
6.867 Machine learning and neural networks

Problem set 1 — Solutions

September 25th, 2001

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You may turn in answers to questions
marked “optional”— they will be read and corrected, but a grade will not be recorded for
them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write
your name on the top of every page.

Problem 1: regression

Reference: Lecture two; Chapter five.

Here we will be using a regression method to predict housing prices in suburbs of Boston.
You’ll find the data in the file “housing.data”. Information about the data, including
the column interpretation can be found in the file “housing.names”. These files, like
many other data files in the course, are taken from the UCI Machine Learning Reposi-
tory http://www.ics.uci.edu/ mlearn/MLSummary.html. They are provided also on the
course web page, and in the course Athena locker, /mit/6.867.

We will predict the median house value (the 14th, and last, column of the data) based on
the other columns.

1. First, we will use a linear regression model to predict the house values, using squared-
error as the criterion to minimize. In other words y = f(x; ŵ) = ŵ0 +

∑13
i=1 ŵixi,

1



where ŵ = arg minw

∑n
t=1(yt − f(xt; w))2; here yt are the house values, xt are input

vectors, and n is the number of training examples.

Write the following MATLAB functions (these should be simple functions to code in
MATLAB):

• A function that takes as input weights w and a set of input vectors {xt}t=1,...,n,
and returns the predicted output values {yt}t=1,...,n

• A function that takes as input training input vectors and output values, and
return the optimal weight vector ŵ.

• A function that takes as input a training set of input vectors and output values,
and a test set input vectors, and output values, and returns the mean training
error (i.e. average squared-error over all training samples) and mean test error.

2. To test our linear regression model, we will use part of the data set as a training
set, and the rest as a test set. For each training set size, use the first lines of the
data file as a training set, and the remaining lines as a test set. Write a MATLAB
function that takes as input the complete data set, and the desired training set size,
and returns the mean training and test errors.

Turn in the mean squared training and test errors for each of the following training
set sizes: 10, 50, 100, 200, 300, 400.

Answer: First to read the data (ignoring column four):

>> data = load(’housing.data’);

>> x = data(:,[1:3 5:13]);

>> y = data(:,14);

To get the training and test errors for training set of size s, we invoke the
following MATLAB command:

>> [trainE,testE] = testLinear(x,y,s)

Here are the errors I got:

training size training error test error
10 6.27× 10−26 1.05× 105

50 3.437 24253
100 4.150 1328
200 9.538 316.1
300 9.661 381.6
400 22.52 41.23

Note that for a training size of ten, the training error should have been zero. The very
low, but still non-zero, error is a result of limited precision of the calculations, and is not a
problem. Furthermore, with only ten training examples, the optimal regression weights are
not uniquely defined. There is a four dimensional linear subspace of weight vectors that
all yield zero training error. The test error above (for a training size of ten) represents an

2



arbitrary choice of weights from this subspace (implicitly made by the pinv() function).
Using different, equally optimal, weights would yield different test errors.

Scoring: 15 points were awarded for questions 1+2. As indicated in the clarificatoin
emails, it was OK to either use, or not use, column four.

3. What condition must hold for the training input vectors so that the training error
will be zero for any set of output values?

Answer: The training error will be zero if the input vectors are linearly inde-
pendent. More precisely, since we are allowing an affine term w0, it is enough
that the input vectors with an additional term always equal to one, are linearly
independent. Let X be the matrix of input vectors, with additional ’one’ terms,
y any output vector, and w a possible weight vector. If the inputs are linearly
independent, Xw = y always has a solution, and the weights w lead to zero
training error.

Note that if X is a square matrix with linearly independent rows, than it is invertible,
and Xw = y has a unique solution. But even if X is not square matrix, but its rows are
still linearly independent (this can only happen if there are less rows then columns, i.e.
less features then training examples), then there are solutions to Xw = y, which do not
determine w uniquely, but still yield zero training error (as in the case of a sample size of
ten above).

Scoring: 5 points

4. Do the training and test errors tend to increase or decrease as the training set size
increases? Why? Try some other training set sizes to see that this is only a tendency,
and sometimes the change is in the different direction.

