
Compute initial state set S0 Compute initial state set S0
1. S0← q0
2. S0← eta-closure (S0)

1. S0←q0
2. S0← eta-closure (S0)

q0= [Start→•S, 0] q0= [Start→•S, 0, 0]
eta-closure= transitive
closure of jump arcs

eta-closure= transitive closure
of Predict and Complete

FTN Parser Earley Parser

Initialize:

Compute Si from Si-1 Compute Si from Si-1
For each word, wi, 1=1,...,n For each word, wi, 1=1,...,n

Si←∪δ (q, wi)
q∈ Si-1

Si←∪δ (q, wi)
q∈ Si-1= Scan(Si-1)

q=itemSi←e-closure(Si) Si←e-closure(Si)
e-closure=
closure(Predict, Complete)

Loop:

Accept/reject:
If qf ∈ Sn then accept;

else reject

If qf∈ Sn then accept;

else reject

Accept/reject:

qf= [Start→S•, 0] qf= [Start→S•, 0, n]

Final:

Massachusetts Institute of Technology
6.863J/9.611J, Natural Language Processing, Spring, 2001

Department of Electrical Engineering and Computer Science
Department of Brain and Cognitive Sciences

Handout 8: Computation & Hierarchical parsing II

1 FTN parsing redux

2 Earley’s algorithm
Earley’s algorithm is like the state set simulation of a nondeterministic FTN presented earlier,
with the addition of a single new integer representing the starting point of a hierarchical
phrase (since now phrases can start at any point in the input). Note that with simple linear
concatenation this information is implicitly encoded via the word position we are at. The
stopping or end point of a phrase will be encoded by the word position. To proceed, given
input n, a series of state sets S0, S1, . . ., Sn is built, where Si contains all the valid items after
reading i words. The algorithm as presented is a simple recognizer; as usual, parsing involves
more work.

2 6.863J Handout 8, Spring, 2001

In theorem-proving terms, the Earley algorithm selects the leftmost nonterminal (phrase)
in a rule as the next candidate to see if one can find a “proof” for it in the input. (By varying
which nonterminal is selected, one can come up with a different strategy for parsing.)

To recognize a sentence using a context-free grammar G and
Earley’s algorithm:

1 Compute the initial state set , S0:

1a Put the start state, (Start→ •S, 0, 0), in S0.

1b Execute the following steps until no new state triples
are added.

1b1 Apply complete to S0.
1b2 Apply predict to S0.

2 For each word wi, i = 1, 2, . . . , n, build state set Si given
state set Si−1.

2a Apply scan to state set Si.

2b Execute the following steps until no new state triples
are added to state set Si.

2b1 Apply complete to Si

2b2 Apply predict to Si

2c If state set Si is empty, reject the sentence; else in-
crement i.

2d If i < n then go to Step 2a; else go to Step 3.

3 If state set n includes the accept state (Start→ S•, 0, n),
then accept; else reject.

Defining the basic operations on items

Definition 1: Scan: For all states (A→ α • tβ, k, i− 1) in state set Si−1, if wi = t, then add
(A→ αt • β, k, i) to state set Si.
Definition 2: Predict (Push): Given a state (A → α • Bβ, k, i) in state set Si, then add all
states of the form (B → •γ, i, i) to state set Si.
Definition 3: Complete (Pop): If state set Si contains the triple (B → γ•, k, i), then, for all
rules in state set k of the form, (A → α • Bβ, l, k), add (A → αB • β, l, i) to state set Si. (If
the return value is empty, then do nothing.)

