 1 1)
7 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.
4 Entry |race| ends --> new lexicon AB, (1 1 16 1 12 1)
5 (+.0) --> (1 1 16 1 13 1)
6 Nothing to do.
5 (+.e) --> automaton Epenthesis blocks from state 1.

Now instead of inserting the empty character, we map e to an underlying e. This finishes
off race in the root lexicon, and we start searching the N sublexicon. Note that this time the
e-elision state is 14 rather than 12. We’re still not done yet. We first try searching sublexicon
C1, but this fails because C1 allows only no ending or ’s. We turn to C2 (plural Noun endings).
First we try a zero ending, but of course this is a deadend. Finally, we try the other possibility,
’s, and this succeeds—at last. The parser returns races’ as a genitive, plural, noun.



Notes #2: FSAs, Morphological Processing, and kimmo 13

3 (e.e) --> (1 1 16 1 14 1)
EP G Y EL I

4 Entry |race| ends --> new lexicon N, (1 1 16 1 14 1)
EP G Y EL I

5 Entry /0 ends --> new lexicon C1, config (1 1 16 1 14 1)
6 Entry /0 is word-final -->rejected (leftover input)
5 (+.0) --> (1 1 16 1 15 1)
6 (s.s) --> (1 4 16 2 1 1)
7 Entry +/s ends--> new lexicon C2, (1 4 16 2 1 1)
8 Entry /0 is word-final -->rejected(leftover input)
8 (’.’) --> (1 1 16 1 1 1)
9 End --> lexical form ("race+s’" (N PL GEN))

In fact, we’re not quite done. If we wanted to retrieve all possible entries, we would have
to go on, since the word might be ambiguous. In this case, all the other possibilities fail (we
search all the verb sublexicons as before, but now with the e-elision automaton starting from
state 14 rather than state 12).

6 The complexity of kimmo

Kimmo does backtracking for both recognition and generation. There are two sources of non-
determinism, because there are two finite-state transducers in kimmo: the spelling change
automaton and the dictionary automaton. In addition, the spelling change automaton can
posit null characters on the surface.
Example:

Generating from lexical form "fox+s"
Setq count: 5
Enqueue count: 1

1 f 1,1,1,2,1,1 11 + foxg XXX Gemination
2 fo 1,1,4,1,2,1 12 + foxf XXX Gemination
3 fox 1,3,16,2,1,1 13 + foxd XXX Gemination
4 foxt XXX Gemination 14 + foxb XXX Gemination
5 + foxs XXX Gemination 15 + fox0 XXX 1,6,16,1,1,1
6 + foxr XXX Gemination 16 fox0s XXX Epenthesis
7 + foxp XXX Gemination 17 (4) foxe 1,5,16,1,1,1
8 + foxn XXX Gemination 18 foxes 1,1,16,2,1,1
9 + foxm XXX Gemination 19 "foxes" ***result

10 + foxl XXX Gemination

("foxes")



14 6.863J/9.611J Handout 2, Spring, 2003

The formal computational complexity of kimmo

We can quickly reduce any instance of a known intractable problem, 3-satisfiability (3-SAT) to
an instance of kimmo recognition (or generation). Thus, if kimmo recognition or generation
were computationally tractable, so would be 3-SAT. But this is highly unlikely (under the
hypotheses below).

The worst case for recognition occurs when the surface form gives no information about
what its underlying form should be, just as the variables in a 3-SAT formula give no indication
as to whether they should be true or false. Unlimited global harmony forces the constraint
that variable value assignments are consistent, while the dictionary only admits “words” with
3 morphemes in a row with at least one having the feature t (for true).
Definition 10: P= the class of problems solvable in time nj for some integer j (polynomial
time), on a deterministic Turing machine, problem size parameter n.
NP= the class of problems solvable in time nj , for some integer j, on a nondeterministic
Turing machine, problem size parameter n.
We assume that P	=NP. Problems in NP are easy to verify (check their answers) in polyno-
mial time but difficult to discover solutions for in polynomial time (no known nonexponential
algorithm).
Definition 11: A problem T is NP-hard if it is at least as hard computationally as any problem
in NP, i.e., there exists a polynomial-time reduction from any problem in NP to T .
A problem T is NP-complete if it is in NP and is NP-hard.
Fact: 3-SAT is NP-complete.
Definition 12: The kimmo word recognition problem is: given an arbitrary kimmo dictionary
D, automata, word w, is w ∈ D?
Theorem 1: kimmo word recognition is NP-complete.
Proof. By reduction from 3-SAT.

Given input formula ϕ, construct the word form shown below, construct 1 automaton per
variable and use the fixed dictionary shown below.
Claim: Word w is in the dictionary iff ϕ is satisfiable. The construction takes polynomial
time.