Answer: The training error tends to increase. As more examples have to be
fitted, it becomes harder to ’hit’, or even come close, to all of them.

The test error tends to decrease. As we take into account more examples
when training, we have more information, and can come up with a model that
better resembles the true behavior. More training examples lead to better
generalization.

Scoring: 6 points. It was not enough to describe the behavior— it was necessary to
explain the reason for this behavior.

5. We will now move on to polynomial regression. We will predict the house values
using a function of the form:

f(x; w) = w0 +
13∑
i=1

m∑
d=1

wi,dx
d
i

3



Where again, the weights w are chosen so as to minimize the mean squared error of
the training set. Think about why we also include all lower order polynomial terms
up to the highest order rather than just the highest ones [do not turn in an answer].

Note that we only use features which are powers of a single input feature. We do so
mostly in order to simplify the problem. In most cases, it is more beneficial to use
features which are products of different input features, and perhaps also their powers.
Think of why such features are usually more powerful [you do not have to turn in an
answer].

Write a version of your MATLAB function from section 2 that takes as input also a
maximal degree m and returns the training and test error under such a polynomial
regression model.

NOTE: When the degree is high, some of the features will have extremely high values,
while others will have very low values. This causes severe numeric precision problems
with matrix inversion, and yields wrong answers. To overcome this problem, you will
have to appropriately scale each feature xdi included in the regression model, to bring
all features to roughly the same magnitude. Be sure to use the same scaling for the
training and test sets. For example, divide each feature by the maximum absolute
value of the feature, among all training and test examples. (MATLAB matrix and
vector operations can be very useful for doing such scaling operations easily)

Answer: We will use the following functions, on top of those from question
two:

function xx = degexpand(x,deg)

function [trainE, testE] = testPoly(x,y,numtrain,deg)

6. Prove that such scaling of features does not change the regression predictions. That is,
given training feature vectors and output values {xt, yt}t=1,...,n and a test input vector
xtest, and scaling factors {αi}i=1,...,13, we would like to prove that the prediction of the
test output value would be the same if we trained a linear regression on {x̃t, yt}t=1,...,n,
where x̃t,i = αixt,i, and predicted on x̃test, where x̃test,i = αixtest,i. (It is enough to
prove this for the linear model (maximum degree one), and this is what we require
you to prove. The result extends to scaling each “extended” feature xdi (which is what
we actually do), since this is just linear regression using these “extended” features).

We provide two alternate proofs:

Answer: Let us consider the original feature xt and the corresponding scaled
version x̂t∗αi. We can represent the relationship between the new and old ma-
trices of inputs using a transformation matrix with only the scaling coefficients
in its diagonal (A):

X̂ = XA

4



Plugging this into the optimal weight equation (where X, y refer to the training
set):

ŵ = (X̂T X̂)−1X̂Ty

= ((XA)TXA)−1(XA)Ty

= (ATXTXA)−1ATXTy

= A−1(XTX)−1AT−1ATXTy

= A−1(XTX)−1XTy

= A−1w

And so, the predicted output is:

predicted ŷtest = X̂testŵ

= XtestAA−1w

= Xtestw

= predicted ytest

Answer: Note that since x̃ is a linear function of x, the set of linear function
of x is exactly equal to the set of linear function of x̃. The predictor, in both
cases, is the function from this set that minimizes the training error. And so,
both predictors will the same.

Scoring: 5 points

5



7. For a training set size of 400, turn in the mean squared training and test errors for
maximal degrees of zero through ten.

Answer: To get the training and test errors for maximum degree d, we invoke
the following MATLAB command:

>> [trainE,testE] = testPoly(x,y,400,d)

Here are the errors I got:

degree training error test error
0 83.8070 102.2266
1 22.5196 41.2285
2 14.8128 32.8332
3 12.9628 31.7880
4 10.8684 5262
5 9.4376 5067
6 7.2293 4.8562× 107

7 6.7436 1.5110× 106

8 5.9908 3.0157× 109

9 5.4299 7.8748× 1010

10 4.3867 5.2349× 1013

These results were obtained using pinv(). Using different operations, although theoret-
ically equivalent, might produce different results for higher degrees. In any case, using
any of the suggested methods above, the errors should match the above table at least up
to degree five. Beyond that, using inv() starts producing unreasonable results due to
extremely small values in the matrix, which make it almost singular (non-invertible). If
you used inv() and got such values, you should point this out.