Compute initial state set S0 Compute initial state set S0
1. S0← q0
2. S0← eta-closure (S0)

1. S0←q0
2. S0← eta-closure (S0)

q0= [Start→•S, 0] q0= [Start→•S, 0, 0]
eta-closure= transitive
closure of jump arcs

eta-closure= transitive closure
of Predict and Complete

FTN Parser Earley Parser

Initialize:

Compute Si from Si-1 Compute Si from Si-1
For each word, wi, 1=1,...,n For each word, wi, 1=1,...,n

Si←∪δ (q, wi)
q∈ Si-1

Si←∪δ (q, wi)
q∈ Si-1= Scan(Si-1)

q=itemSi←e-closure(Si) Si←e-closure(Si)
e-closure=
closure(Predict, Complete)

Loop:

Accept/reject:
If qf ∈ Sn then accept;

else reject

If qf∈ Sn then accept;

else reject

Accept/reject:

qf= [Start→S•, 0] qf= [Start→S•, 0, n]

Final:

Computation & Hierarchical parsing II 3

3 Comparison of FTN and Earley state set parsing
The FTN and Earley parsers are almost identical in terms of representations and algorithmic
structure. Both construct a sequence of state sets S0, S1, . . . , Sn. Both algorithms consist of
three parts: an initialization stage; a loop stage, and an acceptance stage. The only difference
is that since the Earley parser must handle an expanded notion of an item (it is now a partial
tree rather than a partial linear sequence), one must add a single new integer index to mark
the return address in hierarchical structure.

Note that prediction and completion both act like ε-transitions: they spark parser opera-
tions without consuming any input; hence, one must close each state set construction under
these operations (= we must add all states we can reach after reading i words, including those
reached under ε-transitions.)
Question: where is the stack in the Earley algorithm? (Since we need a stack for return
pointers.)

4 A simple example of the algorithm in action
Let’s now see how this works with a simple grammar and then examine how parses may be
retrieved. There have been several schemes proposed for parse storage and retrieval.

Here is a simple grammar plus an example parse for John ate ice-cream on the table (am-
biguous as to the placement of the Prepositional Phrase on the table).

4 6.863J Handout 8, Spring, 2001

Start→S S→NP VP
NP→Name NP→Det Noun
NP→Name PP PP→ Prep NP
VP→V NP VP→V NP PP
V→ate Noun→ice-cream
Name→John Name→ice-cream
Noun→table Det→the
Prep→on

Let’s follow how this parse works using Earley’s algorithm and the parser used in laboratory
2. (The headings and running count of state numbers aren’t supplied by the parser. Also note
that Start is replaced by *DO*. Some additional duplicated states that are printed during
tracing have been removed for clarity, and comments added.)

(in-package ’gpsg)
(remove-rule-set ’testrules)
(remove-rule-set ’testdict)
(add-rule-set ’testrules ’CFG)
(add-rule-list ’testrules

’((S ==> NP VP)
(NP ==> name)
(NP ==> Name PP)
(VP ==> V NP)
(NP ==> Det Noun)
(PP ==> Prep NP)
(VP ==> V NP PP)))

(add-rule-set ’testdict ’DICTIONARY)
(add-rule-list ’testdict

’((ate V)
(John Name)
(table Noun)
(ice-cream Noun)
(ice-cream Name)
(on Prep)
(the Det)))

(create-cfg-table ’testg ’testrules ’s 0)

? (pprint (p "john ate ice-cream on the table"
:grammar ’testg :dictionary ’testdict :print-states t))

Computation & Hierarchical parsing II 5

State set Return ptr Dotted rule
(nothing)
0 0 *D0* ==> . S $ (1) (start state)
0 0 S ==> . NP VP (2) (predict from 1)
0 0 NP ==> . NAME (3) (predict from 2)
0 0 NP ==> . NAME PP (4) (predict from 2)
0 0 NP ==> . DET NOUN (5) (predict from 2)

John [Name]
1 0 NP ==> NAME . (6) (scan over 3)
1 0 NP ==> NAME . PP (7) (scan over 4)
1 0 S ==> NP . VP (8) (complete 6 to 2)
1 1 PP ==> . PREP NP (9) (predict from 7)
1 1 VP ==> . V NP (10) (predict from 8)
1 1 VP ==> . V NP PP (11) (predict from 8)

ate [V]
2 1 VP ==> V . NP (12) (scan over 10)
2 1 VP ==> V . NP PP (13) (scan over 11)
2 2 NP ==> . NAME (14) (predict from 12/13)
2 2 NP ==> . NAME PP (15) (predict from 12/13)
2 2 NP ==> . DET NOUN (16) (predict from 12/13)