1
2

3

x undecided
x true

ROOT

t

t

t

,

t

t

f

,

…

x false

rejectT/x, F/x

F/x, T/x T/x, F/x, =/=

F/x, T/x

T/x, F/x

F/x, T/x,  =/=

reject

#

.

#

.

(5 others)

DICTIONARY

word: xyz, uvw, xyw, stw.

,

Automaton (1 per variable)

Notes #2: FSAs, Morphological Processing, and kimmo 15

What are the restrictions that might be imposed to repair this problem?

1. Limit global harmony processes. In fact: languages of the world don’t use more than two
or three global harmony processes.

2. Assume unambiguous dictionary continuations so that parsing is unambiguous (i.e., sur-
face cues tell us directly what the underlying form should be). (This explains away the
complexity directly.)

3. Rely on average case.



16 6.863J/9.611J Handout 2, Spring, 2003

A good test language is Warlpiri, which exhibits significant harmony and reduplication effects,
but certainly fewer than two independent harmony processes. The results are as expected.
For example, here is the trace of the system recognizing the surface form pinyi (the hyphens
are inserted for readability only). Recall that the system consists of two sets of finite-state
automata, one that checks for each surface—underlying form pairing type, and other that
checks for possible co-occurrences of stems and roots. In the trace below, each backtracking
point is numbered in square brackets and refers to that state to which the system must return
and proceed from. In the example that follows, there are 9 backtracks.

Recognizing surface form "pi-nyi".
1.(0)(y.0) --> automaton NYJ Orthography blocks from state 1.
2.(0) + (p.p) --> (1 1 1 1 1 1 1).
3.(1)(i.i) --> (1 1 1 1 1 1 2).
4.(2) Nothing to do.
5.(1) [3](<u1>.i) --> (1 1 1 2 1 1 2).
6.(2)Entry |p<u1>| ends --> new lexicon ]V3STEM, config (1 1 1 2 1 1 2)
7.(3)(-.0) --> (1 3 1 2 1 1 2).
8.(4) Nothing to do.
9.(3) [7](-.-) --> (1 2 1 2 1 1 2).
10.(4)(n.n) --> (1 2 2 3 1 1 2).
11.(5)(y.0) --> automaton <u1> Assimilation blocks from state 3.
12.(5) + (y.y) --> (1 2 1 1 1 1 2).
13.(6)(i.i) --> (1 2 1 1 1 1 2).
14.(7)Entry |-nyi| ends --> new lexicon ]END, config (1 2 1 1 1 1 2)
15.(8)End --> result is ("p<u1>-nyi" (@DAMAGE V NPST)).
16.(7) [14]Entry |-nyi| ends --> new lexicon DIRENCLITIC, config

(1 2 1 1 1 1 2)17.(8)(-.0) --> automaton Hyphen Realization
blocks from state 2.

18.(7) [14] Entry |-nyi| ends --> new lexicon ]WORD, config (1 2 1 1 1 1 2)
19.(8)(#.0) --> automaton Hyphen Realization blocks from state 2.
20.(7) [14]Entry |-nyi| ends --> new lexicon SUBJ, config (1 2 1 1 1 1 2)
21.(8)(-.0) --> automaton Hyphen Realization blocks from state 2.
22.(7) [14]Entry |-nyi| ends --> new lexicon OBJ, config (1 2 1 1 1 1 2)
23.(8)(-.0) --> automaton Hyphen Realization blocks from state 2.
24.(7) [14]Entry |-nyi| ends --> new lexicon RLA, config (1 2 1 1 1 1 2)
25.(8)(-.0) --> automaton Hyphen Realization blocks from state 2.
26.(7) [14]Entry |-nyi| ends --> new lexicon ], config (1 2 1 1 1 1 2)
27.(8) (-0.) --> automaton Hyphen Realization blocks from state 2.
28.(1) [3](I.i) --> (1 1 1 1 1 2 2).
29.(2)Nothing to do.
"pi-nyi" ==> ("p<u1>-nyi" (@DAMAGE V NPST))

The figure displays the resulting graph of word length vs. backtracking for a distribution
of over 80 Warlpiri words. Note that the two-level system does substantial backtracking: the
amount of backtracking grows linearly with input length.



3020100
0

20

40

60

80

100

120

word length

ba
ck

tr
ac

k 
co

un
t

y =  - 7.7569 + 3.6545x   R^2 = 0.586

Notes #2: FSAs, Morphological Processing, and kimmo 17

Figure 1: A graph of the backtracking done by the two-level morphological analyzer for 81
Warlpiri words. The expected backtracking is linear in word length, reflecting the relative
sparsity of “hard” sat problems along with the nonambiguity of some underlying word decom-
positions.