Degree zero refers to having a constant predictor, i.e. predict the same input value for all
output values. The constant value that minimizes the training error (and is thus used) is
the mean training output.

Scoring: 10 points were awarded for questions 5 and 7 together. Point deductions
might be noted on either place– check the ’MATLAB’ score on the first page.

8. Explain the qualitative behavior of the test error as a function of the polynomial
degree. Which degree seems to be the best choice?

Answer: Allowing more complex models, with more features, we can use as
predictors functions that better correspond to the true behavior of the data.
And so, the approximation error (the difference between the optimal model
from our limited class, and the true behavior of the data) decreases as we
increase the degree. As long as there is enough training data to support such
complex models, the generalization error is not too bad, and the test error
decreases. However, past some point we start over-fitting the training data
and the increase in the generalization error becomes much more significant than

6



the continued decrease in the approximation error (which we cannot directly
observe), causing the test error to rise.

Looking at the test error, the best maximum degree seems to be three.

Scoring: 6 points, one of which for the choice of degree

9. Prove (in two sentences) that the training error is monotonically decreasing with the
maximal degree m. That is, that the training error using a higher degree and the
same training set, is necessarily less then or equal to the training error using a lower
degree.

Answer: Predictors of lower maximum degree are included in the set of predic-
tors of higher maximum degree (they correspond to predictors in which weights
of higher degree features are set to zero). Since we choose the predictor from
within the set the minimizes the training error, allowing more predictors, can
only decrease the training error.

Scoring: 5 points. Discussing why this behavior makes sense, or why the error tends
to decrease is not enough.

10. We claim that if there is at least one feature (component of the input vector x) with
no repeated values in the training set, then the training error will approach zero as
the polynomial degree increases. Why is this true?

Answer: We show for all m ≥ n − 1 (where n is the number of training
examples), the training error is 0, but constructing weights which predict the
training examples exactly. Let j be a component of the input with no repeat
values. We let wi,d = 0 for all i 6= j, and all d = 1, . . . ,m. Then we have

f(x) = w0 +
∑
i

∑
d

wi,dx
d
i = w0 +

m∑
d=1

wj,dx
d
j

Given n training points (x1, y1), . . . , (xn, yn) we are required to find w0, wj,1, . . . , wj,m
s.t. w0 +

∑m
d=1 wj,d(xi)

d
j = yi,∀i = 1, . . . , n. That is, we want to interpolate

n points with a degree m ≥ n − 1 polynomial, which can be done exactly as
long as the points xi are distinct.

Scoring: 3 points

7



Problem 2: estimation

Reference: Lecture 1-2; Recitations; Chapter four.

In this problem, we will derive maximum likelihood, and MAP, estimators for parameters
of Gaussian distributions.

Recall that a univariate Gaussian (or normal) random variable, with mean µ and variance
σ2, is given by the following probability density function:

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Maximum Likelihood Estimation

The likelihood L(data; θ) is the probability (or probability density, for continuous
distributions) of the data given the model parameters θ (here the model is a Gaussian).
Note that we could have written P (data|θ) for the likelihood. The likelihood notation
is used to emphasize that L(data; θ) is viewed as a function of the parameters θ when
we have already observed the data.

1. Write down the likelihood L(x1, . . . , xn;µ, σ) of a sample drawn independently from
a normal distribution with (unknown) mean and variance.