ice-cream [Name, Noun]
3 2 NP ==> NAME . (17) (scan over 14)
3 2 NP ==> NAME . PP (18) (scan over 15)
3 1 VP ==> V NP . PP (19) (complete 17 to 13)
3 1 VP ==> V NP . (20) (complete 17 to 12)
3 3 PP ==> . PREP NP (21) (predict from 18/19)
3 0 S ==> NP VP . (22) (complete 20 to 8)
3 0 *D0* ==> S . $ (23) (complete 8 to 1)

on [Prep]
4 3 PP ==> PREP . NP (24) (scan over 21)
4 4 NP ==> . NAME (25) (predict from 24)
4 4 NP ==> . NAME PP (26) (predict from 24)
4 4 NP ==> . DET NOUN (27) (predict from 24)

the [Det]
5 4 NP ==> DET . NOUN (28) (scan over 27)

table [Noun]
6 4 NP ==> DET NOUN . (29) (scan over 28)
6 3 PP ==> PREP NP . (30) (complete 29 to 24)
6 1 VP ==> V NP PP . (31) (complete 24 to 19)
6 2 NP ==> NAME PP . (32) (complete 24 to 18)
6 0 S ==> NP VP . (33) (complete 8 to 1)
6 0 *DO* ==> S . (34) (complete 1) [parse 1]
6 1 VP ==> V NP . (35) (complete 18 to 12)
6 0 S ==> NP VP . (36) (complete 12 to 1) = 33

 DO→S• (34)

 S→NP VP• (33)

 VP→V NP PP • (31) VP→V NP•(35)

 NP→Name PP•(32)

 PP→Prep NP•(30)

 NP→Det Noun• (29)

6 6.863J Handout 8, Spring, 2001

Figure 1: Distinct parses lead to distinct state triple paths in the Earley algorithm

6 0 *DO* ==> S . (37) (complete 1) = 34 [parse 2]
6 1 VP ==> V NP . PP (38) (complete 18 to 13)
6 6 PP ==> . PREP NP (39) (predict from 38)

((START
(S (NP (NAME JOHN))
(VP (V ATE) (NP (NAME ICE-CREAM))
(PP (PREP ON) (NP (DET THE) (NOUN TABLE))))))

(START
(S (NP (NAME JOHN))
(VP (V ATE)
(NP (NAME ICE-CREAM) (PP (PREP ON) (NP (DET THE) (NOUN TABLE))))))))

5 Time complexity of the Earley algorithm
The worst case time complexity of the Earley algorithm is dominated by the time to construct
the state sets. This in turn is decomposed into the time to process a single item in a state
set times the maximum number of items in a state set (assuming no duplicates; thus, we are
assuming some implementation that allows us to quickly check for duplicate states in a state

Maximum number of state sets Maximum time to build ONE state setX

X

Maximum number of
items

Maximum possible number
of items=

[maximum number of dotted rules X maximum number of distinct return values]

Maximum time
to process ONE item

X

Computation & Hierarchical parsing II 7

set). In the worst case, the maximum number of distinct items is the maximum number of
dotted rules times the maximum number of distinct return values, or |G| · n. The time to
process a single item can be found by considering separately the scan, predict and complete
actions. Scan and predict are effectively constant time (we can build in advance all the
possible single next-state transitions, given a possible category). The complete action could
force the algorithm to advance the dot in all the items in a state set, which from the previous
calculation, could be |G| · n items, hence proportional to that much time. We can combine
the values as shown below to get an upper bound on the execution time, assuming that the
primitive operations of our computer allow us to maintain lists without duplicates without any
additional overhead (say, by using bit-vectors; if this is not done, then searching through or
ordering the list of states could add in another |G| factor.). Note as before that grammar size
(measure by the total number of symbols in the rule system) is an important component to
this bound; more so than the input sentence length, as you will see in Laboratory 2.

If there is no ambiguity, then this worst case does not arise (why?). The parse is then linear
time (why?). If there is only a finite ambiguity in the grammar (at each step, there are only a
finite, bounded in advance number of ambiguous attachment possibilities) then the worst case
time is proportional to n2.