Answer:

L(x1, x2, . . . xn;µ, σ) =
n∏
i=1

L(xi;µ, σ)

=

(
1√

2πσ2

)n
e−

∑n
i=1(xi−µ)2

2σ2

Scoring: 2 points

The maximum likelihood estimator µ̂(x1, . . . , xn), is the value of µ that maximizes
the likelihood L:

µ̂(x1, . . . , xn) = arg max
µ

max
σ

L(x1, . . . , xn;µ, σ)

Instead of searching for the maximum of L, we will search for the maximum of logL.
This is fine since the logarithm is a monotonically increasing function. To find the
maximum, we would like to solve the equation:

∂ logL(x1, . . . , xn;µ, σ)

∂µ
= 0

8



2. Calculate ∂ logL(x1,...,xn;µ,σ)
∂µ

and solve the above equation, in order to find the maximum
likelihood estimator µ̂. Show that the solution does not depend on σ.

Answer:

∂ logL(x1, . . . , xn;µ, σ)

∂µ
= − 1

2σ2

∑
i

(2µ− 2xi) =
1

σ2

∑
i

xi −
n

σ2
µ,

and equating (2) to zero we get, after multiplying by σ2:

µ̂ =
1

n

∑
i

xi

Scoring: 4 points

To be entirely rigorous, one should also make sure this is a maximum and not a minimum,
e.g. by looking at the second derivative, and that the likelihood is bounded.

In general, we might have needed to find the values of σ which maximize L together
with µ. This is luckily unnecessary, since as you showed, arg maxµ L(µ, σ) is inde-
pendent of σ.

Note that µ̂ is a function of the sampled values, and thus µ̂ can itself be viewed as
a random variable. An estimator such as µ̂ is said to be unbiased if the expected
value of this random variable is equal to the “true” value being estimated, that is
if EX1,...,Xn∼N (µ,σ) [µ̂(X1, . . . , Xn)] = µ for all µ, σ. The expectation here is over the
possible choices of the random samples assuming they came from a Gaussian with
mean µ and variance σ2.

3. Calculate EX1,...,Xn∼N (µ,σ) [µ̂(X1, . . . , Xn)]. Is µ̂ unbiased? Hint: the expectation of a
sum is equal to the sum of the expectations.

Answer:

EX1,...Xn∼N (µ,σ) [µ̂(X1, ...Xn)] = E

[
1

n

∑
i

Xi

]

=
1

n
E

[∑
i

Xi

]
=

1

n

∑
i

E [Xi]

=
1

n

∑
i

µ = µ

thus, µ̂ is an unbiased estimator of µ.
Scoring: 4 points

9



We now proceed to calculate the maximum likelihood estimator for σ:

σ̂(x1, . . . , xn) = arg max
σ

max
µ

L(x1, . . . , xn;µ, σ)

We do so in a similar way, by taking the derivative of maxµ logL(x1, . . . , xn;µ, σ),
with respect to σ. Note that in taking this derivative, we assume that µ is set to its
maximum likelihood value. However, we already know the value of µ that maximizes
L(µ, σ) and so can just plug it in.

4. Does it matter if we take the derivative with respect to the variance σ2, or its square
root σ?

Answer: No, it does not matter. σ2 is a monotonic function of σ, with
strictly positive derivative, for σ > 0 (which is the relevant range). Although
the derivatives with respect to σ and to σ2 will be different, they will zero in
the same places.

Scoring: 1 point

5. Calculate σ̂(x1, . . . , xn).

Answer: Taking the derivative of the likelihood with respect to σ2 (we could
have also taken the derivative with respect to σ):

∂ logL

∂σ2
= −n

2

1

2πσ2
2π − 1

2

(
n∑
i=1

(xi − µ)2

)
∂

∂σ2
σ−2

= − n

2σ2
+

(σ2)
−2

2

(
n∑
i=1

(xi − µ)2

)
Setting this to 0, we get:

1

σ̂4

n∑
i=1

(xi − µ)2 =
n

σ̂2

And since we must consider also the maximum with respect to µ, we can plug
in µ̂ which we previously calculated, and get:

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

Scoring: 4 points

6. We would now like to show that σ̂2 is not an unbiased estimator of σ2. Calculate
EX1,...,Xn∼N (µ,σ) [σ̂2(X1, . . . , Xn)] to do so. Hint: note that X1, . . . , Xn are indepen-
dent, and use the fact that the expectation of a product of independent random
variables is the product of the expectations.

10



Answer: Because the variance of any random variable R is given by var(R) =
E[R2] − (E[R])2, the expected value of the square of a Gaussian random
variable Xi with mean µ and variance σ2 is E[X2

i ] = var(Xi) + (E[Xi])
2 =

σ2 + µ2.

EX1,...,Xn∼N (µ,σ)[σ̂
2(X1, . . . , Xn)] = E[

1

n

n∑
i=1

(Xi −
∑n

j=1 Xj

n
)2]

=
1

n

n∑
i=1

E[(Xi −
∑n

j=1 Xj

n
)2]

=
1

n

n∑
i=1

E[(Xi −
∑n

j=1 Xj

n
)(Xi −

∑n
j=1 Xj

n
)]

=
1

n

n∑
i=1

E[X2
i −

2

n
Xi

n∑
j=1

Xj +
1

n2

n∑
j=1

n∑
k=1

XjXk]

=
1

n

n∑
i=1

E[X2
i ]− 2

n2

n∑
i=1

n∑
j=1

E[XiXj] +
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

E[XjXk]

Consider the two summations
∑n

i=1

∑n
j=1 E[XiXj] and

∑n
i=j

∑n
k=1 E[XjXk].

Of the n2 terms in each of these summations, n of them satisfy i = j or j = k,
so these terms are of the form E[X2

i ]. By linearity of expectation, these terms
contribute nE[X2

i ] to the sum. The remaining n2 − n terms are of the form
E[XiXj] or E[XjXk] for i 6= j or j 6= k. Because the Xi are independent
samples, it follows from linearity of expectation that these terms contribute
(n2 − n)E[Xi]E[Xj] to the summation.

n∑
i=1

n∑
j=1

E[XiXj] =
n∑
j=1

n∑
k=1

E[XjXk]

= nE[X2
i ] + (n2 − n)E[Xi][Xj]

= n(σ2 + µ2) + (n2 − n)µµ = nσ2 + nµ2 + n2µ2 − nµ2

= nσ2 + n2µ2

11



EX1,...,Xn∼N (µ,σ)[σ̂
2(X1, . . . , Xn)]

=
1

n

n∑
i=1

(σ2 + µ2)− 2

n2
(nσ2 + n2µ2) +

1

n3

n∑
i=1

(nσ2 + n2µ2)

=
1

n
(nσ2 + nµ2)− 2

σ2

n
− 2µ2 +

1

n3
(n2σ2 + n3µ2)

= σ2 + µ2 − 2
σ2

n
− 2µ2 +

σ2

n
+ µ2

= σ2 − σ2

n
=
n− 1

n
σ2

Since the expected value of σ̂2(X1, . . . , Xn) is not equal to the actual
variance σ2, σ̂2 is not an unbiased estimator. In fact, the maximum likelihood
estimator tends to underestimate the variance. This is not surprising: consider
the case of only a single sample: we will never detect any variance. If there are
multiple samples, we will detect variance, but since our estimate for the mean
will tend to be shifted from the true mean in the direction of our samples, we
will tend to underestimate the variance.

Scoring: 4 points

7. Suggest an unbiased estimator σ̃2(x1, . . . , xn) for σ2, based on the the maximum
likelihood estimator above, and show that σ̃2 is in fact unbiased. Hint: scale the
maximum likelihood estimator so that it will be unbiased.

Answer: Consider the estimator:

σ̃2 .
=

1

n− 1

∑
i

(xi − µ̂)

=
n

n− 1
σ̂2

To verify that it is unbiased, we use the expectation of σ̂2 that we derived
above:

E
[
σ̃2
]

= E

[
n

n− 1
σ̂2

]
=

n

n− 1

n− 1

n
σ2 = σ2

The unbiased estimator σ̃2 is frequently used instead of the maximum likelihood
estimator. In fact, the default behavior of the MATLAB function VAR(X) is to
return the unbiased estimator. The maximum likelihood estimator, which is
also the variance of the sample, can be calculated using VAR(X,1).

Scoring: 3 points

12



8. Consider a sample x1, . . . , xn drawn from a Gaussian distribution N (µ, σ2), where
the true mean µ is known, but the variance is not. What is the maximum likelihood
estimator for the variance in this case ? Is it unbiased ?

Answer: We can use the calculations in section five, but instead of taking
the maximum over µ, we just use the known, constant µ. We get:

σ̂2 =
1

n

n∑
i=1

(xi − µ)2

In calculating the expected value of the estimator, note that we get exactly the
definition of a variance of a random variable:

EX1,X2...Xn∼N (µ,σ)

[
σ̂2(X1, X2, . . . Xn)

]
=

1

n

n∑
i=1

EXi∼N (µ,σ)

[
(Xi − µ)2]

=
1

n

n∑
i=1

Var[N (µ, σ)])

=
1

n

n∑
i=1

σ2

= σ2

And the estimator is unbiased.

Scoring: 4 points

We now return to the case in which neither the mean nor the variance are known.

9. An estimator being unbiased does not necessarily make it good. For example, consider
the following estimator for the mean of a Gaussian random variable: µ̆(x1, . . . , xn) =
x1. Show that this is an unbiased estimator of µ.

Answer: EX1,...,Xn∼N (µ,σ)[µ̆(X1, . . . , Xn)] = E[X1] = µ

Scoring: 2 points

One reason that µ̆ is not a very good estimator, is that no matter how many samples
we have, it will not improve. It will never converge to the true value of µ.

An estimator θ̂ is (mean squared) consistent if it converges to θ in the following

sense: EX1,...,Xn∼N (µ,σ)

[
(θ̂(X1, . . . , Xn)− θ)2

]
→ 0 as n → ∞. In other words, the

more data points we get, the less likely it is that the estimate θ̂(X1, . . . , Xn) deviates
much from θ.

13



10. (optional) Show that µ̂ (the maximum likelihood estimate of the mean) is a consistent
estimator of µ.

Answer:

E
[
(µ̂− µ)2

]
= E

[(∑
iXi

n
− µ

)2
]

=
1

n2
E

(∑
i

Xi − E

[∑
i

Xi

])2


noticing that this is the definition of the variance:

=
1

n2
Var

[∑
i

Xi

]
=

1

n2
nVar [Xi] =

1

n2
nσ2

=
σ2

n

n→∞−→ 0

Scoring: Optional question– no score recorded

11. Do you think σ̂2 is a consistent estimator of σ2? What about σ̃2? (no proof required)

Answer: They are both consistent estimators. It is easy to see that as n
becomes large, the two estimators converge to each other (for this reason, for
large n, the maximum likelihood estimator is almost unbiased). A calculation
similar to the above calculation for µ̂, though somewhat more involved, shows
that they are both consistent.

Scoring: No score recorded

Maximum A-Posteriori (MAP) Estimation

So far we discussed maximum likelihood estimation. Sometimes we have information
or beliefs about likely values of the parameters before actually having seen the data.
It turns out that we can incorporate such information relatively easily provided that
the information is expressed in terms of a probability distribution (density) P (θ)
over the parameters θ. This density assigns high values to those parameters that we
believe are likely a priori.

Now that we have a prior distribution P (θ), in addition to the distribution P (data|θ),
we can talk about the joint distribution P (θ, data) and more interestingly, about the
conditional distribution P (θ|data). The maximum a-posteriori (MAP) estimator is
defined as the value of the parameters θ that maximizes this conditional distribution:

θ̂MAP = arg max
θ
p(θ|data)

14



12. Start from this definition and show that the MAP estimator is given by a maximiza-
tion of the product of the prior belief and the likelihood:

θ̂MAP = arg max
θ
p(θ)p(data|θ)

Hint: use Bayes’ law, or the definition of conditional probability, and note that factors
that are independent of θ can be ignored in the maximization.

Answer: By the definition of conditional probability, we have p(θ|data) =
p(θ,data)
p(data)

. Conditioning on the value of θ, we obtain p(θ, data) = p(data|θ)p(θ).
This yields the following.

θ̂MAP = arg max
θ
p(θ|data) = arg max

θ

p(θ, data)

p(data)
= arg max

θ

p(data|θ)p(θ)
p(data)

Because the probability p(data) is independent of θ, it acts as a constant with
respect to the maximization over θ, and so the value of θ that maximizes
p(data|θ)p(θ)
p(data)

is the same value that maximizes p(θ)p(data|θ).

θ̂MAP = arg max
θ
p(θ)p(data|θ)

Scoring: 2 points

Consider samples x1, . . . , xn from a Gaussian random variable with known variance
σ2 and unknown mean µ. We further assume a prior distribution (also Gaussian)
over the mean, µ ∼ N (m, s2), with fixed mean m and variance s2.

13. Calculate the MAP estimate µ̂MAP . Hint: as we did before, set the derivative of the
logarithm to zero.

Answer: The prior distribution over the mean is p(µ) = (2πs2)−1/2e−
(µ−m)2

2s2 .
Since the samples xi are taken to be independent, we have:

p(data|µ) = e−
1

2σ2

∑n
i=1(xi−µ)2

And combining them:

log (p(µ)p(data|µ)) = −1

2
log (2πs2)−(µ−m)2

2s2
−n

2
log (2πσ2)− 1

2σ2

n∑
i=1

(xi−µ)2

Taking the derivative with respect to µ:

∂ log (p(µ)p(data|µ))

∂µ
= 0− 2(µ−m)(1)

2s2
− 0− 1

2σ2

n∑
i=1

(2)(xi − µ)(−1)

= −µ−m
s2

+
1

σ2

n∑
i=1

(xi − µ) = − µ
s2

+
m

s2
+

1

σ2

n∑
i=1

xi −
nµ

σ2

15



Setting this derivative to zero in order to find the maximum:

0 = − µ̂MAP

s2
+
m

s2
+

1

σ2

n∑
i=1

xi −
nµ̂MAP

σ2

µ̂MAP (
n

σ2
+

1

s2
) =

1

σ2

n∑
i=1

xi +
m

s2

µ̂MAP =
1
σ2

∑n
i=1 xi + m

s2

n
σ2 + 1

s2

=
s2
∑n

i=1 xi +mσ2

ns2 + σ2

=

(
ns2

ns2 + σ2

)∑
i xi
n

+

(
σ2

ns2 + σ2

)
m

Scoring: 5 points

14. (optional) Show that as the number of samples increase, the prior knowledge becomes
insignificant. That is, all MAP estimates assuming as a prior on µ any Gaussian
distribution with non-zero variance, will converge to each other. What is the common
estimator that all such MAP estimators converge to ? (Further note: This actually
holds with rather mild assumptions about the prior— it need not be Gaussian).

Answer: Notice that as n increases, while s,m and σ remain constant, we

have σ2

ns2+σ2 → 0 while ns2

ns2+σ2 → 1, yielding µ̂MAP →
∑
i xi
n

= µ̂. That is, when
there are many samples, the prior knowledge becomes less and less relevant,
and all MAP estimators (for any prior) converge to the maximum likelihood
estimator µ̂. This is not surprising: as we have more data, it outweighs our
prior speculations.

This also tells us that these MAP estimators are consistent, since we already
know that µ̂ is consistent. However, they are, of course, biased– they are biased
towards our prior guess m.

15. (optional) What does the MAP estimator converge to if we increase the prior variance
s2?

Answer: As the prior variance s2 increases, even for a small number of samples

n, we have σ2

ns2+σ2 → 0 while ns2

ns2+σ2 → 1, again yielding µ̂MAP →
∑
i xi
n

= µ̂.
That is, when we have an uninformative, almost uniform, prior, we are left only
with out data to base out estimation on.

On the other hand, if the prior variance is very small, s2 → 0, then we have
σ2

ns2+σ2 → 1 while ns2

ns2+σ2 → 0, yielding µ̂MAP → m. That is, if our prior is
very concentrated, we essentially already know the answer, and can ignore the
data.

Thanks to Rui Fan, Jonathan Herzog, Ray Jones, Damon Mosk-Aoyama, Luis Perez-Breva and
Gregory Shakhnarovich for making available their typeset solutions.

16


